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Abstract

This paper studies the recognition and localization of 2-D
shapes bounded by low-degree polynomial curve segments
based on minimal tactile data. We have derived differential in-
variants for quadratic curves and two special classes of cubic
curves. Such an invariant, independent of translation and rota-
tion, is computed from the local geometry atany two points on
the curve. Recognition of a curve class becomes verifying the
corresponding invariant with more than one pairs of data points.
Next, the actual curve is determined in its canonical parametric
form using the same tactile data. Finally, the contact locations
on the curve are computed, thereby localizing the shape com-
pletely relative to the touching hand. Simulation results support
the working of the method in the presence of small noise, al-
though real experiments need to be carried out in the future to
demonstrate its applicability. The presented work distinguishes
from traditional model-based recognition in its ability to simul-
taneously recognize as well as localize a shape from one of sev-
eral classes, each consisting of a continuum of shapes.

1 Introduction

Human can feel the shape of an object through touch. Essen-
tially, the action is performed to detect some geometric features
on the object’s surface which are then synthesized in the human
brain. Typical geometric features include, for instance, smooth-
ness, saliences, concavities, etc.

With the capability of touch sensing, the robot can also ob-
tain shape information. Since tactile data are local (and one-
dimensional in the case of point contact), seemingly they con-
tain a very limited amount of geometric information. But how
much information about the shape can the robot actually ac-
quire?

Figure 1 illustrates a hand touching an object with two tactile
fingers. Suppose with local movements of its fingers the hand
could estimate some information such as the curvature at a cou-
ple or more points of contact. Then we would like answer the
two questions posed in the figure.
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i) global shape?
ii) finger placement?

local geometry

Figure 1: A robotic hand touching the boundary of an object to recog-
nize its shape.

Even with limited information, it is possible for us to deter-
mine if the shape is from a certain class (such as the one of all
ellipses). And if so, not only could we recover its exact descrip-
tion but also locate where the fingers are placed. To arrive at
the above claims, in this paper we will develop a method based
on differential invariants which are shape descriptors built upon
local geometric variations.

The rest of the section addresses some related work on shape
recognition and reconstruction, in both robotics and computer
vision; and briefly goes over some basics of curve geometry.
Sections 2 and 3 derive invariants for quadratic curves and two
special classes of cubic curves. Section 4 follows by determin-
ing the locations of the data points on the curve which are used
in the invariant computation. In Section 5, all the results are
combined into the form of a recognition tree for quadratic and
special cubic curves. Section 6 presents some simulation re-
sults.

1.1 Related Work

Shape recognition through touch has long built on the notion
of interpretation tree which represents all possible correspon-
dences between geometric features of an object with tactile data.
The approach was introduced by Grimson and Lozano-Pérez [6]
who identified and localized a 3-D polyhedron from a set of
polyhedral models using tactile measurements of positions and
surface normals. Fearing [4] described how a cylindrical tactile
fingertip could recover the pose of a generalized convex cone



using constraint-based interpretation of a small amount of tac-
tile data.

Montana [11] described a method for estimating local prin-
cipal curvatures through the rolling of a spherical tactile sensor
based on differential equations that govern the contact kinemat-
ics. Allen and Michelman [1] employed a Utah-MIT hand to
obtain sparse contact points around an object and then fit (in a
least-squares manner) a superquadric surface to the data as the
reconstructed shape. Boissonnat and Yvinec [2] reconstructed
the exact shape of a simple polygon through probing to obtain
contact points and normals under some mild conditions. In their
work [7], Jia and Erdmann studied how to observe the pose and
motion of an object being pushed by a finger, drawing the solu-
tion from nonlinear observability theory.

A method based on the interpretation tree or least-squares
fitting needs to recover the pose (position and orientation). This
may become costly and often unnecessary since the object need
only be localized relative to the hand in many situations. Dif-
ferential invariants, meanwhile, capture intrinsic shape infor-
mation and are independent of the pose. To recognize spheres,
cylinders, cones, and tori, Kerenet al. [9] constructed differ-
ential invariants using curvatures and torsions and their higher
order derivatives along a surface curve computed from a large
amount of tactile measurements.

In model-based vision, there are also two primary ap-
proaches. The first one hinges on the recovery of viewing pa-
rameters (thus the pose). Kriegman and Ponce [10] constructed
the implicit shape equation from image contours using elimi-
nation theory and then solved for viewing parameters through
fitting the equation to data points.

