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Abstract

It is well known that antipodalgraspscan be achieved
on curved objectsin the presenceof friction. This paper
presentsan efficient algorithmthat finds, up to numerical
resolution,all pairsof antipodalpointsonaclosed,simple,
andtwicecontinuouslydifferentiableplanecurve. Dissect-
ing the curve into segmentseverywhereconvex or every-
whereconcave,thealgorithmmarchessimultaneouslyona
pairof suchsegmentswith provableconvergenceandinter-
leavesmarchingwith numericalbisection.It makesuseof
new insightsinto thedifferentialgeometryat two antipodal
points. We have avoidedresortingto traditionalnonlinear
programmingwhichwouldneitherbequiteasefficientnor
guaranteeto find all antipodalpoints. Dissectionandthe
couplingof marchingwith bisectionintroducedin this pa-
per arepotentiallyapplicableto many optimizationprob-
lemsinvolving curvesandcurvedshapes.

1 Introduction

A graspon an object is force closure if andonly if arbi-
trary forceandtorquecanbeexertedon theobjectthrough
the finger contacts.Two fingersin frictional contactwith
a 2D curved shapecanform a force-closuregraspif they
areplacedat two pointswhoseinward normalsareoppo-
siteandcollinear. Sucha graspis referredto asanantipo-
dal graspwhile thetwo pointsarereferredto asantipodal
points. For example,theclosedcurve in Figure1 haseight
pairsof antipodalpoints(numberedthe samewithin each
pair).

Wepresentafastalgorithmthatfindsall antipodalpoints
on a generalclosedplanecurve. Thenovelty of this algo-
rithm lies in (a) its dissectionof the curve into segments
turningin onedirection,and(b) its combinationof numer-
ical bisectionandmarchingwith provableconvergence.�

Supportfor this researchwasprovidedby Iowa StateUniversity.

Figure 1: Eight pairsof antipodalpointson a curvedshape.The
graspat pair 7 (or at any otherpair) is force-closure.

1.1 Related Work

Hongetal. [5] provedtheexistenceof two pairsof antipo-
dalpointsonaclosed,simple,andsmoothconvex curveor
surface. ChenandBurdick [3] computedantipodalpoints
on 2D and3D shapesthroughminimizing a graspingen-
ergy function. Blake andTaylor [2] gavea geometricclas-
sificationof two-fingeredfrictional graspsof smoothcon-
tours. Ponceet al. [11] employed parallel cell decompo-
sition to computepairsof maximal-lengthsegmentson a
piecewise-smoothcurved 2D object that guaranteeforce
closurewith friction.

Nguyen[9] describedsimplealgorithmsfor synthesiz-
ing independentgraspregionson polygonsandpolyhedra,
with or without friction. Markenscoff et al. [8] determined
the numberof fingersto immobilize 2-D and3-D objects
with piecewise smoothboundaries. We refer the reader
to [1] for a survey of researchon graspingandcontact.

In preprocessingour algorithm finds points of simple
inflection. In [4] Goodmangave an upperboundon the
numberof inflection points on parametricspline curves.
ManochaandCanny [7] usedtheSturmsequencemethod
to find inflectionpointson rationalcurves. Sakai[12] ob-
tainedthe distribution of inflection pointsandcuspson a
parametricrationalcubiccurve.

Appeared in Proceedingsof the2002IEEE InternationalConferenceon RoboticsandAutomation.
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1.2 Antipodal Points

Let � ����� bea closed,simple,andtwice continuouslydif-
ferentiablecurve,where

�
increasescounterclockwise.For

clarity of presentation,weassumethat � is unit-speed, that
is, �	��
 ����� ���� . All proceduresin thispaperarepresented
on unit-speedcurvesbut canbeextendedwith virtually no
effort to (andhave beenimplementedon) arbitrary-speed
curves.

Denoteby � ����� ��� 
 ����� the tangentof � anddenote
by � ����� the inward normal. We only considerthat � ’s
curvature � is not constant.� Furthermore,� canbe zero
at only isolatedpointson the curve. In caseno ambiguity
arises,theparameter

�
alsorefersto thepoint � ����� on the

curve.Two points � and � on � arecalledantipodalif their
normalsareoppositeandcollinear:� � � ��� � � � � ��� and � � � ����� � � � �! � � � �#" ���%$

In Section2 we will considerhow to find antipodal
points on a pair of segmentsof � that satisfy somere-
strictedconditions. In Section3 we will describehow to
preprocess� to generateall such pairs. Section4 will
presentsomeexperimentalresults.

2 Computation of Antipodal Points

Two segmentsof � , denotedas & and ' , are defined
on subdomains

�)(+*-,.(+/.�
and

��01*2,301/3�
, respectively. Here(4*65�(+/

alwaysholds.For convenience,we allow
01*87901/

,
in which case

��01*-,301/3�
refers to the interval

��01/:,101*;�
. Let< � � , � � �>= /* �@? � bethetotal curvatureover

� � , � � , which
measuresthe amountof rotation of the tangent � as it
movesfrom � to � along the curve. We assumethat the
following conditionsaresatisfied:

(i) No intersectionbetween& and ' .

(ii) � 7 � everywhereor � 5 � everywhereon both & and' , with �A��� possibleonly at
(+*-,B(+/	,301*

, and
01/

.

(iii) � �C( * ��� � ��0 * � �D� and � �)( / �E� � ��0 / � �F� but
neither

( *
and

0 *
nor

( /
and

0 /
areantipodal.

(iv)
 EGIH < �C(+*2,.(+/.� �  < ��01*2,101/.��HJG .

Conditions(ii) statesthat the normalrotatesin onedirec-
tion aseachsegmentis traversed. Condition(iv) ensures
that a pair of antipodalpointscannotappearon the same
segment,which doesnot include

(4*2,B(+/	,301*
, or

01/
.

Under condition (iii) (and (ii) and (iv)), a one-to-one
correspondenceexistsbetweenapoint

(
on & andapoint

0K
This excludesacircleon whichany two pointsdeterminingadiame-

terareantipodal.

on ' : � �C(+�L� � ��01� � � , or equivalently, (1)� �)(4�L� � ��01� � �M$ (2)

Let N �C(O,101� � � �C(+�P� � ��01� . Since Q:RQ:S � � �C(+�P��# � ��01� � ��01�1� �  � ��01�UT��� , V by theImplicit FunctionThe-
orem,theequationN �)(O,101� �W� defines

0
asa functionof

(
.

We referto
0

astheoppositepointof
(
.

A pair of pointsmaybeantipodalonly if their normals
do not point away from eachother. We adda fifth condi-
tion:

(v) � �)(+�YXZ� � ��01�Y � �)(+�#"I7 � for all
(\[]�C( * ,B( / �

.

Dif ferentiate (2) and then plug (1) in:
� � �C(+�J � ��01�_^ S^a` � � �C(+� �>�M$ Thus � �C(+�: � ��01�b^ S^a` �>� and
^ S^a` �dcfe `hgcie S g .

2.1 Antipodal Angle

DefinetheantipodalanglejYk �C(+� astherotationanglefrom
thenormal � �C(+� to thevectorl �)(+� �m� ��01�4 � �C(+� (seeFig-
ure2). Undercondition(v), k [n�# po V ,Oo V � . By definition,

(

N  s(  ) N  t(  )

T  s(  )

r  s(  )

s

t

θ

(  )T  t
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Figure 2: Antipodalangle q .
and

0
areantipodalif andonly if k �C(+� �>� .

To determinekf
 , we first calculatethederivative:?? ( �al �C(+� ��sr � ��01�_^ S^a`  � �C(+�1tEX l �)(4��al �)(4� � �vu � �C(+�� ��01� � �xwPy3z|{Ek%$
From Figure2 we seethat y1z}{EkI�d� �C(+��� l �C(+�3~ �al �)(+� � .
Dif ferentiateboth sides of this equationand substitute^^a` �al �)(4� � in. After a few moresteps,weobtain

k 
 �C(+� �  � �)(4�L� �	� y_k�al �C(+� � u � �)(4�� ��01� � �:w]$ (3)

Two antipodalpoint
(;�

and
03�

with kO
 �)(;�x��T��� arecalled
simpleantipodalpoints.