The second approach is to develop descriptors that are in-
variant to Euclidean transformation, perspective projection, or
camera-dependent parameters [14]. Algebraic invariants are ex-
pressions in terms of the coefficients of a polynomial equation
which is often found through fitting. Keren [8] and Forsythet
al. [5] introduced methods for finding this type of invariants
and demonstrated on recognition of real objects. One drawback
of algebraic invariants is the requirement of global shape data.
The other drawback is that they do not necessarily work well on
shapes that are not algebraic.

Differential invariants depend on local data and deal with sit-
uations such as occlusion well. They are functions of curvature
and torsion and their derivatives. Calabiet al. [3] introduced
“signature curves” invariant to Euclidean or affine transforma-
tion and described how to numerically approximate differential
invariants. Weiss [15] looked into the construction of invari-
ant signature, proposing a method for reliably obtaining higher
order derivatives.

Semi-differential invariants combine global constraints and
local information to ease the correspondence issue and also re-
lieve the burden on estimating higher order derivatives. The the-
oretical foundation for this type of invariants was treated thor-
oughly by Moonset al. [12]. Pajdla and Van Gool [13] used
semi-differential invariants which combine distance and angle
information for matching curves extracted from range data in

the presence of partial occlusion.

1.2 Geometric Basics

The touch sensor in contact with a 2-D object can “feel” its local
geometry, which is described by the curvature. At the contact
point denote byφ the tangential angle formed by the tangent of
the boundary curveα(t) = (x(t), y(t)) with the x-axis. The
curvatureκ is the rate of change ofφ with respect to arc length
s, that is,

κ =
dφ

ds
=

x′y′′ − x′′y′

(x′2 + y′2)3/2
. (1)

Curvature is independent of the parametrization, rotation, and
translation. The touch sensor can measure the change of geom-
etry with respect to arc length only. So we will use the derivative
of curvature with respect to arc length:

κs =
dκ

dt

dt

ds
=

κ′(t)
(x′2 + y′2)1/2

. (2)

The arc length between two points on the curve, if close to
each other, can be approximated by their Euclidean distance.
Using a straight jaw the robot can accurately measure the jaw
rotation as the relative change in the tangential angle between
two points. We approximate the curvature and its derivative by
the finite difference quotients:

κ ≈ φ(s + ∆s)− φ(s−∆s)
2∆s

,

κs ≈ φ(s + ∆s)− 2φ(s) + φ(s−∆s)
(∆s)2

.

2 Quadratics

All quadratic curves are classified into three classes: ellipses,
hyperbolas, and parabolas. Together they are referred to as the
conics. We will derive invariants for these three classes of con-
ics in the following subsections.

2.1 Parabola

Parabolas are identified with all the curves parametrized by
quadratic polynomials:

x = a2t
2 + a1t + a0,

y = b2t
2 + b1t + b0.

One curve can be parametrized in many different ways. We
are interested in the recovery of the shape of the curve. Hence
we are not bounded by one particular parametrization. More-
over, the method we use to recognize the curve does not assume
particular position and orientation. So we have the freedom to
translate, rotate, and reparametrize the curve in order to get its
simplest parametric form. The simplest form for the parabola is

x = at2,

y = 2at, a 6= 0.



From equations (1) and (2), we obtain

κ = − 1
2a(t2 + 1)3/2

, (3)

κs =
3t

4a2(t2 + 1)3
. (4)

Eliminating t from (3) and (4) leads to the following equation
for the parabola:

1
(2a)2/3

= κ2/3

(
κ2

s

9κ4
+ 1
)

≡ Ip(κ, κs). (5)

The expressionIp(κ, κs) is an invariant for the parabola. Since
κ andκs values are measurable, from (5) we easily calculate the
shape parametera that describes the parabola.

2.2 Ellipse

Let us start with the standard parametrization:

x = a cos(t),
y = b sin(t), a, b > 0.

The curvature and its derivative with respect to the arc length
are:

κ =
ab(

a2 sin2(t) + b2 cos2(t)
)3/2

, (6)

κs =
−3ab

(
a2 − b2

)
sin(t) cos(t)(

a2 sin2(t) + b2 cos2(t)
)3 . (7)

We can use equations (6), (7) andcos2(t) + sin2(t) = 1
to eliminatesin(t) andcos(t), and end up with the following
equation:

a2 + b2

(ab)4/3
− 1

(abκ)2/3
− Ip(κ, κs) = 0, (8)

whereIp is an expression ofκ andκs defined in (5). Since we
have two unknownsa andb, we need at least two points on the
ellipse.