The restof Section2 presentsan algorithmto find all
simpleantipodalpointson & and ' . This algorithmdeals
separatelywith threecases:& and ' arebothconcave,both
convex, or oneconcaveandtheotherconvex.�

The Frenet formulas [10, pp. 56–58] for planar curves state that�������3�����_���.�������.�
and
�@�����3���P���_���.�������3�

.�
In [2], it is referredto asthefriction angle.
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2.2 Two Concave Segments

In thiscase,� �C(+��5 � and � ��01��5 � ; by (3), kO
 �)(4�E7 � . The
antipodalanglek increasesmonotonicallyfrom

( *
to
( /

.

ta
tb

saθb

θa

sb

t *

sO

*s

Ot

Figure 3: Two concave segments. Since qf���B�;����qa�P��� andqf���a�3�L�]q	���I� exactlyonepair of antipodalpointsexists.

Theorem 1 Suppose& and ' are concave. If k �C( * �65 �
and k �C(+/B��7 � thena uniquepair of antipodalpointsexists.
Otherwise, no antipodalpointsexist.

When k �)( * �P5 � and k �C( / ��7 � , we usebisectionto
find theantipodalpoints. Initialize

�C(: 2,10h +�¢¡£�C( * ,30 * �
and�C( � ,30 � �p¡¤�)( / ,10 / �

. Thenevaluate
( V ¡ `h¥1¦�`3§V andfind

its oppositepoint
0 V . If k �)( V ��7 � , set

�)( � ,30 � �E¡¨�C( V ,10 V � ;
otherwiseset

�)(x 2,10h +�©¡ª�C( V ,30 V � . Repeatthe above steps
until k �)( V � approaches0, that is, until

( V and
0 V approach

two antipodalpoints.

2.3 Two Convex Segments

Since� �C(+�¢7 � over & and � ��01�¢7 � over ' , wecannotde-
terminethesignof kf
 �)(+� . Multiple pairsof antipodalpoints
mayexist on & and ' . Thefirst pair will befoundthrough
“marching” describedin Section2.3.1 if k �C( * � and k �C( / �
have the samesign or throughbisectionin Sections2.3.2
if they have different signs. Section2.3.3 will describe
how all theremainingpairscanbefoundby letting thetwo
strategiesinvokeeachotherrecursively.

2.3.1 Endpoint Antipodal Angles with the Same Sign

Themarchingstrategy will rely on thefollowing result.

Proposition 2 When& and ' are convex, thevector l �C(+�
rotatescounterclockwiseas

(
increasesfrom

(+*
to
(+/

.

Proof We needonly show that
^ l^a` � l 5 � . Dif ferenti-

atingthevector l yields?Ol? ( � ?? ( � � ��01�Y � �C(+� " �«� ��01� u � � � �C(+�� ��01� w $

Since � �)(+�a, � ��01�A7 � , we have � � cie `hgcfe S g 7 � . Hence
^ l^a`

is in thedirectionof � ��01� . Meanwhile,from condition(v)
that l �C(+��X � �)(+�\7 � it follows that � �C(+�� l �C(+��7 � and� ��01�¢� l �C(+��5 � . Therefore

^ l e `#g^a` � l �C(+�¢5 � . ¬
Figure4 illustratesthe working of an iterative method

when k �C(+*i�65 � and k �)(+/3�65 � . The iterationstartswith(
and

0
at
(   � (+/ and

0   � 01/ , respectively. FromPropo-
sition 2, as

(
moves towards

(+*
, the vector l �C(+� rotates

clockwise.At the  th iterationstepmove
(

from
(4®

to
(4® ¦ �

at which the normal is parallel to l �)(:®)� . If no suchpoint(:® ¦ � exists,stop.Otherwise,move
0

from
0#®

to
0#® ¦ � where� ��0#® ¦ � �� � �C(4® ¦ � � �¯� . The iteration continuesuntil

r  s(   )0

s

s  =

t 
a

0

a

sb

t

s1

1
t   = t0 b

r  s(   )1

S

T

Figure 4: The working of the procedure Antipodal-
Convex-March when qO��� � �!�°� an qO���a�1�!�I� .(:®

and
0#®

convergeto a pair of antipodalpoints,asin Fig-
ure5(a),or they reach

( *
and

0 *
, in whichcasenoantipodal

pointsexist asin Figure4.
When k �)( * ��7 � and k �C( / �\7 � , themarchstartsat

( *
and

0 *
andmoves towards

( /
and

0 /
, respectively, in the

samemanner. The methodhasbeenimplementedin the
procedureAntipodal-Convex-March.

Below we establishthe correctnessof the procedure
when k �C(+*i�¢5 � and k �C(+/3�E5 � .
Lemma 3 In thecasek �)(+*i�¢5 � and k �C(+/B��5 � of thepro-
cedureAntipodal-Convex-March,

( ® 7�( ® ¦ � andevery(±[]² ( ® ¦ � ,B( ® � satisfiesk �C(+��5 � for all �³9� .
Proof We useinduction. That k �C(   � �´k �)(+/3�85 � fol-
lowsdirectlyfrom theinitial condition.Supposek �C( ® �E5 � .
Thenormal � �)(+� rotatesclockwiseas

(
decreasesfrom

( ®
.

Also since � �C( ® ��� l �C( ® ��5 � and the normal � �)( ® ¦ � � ,
if
( ® ¦ � exists, is in the direction of l �C( ® � , we know that( ® ¦ � 5m( ® and� �)(4�E� l �)( ® �µ5 � , for all

(\[¶�C( ® ¦ � ,.( ® � . (4)

By Proposition2, l �)( ® � rotatesclockwiseas
(

movesfrom( ®
to
( ® ¦ � ; hencel �)(:®·��� l �C(+��5 � , for all

(\[¶² (:® ¦ � ,.(4®·� . (5)

Combininginequalities(4) and(5) with condition(v) that� �C(+�!X l �C(+��7 � over
�C( * ,B( / �

, we infer that� �C(+��� l �C(+�¢5 � , for all
(\[¶² (:® ¦ � ,.(4®C� $
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Figure 5: Geometryat theantipodalpoints � � and ¸ � : q � ��� � �Y�I�
and � � is closerto the centerof curvature ¹»º at � � than to the
centerof curvature ¹»¼ at ¸ � . Here q	½Z�]qO���a½�� .
Thus k �C(+��5 � for all

(\[]² (4® ¦ � ,B(4®)� . ¬
Lemma3 statesthatthesequence

(   ,.( � , $x$x$ , definedby� �)(4® ¦ � ��� l �C(4®·� �m� (6)

is monotonicallydecreasingandno antipodalpoint exists
on
² (4®1,.( / � �¿¾ ®ÀaÁ � ² ( À ,B( À+Â � � for all  7 � . Supposethe

segment & hasat leastoneantipodalpoint and let
(;�

be
theoneclosestto

(+/
. SeeFigure5(a).Thenthemonotonic

sequenceÃ ( ®hÄ is boundedbelow by
(;�

. Soit mustconverge
to some Å [¿�)(+*-,.(+/.�

where � � Å �©� l � Å � �F� . HenceÅ\� (+� .
Next, wedeterminethelocalconvergencerateof these-

quence.Apply Taylor’sexpansionof theiterationfunctionÆ
where

( ® ¦ � � Æ �C( ® � definedimplicitly by (6) at
(;�

:(:® ¦ �  ]( � � Æ �)(4®)�! Æ �C( � � � Æ 
 �)( � �x�C(4®� ]( � �L��XxX:X $
Below we determine

Æ 
 �C(;�4� . For simplicity, denotethe
antipodalangle k �)( ® � by k ® . As shown in Figure 5(b),y1z}{�k ® �Ç� �)( ® �±� � �C( ® ¦ � � . Dif ferentiatingboth sidesof
thisequationwith respectto