Now we derive an invariant for the ellipse using two points.
Let κi andκsi be the curvature and its derivative at theith point.
Then we have two equations in the form of (8). Subtracting one
of the them from the other, we obtain the following after a few
more steps:

1

(ab)2/3
=

(κ1κ2)
2/3

κ
2/3
1 − κ

2/3
2

(
Ip(κ1, κs1)− Ip(κ2, κs2)

)
≡ Ic1(κ1, κ2, κs1, κs2). (9)

The expression (9) is the invariant that we seek. It stays con-
stant regardless of which two points are used. The invariantIc1

alone cannot distinguish ellipses with the same productab. So
we derive a second invariant by substitutingIc1 for 1/(ab)2/3

into equation (8):

a2 + b2

(ab)4/3
= Ip(κ1, κs1) +

Ic1(κ1, κ2, κs1, κs2)

κ
2/3
1

=
1

κ
2/3
1 − κ

2/3
2

(
κ

2/3
1 Ip(κ1, κs1)− κ

2/3
2 Ip(κ2, κs2)

)
≡ Ic2(κ1, κ2, κs1, κs2). (10)

From the two invariants we can compute the values ofab and
a2 + b2, and subsequently determinea andb.

2.3 Hyperbola

A hyperbola has the parametric form

x = a cosh(t) = a
et + e−t

2
,

y = b sinh(t) = b
et − e−t

2
, a, b > 0.

As in the case of an ellipse, we eliminatet from the equations
κ = κ(t) andκs = κs(t) and obtain the following equation for
hyperbola:

a2 − b2

(ab)4/3
+

1
(abκ)2/3

− Ip(κ, κs) = 0, (11)

whereIp is again defined in (5). We again use two points. From
the two copies of equation (11) we derive

Ic1(κ1, κ2, κs1, κs2) = − 1
(ab)2/3

,

Ic2(κ1, κ2, κs1, κs2) =
a2 − b2

(ab)4/3
.

The above two invariants are the same as for an ellipse but their
values are in different expressions ofa andb. In particular,Ic1

is always negative for the hyperbola.
The invariantsIc1 andIc2 completely determine the hyper-

bola. Computation ofa andb from them is very straightforward.

2.4 General Invariant for Quadratic Curves

Both Ic1 and Ic2 are also invariants for a parabola, assuming
values 0 and1/(2a)2/3, respectively. The sign ofIc1 tells the
type of a conic. When the invariant is positive the curve is an
ellipse, when it is negative the curve is a hyperbola, and when it
is zero the curve is a parabola. The invariantsIc1 andIc2 thus
describe the correlation between any two points on a conic.

3 Cubics

There is no classification of all cubic curves. So, it seems very
difficult to construct one invariant that recognizes all of them.
However, we would like to deal with cubic spline curves, whose
continuity in curvature enables them to approximate any plane



curve with almost no visual difference. The general parametric
form for cubic spline segment is

x = a3t
3 + a2t

2 + a1t + a0,

y = b3t
3 + b2t

2 + b1t + b0,

which has the equivalent canonical form

x = t2,

y = at3 + bt2 + ct,

wherea, b, andc are the shape parameters. This section treats
two subclasses of cubic spline polynomials — cubical and semi-
cubical parabolas.

3.1 Cubical Parabola

This class of curves has the canonical form:

x = t,

y = at3 + ct, a 6= 0.

Unlike the conics case, we are not able to eliminate the param-
etert from the expressions of curvatureκ and its derivativeκs.
Instead, we will substitutet with the slopeλ = y′

x′ = 3at2 + c,
which leads to the following expressions forκ andκs:

κ2 =
12a(λ− b)
(1 + λ2)3

, (12)

κs =
6a(1 + λ2)− 36aλ(λ− c)

(1 + λ2)3
. (13)

Using equations (12) and (13) we can solve fora andc:

a =

(
κs + 3λκ2

) (
1 + λ2

)2

6
≡ Icp1(λ, κ, κs), (14)

c = λ−
κ2

(
1 + λ2

)
2 (κs + 3λκ2)