( ®
yields�x� y_k ® k 
 �)( ® � �  � �C( ® � � �)( ® �¢� � �C( ® ¦ � �È�� �C( ® �E� �  � �C( ® ¦ � � Æ 
 �)( ® � � �C( ® ¦ � � "�  � �C(4®·� �	� y_k ®�� � �)(:® ¦ � � Æ 
 �C(4®·� �	� y_k ® $

Let
03�

betheoppositepoint of
(+�

. Hencewe haveÆ 
 �C( � � � kO
 �)(+�:�� �C( � � � �U� � �C(;�:��� � ��03�:�� �C( � � � ��0 � � �	l �C( � � � 7 �M$ (7)

Note that the iteration startsat
(4/

where k �)(4/B�É5 �
and never passes

(;�
. So kO
 �)(;�x�É5 � must hold in the

non-degeneratecase.This andthat � �)(+�:�87 � imply thatÆ 
 �C(;�4�¢5 � . Thereforetheconvergencerateis linear.
Thecorrectnessandlinearconvergenceratefor thecasek �C(+*;�¢7 � and k �)(+/.�¢7 � canbeestablishedsimilarly.

Theorem 4 Let & and ' bothbeconvex. Supposethetwo
antipodalanglesk �)(4*;� and k �)(+/.� havethesamesign.Then
thefollowingstatementshold:

1. Whenno antipodalpointsexist on & and ' , thepro-
cedureAntipodal-Convex-March terminatesat

( *
and

0 *
if k �C( * �Ê5 � and k �C( / ��5 � or at

( /
and

0 /
ifk �C(+*;��7 � and k �C(+/B�¢7 � .

2. Otherwise, theprocedureconvergesat linear rateto a
pair of antipodalpoints

(;�
and

03�
closestto the two

endpointsat which the iteration starts. Furthermore,kf
 �C(;�x�E5 � musthold.

2.3.2 Endpoint Antipodal Angles with Different Signs

In this case,thetwo antipodalanglesk �C( * � and k �C( / � have
differentsigns.At leastonepair of antipodalpointsexists.
Tofindonepair, weuseabisectionprocedureAntipodal-
Convex-Bisect. At thefoundantipodalpoints

(;�
and

03�
,

either kO
 �)(;�x��7 � or kf
 �)(+�:��5 � .
2.3.3 Finding All Pairs of Antipodal Points

After findingonepairof antipodalpoints
(;�

and
03�

, how do
we move on to find otherpairsof antipodalpointsif they
exist on convex segments& and ' ?

Supposek �)(4*;� and k �C(+/B� have the samesign. Then
(;�

and
03�

have beenfound by the procedureAntipodal-
Convex-March. Let us considerthe casethat k �)( * �65 �
and k �C( / �\5 � . No antipodalpointsexist in

�)(+�f,B( / �
since

theiterationstartedat
( /

andendedat
(+�

. That kf
 �C(;�:�5 �
and k �)(;�x� �«� imply k �C(;�6 �ËB�J7 � for small enoughË�7 � . Thereforethe interval

�C( * ,.(;�p �Ëa�
containsat

leastoneantipodalpoint. Sowe needto invoke theproce-
dureAntipodal-Convex-Bisect

�)(4*2,B(;�Ì ÍË4,101*2,303�Y ÍÎi�
,

where
03�± mÎ

is the oppositepointÏ of
(;�\ ÐË

. Similarly,
when k �)(4*;�A7 � and k �)(4/B�p7 � , the interval

�)(;�@�mË4,B(4/.�
containsat leastoneantipodalpoint. We needto invoke
Antipodal-Convex-Bisect

�C(;���JË4,.(+/	,303���JÎ;,101/.�
.

Supposek �C(+*i� and k �C(+/B� have differentsigns.Then
(;�

and
03�

arefound by Antipodal-Convex-Bisect. Andk �C(;�f @Ëa� hasthesignof k �)(4*;� while k �)(;�;�±Ëa� hasthesignofk �C( / � . The procedureAntipodal-Convex-March needs
to beinvokedonbothintervals

�)( * ,.(;�! �Ëa�
and

�C(;�L�ÑË:,B( / �
to searchfor possibleantipodalpoints.

Figure6 illustratestheaboveprocedureon anellipse.Ò
Notethat Ó�ÔAÕ if Ö��U×bÖ � and Ó»×bÕ otherwise.
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Figure 6: Two pairsof antipodalpointson a pair of convex el-
liptic segmentsover ��� �OØ � � � and ��¸ �iØ ¸ � � , where Ù���� � �È�nÙ���¸ � � ,Ù@���a�3���mÙ���¸ � � , and Ú���� � ����Û�Ú���¸ � � . Antipodal-Convex-
March startsthe iterationat �a� and ¸·� andfinds the first pair of
antipodalpoints � � K and ¸ � K . Next, Antipodal-Convex-Bisect
is invokedon ��� �fØ � � K Û8Ü1� and ��¸ �fØ ¸ � K Û©Ý K � , whereÚ���¸ � K Û6Ý K ���Û�Ú���� � K Û]Ü1� , andfinds a secondantipodalpair � �� and ¸ �� . Fi-
nally, Antipodal-Convex-March is invoked again,on thepair���B� Ø � �� Û6Ü3� and ��¸·� Ø ¸ �� Û8Ý � � andonthepair ��� ���Þ Ü Ø � � K Û8Ü1� and��¸ �� Þ Ý � Ø ¸ � K Û8Ý K � , respectively. It findsnomoreantipodalpoints.

2.4 Convex and Concave Segments

Without lossof generality, suppose& is convex and ' is
concave. We againcomparethesignsof theantipodalan-
glesat thetwo endpointsof & .

2.4.1 Endpoint Antipodal Angles with the Same Sign

We first determineif oneof theraysextendingthenormals� ��01*;� and � ��01/.� intersects& . Under conditions(i)–(v),
testingif theray extending� ��01*;� , or simply calledtheray
of � ��01*;� , intersects& canbe doneby checkingwhether
thecrossproducts

� � �C(+*i�� � ��01*i�3�Y� � ��01*;� and
� � �)(+/.�� � ��01*;�1��� � ��01*;� havedifferentsigns.

Proposition 5 Suppose& is convex and ' is concave. As-
sumethat the two antipodalangles k �)(4*f� and k �)(4/B� have
the samesign. No antipodal points exist on & and ' if
neithertherayof � ��0 * � nor therayof � ��0 / � intersects& .

Proof For simplicity, we assumethat � �C( * � pointsver-
tically upward,asshown in Figure7. Undercondition(v),& and ' mustlie on thesamesideof thetwo tangentlinesß *

and
ß /

of & at
( *

and
( /

, respectively.
Supposeneitherof the raysof � ��0 * � and � ��0 / � inter-

sects& . Because� ��0 * � doesnot intersect& ,
0 *

is eitherto
theright of & or to its left. If

01*
is to theright, condition(v)

determinesthat the segment ' cannotcrossthe line con-
taining � ��01*;� to its left. So ' lies entirely to the right of
thesegment& , asshown in Figure7(a).But all normalson& point to theleft. Thusnoantipodalpointsexist.

If
01*

is to theleft of & , then k �)(4*f�E7 � . Sincek �C(+/B� has
thesamesign, k �)(4/B�Ê7 � . Then & and ' mustlie on dif-
ferentsidesof theline containing� ��01/.� asin Figure7(b).
Apparently, they cannothaveantipodalpointseither. ¬
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Figure 7: No antipodalpoints. Neithertheray of Ú���¸)�;� nor the
rayof Ú���¸h�1� intersectsthesegmentà .