≡ Icp2(λ, κ, κs). (15)

The expressionsIcp1 andIcp2 are invariants of the cubical
parabola provided that the slopeλ can be determined. Denote
by φi, κi andκsi the tangential angle, curvature and its deriva-
tive at theith point, respectively. Assuming that the robot can
accurately measure the tangent rotation∆φ12 = φ2 − φ1, we
get the following equation relating the two slopes:

λ2 =
λ1 + δ12

1− λ1δ12
, (16)

whereδ12 = tan∆φ12. Since the value ofIcp2 is constant, we
have:

Icp2(λ1, κ1, κs1) = Icp2(λ2, κ2, κs2). (17)

Eliminatingλ2 from (16) and (17) results in a quartic polyno-
mial:

d4λ
4
1 + d3λ

3
1 + d2λ

2
1 + d1λ1 + d0 = 0,

where

d0 = κs1

(
κ2

2

(
5δ2

12 − 1
)

+ 2κs2δ12

)
+ κ2

1

(
3κ2

2δ12 + κs2

)
,

d1 = 2δ12

(
κs1

(
3κ2

2 − κs2δ12

)
+ 2κ2

1

(
3κ2

2δ12 + κs2

))
,

d2 = κs1

(
κ2

2

(
5δ2

12 − 1
)

+ 2κs2δ12

)
+ κ2

1

(
18κ2

2δ12 − κs2

(
5δ2

12 − 1
))

,

d3 = 2δ12

(
κs1

(
3κ2

2 − κs2δ12

)
+ 2κ2

1

(
3κ2

2δ12 + κs2

))
,

d4 = 5κ2
1δ12

(
3κ2

2 − κs2δ12

)
.

By solving the above quartic polynomial we find the value of
λ1, and then the value ofλ2 from (16). Evaluating the expres-
sionsIcp1 andIcp2 gives us the values ofa andc, respectively.

3.2 Semi-Cubical Parabola

This class of curves is described by the equations:

x = t2,

y = at3 + bt2, a 6= 0.

The slope isλ = y′/x′ = 3at/2 + b. So this time we
reparametrize the curve usingt = 2(λ−b)

3a , and obtain the fol-
lowing:

a =

√
−8κ3(1 + λ2)5/2

9(κs + 3λκ2)
≡ Iscp1(λ, κ, κs), (18)

b = λ +
κ2(1 + λ2)

κs + 3λκ2
≡ Iscp2(λ, κ, κs). (19)

Again using two points, we can set up an equation:

Iscp2(λ1, κ1, κs1) = Iscp2(λ2, κ2, κs2).

This equation together with (16) yield a quartic polynomial in
λ1. Solving this polynomial will give usλ1, and subsequently
λ2, a, andb. The invariants for this class of curves areIscp1 and
Iscp2.

4 Locating Contact

The parameter valuet determines the contact location on the
curve with the touch sensor. For the quadratic and cubic curves
discussed in Sects. 2 and 3, the expression fort is as follows:

t =



κs

3κ2 , if parabola;

sin−1

(√
( ab

κ )2/3−b2

a2−b2

)
, if ellipse;

sinh−1

(√
( ab

κ )2/3−b2

a2+b2

)
, if hyperbola;

±
√

λ−b
3a , if cubical parabola;

2(λ−b)
3a , if semi-cubic. para.

In the case of a cubical parabola, the sign is determined based
on the relative configuration of the two data points.
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Figure 2: Recognition tree for quadratic and special cubic curves.

5 Recognition Tree

A general recognition strategy is illustrated in Figure 2. We es-
timate the values ofκ andκs at as few as three points on the
curve. Then we test the invariants down the tree to identify the
curve type or determine that it is unclassified. Next, we recover
the shape parameters of the curve. Finally, we compute the pa-
rameter valuet, which determines the contact on the curve.

For example, consider the ellipse in Figure 3(a). The values

t 3

t1

2t

t

t 1

3t

2

(a) (b)

Figure 3: Recognition of two shapes based on local geometry at three
points. (a) An ellipse witha = 2.8605 andb = 1.7263; (b) a cubical
parabola witha = 3.2543 andb = −2.3215.

of κ andκs are estimated att1 = 0.36, t2 = 1.86, andt3 =
4.23. Ip has values0.8971 and0.4030 at the first two points,
so the curve is not a parabola.Ic1 yields values0.3447, 0.3446,
and0.3449 at the three resulting pair of points, from which we
conclude that the curve is an ellipse. The recovered coefficients
area≈2.8609, andb≈1.7275. The parameter values were also
computed correctly. Similarly, we have successfully recognized
a cubical parabola as shown in Figure 3 (b).