Theiterationstartsat
(:  � ( * and

0h  � 0 * if theray of� ��01*;� intersects& , or at
(   � (+/

and
0   � 01/

if the ray
of � ��01/3� intersects& . In eachround,

( ® ¦ � is generatedas
theintersectionof theray of � ��0 ® � and & and

0 ® ¦ � is gen-
eratedas its oppositepoint. The iterationstopsif the se-
quences

(   ,B( � , $:$x$ and
0   ,10 � , $:$x$ reachtheotherendpoints,

in which caseno antipodalpointsexist, or if they converge
to a pair of antipodalpoints. Figure8(a) illustratesthis it-
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sb

*t
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s*

s*

*t

sasas  = 0

tb

sb

i +1

*t

s*

it i +1t

Ot

1/κ(   )

1/κ(   )

t   b

-

si
s

t   at   = 0

(a) (b)

Figure 8: Theiterationwhentherayof Ú���¸ � � intersectsà .

erationwhentherayof � ��01*;� intersects& .

Lemma 6 Suppose& is convex and ' is concave. And
supposetheray of � ��0 * � intersects& . In theaboveitera-
tion,

( ® 5�( ® ¦ � andno antipodalpointsexist in
�C( ® ,B( ® ¦ �Bá

and
��0 ® ,10 ® ¦ �.á for all »³â� .

The proof of the lemmais by inductionin a way sim-
ilar to the proof of Lemma3. Following Lemma6, the
sequenceÃ ( ®hÄ definedby� � ��0#®·�! � �C(4® ¦ � �#"I� � �)(4®C� ��� (8)

5



is monotonicallyincreasing.If thereexistsat leastonean-
tipodalpoint on & , thesequenceÃ ( ®hÄ will convergeto the
first suchpoint

(;�
from

(+*
.

To studylocalconvergencerateof theprocedurewedif-
ferentiateequation(8) to obtainthederivative of theitera-
tion function N where

( ® ¦ � �mN �)( ® � at
(+�

[6]:

N 
 �C( � � ��� �C( � � �x� ��0 � �Ì � �C( � � �  � �)(+�4�� ��0 � � $ (9)

Because� �C(;�x�67 � and � ��03�:�65 � , N_
 �)(;�x�67 � . Becausek �C( ® �¢5 � , for Ì�m� , � , $x$x$ , weseethat

k 
 �C( � � �  � �C( � ��� ��	l �C( � � � u � �)( � �� ��0 � � � � w 7 �%$ (10)

in thenon-degeneratecase.This impliesthat � 5 N_
 �C(;�4�¢5� . Hencethe algorithm convergesin linear rate. It also
follows from (10) that �x� ��03�x�� � �C(;�4� � 5 �cfe `3ã.g � �cfe S ã.g $Geometrically, the osculatingcircle at

(;�
containsthe os-

culatingcircleat
03�

in its interior, asshown in Figure8(b).
Similar analysiscanbe performedfor the casethat the

ray of � ��01/3� intersects& . Theconvergencerateis still lin-
earand kf
 �C(;�:��7 � alsoholds.

If no antipodalpointsexist on & and ' , Antipodal-
Convex-Concave-March will terminateat theotherend-
pointsof & and ' .

2.4.2 Finding All Pairs of Antipodal Points

Whentheantipodalanglesat thetwo endpointshavediffer-
entsigns,wecanusebisectionto find onepairof antipodal
points.

To find all pairs of antipodalpoints on & and ' , the
marchingprocedurein Section2.4.1andbisectionabove
needto recursively call eachother. This is similar to the
casethat & and ' areconvex in Section2.3.3.

3 Curve Preprocessing

Thepreprocessingof thecurve � generatesall pairsof seg-
mentsthatsatisfyconditions(i)–(v) in Section2.1. It con-
sistsof thefollowing four steps:

1. Computeall pointsof simpleinflectionon � . A point(
is simpleinflection if � �)(4� �d� but �%
 �C(+�ÍT�ä� . In

the examplein Figure 9(a), thereare four inflection
points å � , å V , å j , and å Ï . They divide � into segments
on which the curvaturedoesnot changesign in the
interior.

2. Split every segment with total curvature beyond²æ EGÌ,3G á . In Figure9(b), thesegmentsover
² å V , å jaá and² å Ï , å � á split at thepoints ç � and ç V , respectively.
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ta tb
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z4
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tbta

sa

κ > 0

κ < 0

κ > 0
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(a) (b)

(c)

(d)

=
=

u2

Figure 9: Fourpreprocessingsteps.

3. Enumerateall pairsof segments. For eachpair, de-
termineif any of their endpointsareantipodal.If not,
shortenthe segmentsuntil condition(iii) is satisfied.
To illustrate,for the pair in Figure9(c), we intersect
theconeof inwardnormalsover

² å � , å Vaá with thecone
of outward normalsover

² å j , å Ï	á . The intersection
cone(shaded)is determinedby the outward normals
at å j and å Ï , which have oppositepoints

� � and
� V ,

respectively. Accordingly, the segment
² å � , å V	á is re-

placedwith thesegment
² � � ,3� VBá .

4. Now each pair satisfiesconditions (i)–(iv) in Sec-
tion 2.1 but not necessarilycondition (v). In Fig-
ure 9(d), condition(v) is violatedat both

� � and
� V .

We extract portionsof the two segmentsdivided by
the tangency points

( *
,
0 *

,
( /

, and
0 /

of their com-
montangentlines.Only theportionsover

�)( * ,B( / �
and��01*2,301/3�

satisfyconditions(i)–(v).

In [6] we describeaninvolvedalgorithmwith quadratic
convergencerate that computescommontangentlines of
two curvesegments.

4 Implementation

We have implementedthe algorithmin C++ for arbitrary-
speedcurves. For detailsof implementation,we refer the
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(a) (b)

(c) (d)

Figure 10: Antipodal points on four different shapes: (a) a
convex cubic spline; (b) an elliptic lemniscategiven by è��é ê �_ëBì4í3�%î ÞPï �Míhðæñ � î in polarcoordinates;(c) a limaçon èp�ò Þôó� ëBì4í_î ; and (d) a curve with convexities èõ� ï4ö �·÷ ÞK� ëBì4í ï î � . A non-degenerateclosedconvex curve, like the cu-
bic splinein (a), hastwo pairsof antipodalpoints[6]. Antipodal
pointsin (b), (c), and(d) canbeverified.

readerto [6].
The eight pairs of antipodalpoints in Figure1 hasall

threecombinationsof curvaturesigns. Figure10 displays
all antipodalpoints found on four more differentshapes.
Thefirst threeexampleseachtook time 10 mson a DELL
DimensionPCwith PentiumIII 933MHz CPU.Thefourth
exampletook 30ms.

Let ø bethenumberof inflectionpointsand ù thenum-
berof pairsof antipodalpoints. Thereare ú � øLV � pairsof
segmentsafterthepreprocessing.Thetotalnumberof calls
to themarchingandbisectionproceduresin Sections2.2–
2.4is ú � øLV � ù � .
5 Conclusion

Thealgorithmdescribedin this papercomputesall antipo-
dal pointson a closedsimplecurve up to numericalpreci-
sion. Inflectionpointsdivide thecurve into segmentsthat
areeitherconvex everywhereor concaveeverywhere.Such
monotonicityallows a recursive combinationof marching
with bisectionto find all antipodalpointsof differentlocal
geometry.

The algorithm is alsoapplicableto a curve that is not

closed,aslongasaninwardnormalfield is specifiedonthe
curve. It canalsobeextendedin a straightforwardway to
acurvethatis piecewisetwicecontinuouslydifferentiable.

Due to the nonlinearnatureof curves, a conventional
nonlinearprogrammingapproach,inherentlylocal, would
rely heavily on initial guessesof antipodalpositions. It
would be slow andnot guaranteeto alwaysfind antipodal
points,not to mentionall of them.

Thedescribedwork will be implementedaspartof our
ongoingresearchon localizationand graspingof curved
objects.Futurework will alsoincludeanextensionof the
algorithmto curvedshapesin 3D.

Acknowledgement Theauthorwouldliketo thankDavid
Persky for helpingwith theimplementationandRavi Janar-
danfor suggestingto analyzethenumericalalgorithm.
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