6 Simulations

The first group of simulations were conducted to verify the in-
variants of each curve class presented in this paper. One shape
out of each class was chosen, and 100 values of invariant were

calculated based on randomly generated points. The results are
summarized in Table 1.

inv. Ip Ic1(ell.) Ic1(hyp.) Icp1 Iscp2

real 0.2198 0.1760 −0.1222 6.9963 6.5107

min 0.2168 0.1711 −0.1369 6.7687 6.3945

max 0.2230 0.1790 −0.1147 7.0289 6.5834

mean 0.2198 0.1756 −0.1225 6.9355 6.5154

Table 1: Invariant verification on five specific shapes. The first row
shows the real values of the invariants. The following three rows dis-
play the min, max, and mean of 100 values computed on perturbed
data.

Estimation errors ofκ andκs were due to linear approxi-
mation. They showed up in Table 1 as the discrepancies be-
tween actual invariant values and their estimates. Although
three points on the curve are enough to recognize it, it would
be more reliable to calculate the invariant at more points and
take the mean value.

Having verified the invariants, we empirically demonstrated
that the invariant of one curve class would not hold for another.
This is necessary for the recognition strategy to work. Since
all quadratic curves share the invariantIc1, there are only three
curve classes. We tested the invariants of one curve class against
the data from another. The results are summarized in Table 2.

� inv. Ic1 Icp2 Iscp2

data �
quadratics −11.97(min) −265.80
(ellipse) −15.46(max) 5.83

−0.04(mean) −3.22
2.53(stdev) 26.75

cubical −6.38 7.80
parabola −0.04 65.22

−0.73 29.17
1.22 17.19

semi-cub. −22.84 8.54
parabola 28.37 19.03

3.37 13.76
6.76 3.07

Table 2: Applying data from one curve on the invariant of a different
class. Each cell displays the summary over 100 values.

From the table we see that when an invariant is applied to
curves outside the curve class it was derived for, it has different
values for different points. So, each invariant only holds for its
own curve class.

Next, we looked into how well a given curve can be recog-
nized. In other words, we examined how much the recovered
parameters̄a andb̄ would differ from the real onesa andb. For
measurement, we calculated the relative errors of recovered pa-

rameters with respect to real ones as

√(
a−ā

a

)2 +
(

b−b̄
b

)2

. The

calculations used 100 different shapes from each family. For
each recovered shape the relative error was calculated. The re-
sults are summarized in Table 3.



err. ellip. hyper. par. cub.par. semi-cub.par.
min 0.02% 0.10% 0.01% 0.02% 0.04%

max 7.99% 9.71% 3.35% 7.49% 8.09%

mean 0.40% 1.15% 0.36% 0.83% 1.23%

Table 3: Relative error on estimation ofa andb. Summary over 100
different curves for each class.

From Table 3 we can see that on the average the relative er-
rors are around1%. These errors depend on how well we es-
timate the curvature and its derivative. Finite differencing was
used. An improvement would be to approximate the osculating
circle and use the inverse of its radius, as introduced in [3].

7 Conclusion

We have introduced an invariant-based method that aims at uni-
fying shape recognition, recovery, and pose estimation through
touch. Differential and semi-differential invariants have been
developed for several classes of low-degree algebraic curves.
Each invariant characterizes the geometric correlations on a
curve as determined inherently by the corresponding curve
class. The canonical parametrization of the actual curve can
meanwhile be recovered from the curvature and its derivative at
as few as three points. The task of shape reconstruction is thus
simplified. Furthermore, locations of contact on the curve, that
is, the parameter values, can be estimated from the same data.

The small data requirement by our method makes it desirable
for the application of touch sensors. Although only quadratic
curves and special cubic curves are treated, it is straightforward
to extend the results to objects bounded by segments of these
types. In such a situation, the data points plugged into each
invariant need to be from the same segment. So the total amount
of data to be obtained is linear in the number of segments on the
object’s boundary.

We are working on an extension of the results to closed cu-
bic splines which, given their curvature continuity, can approxi-
mate any 2-D curved shapes very well. The extension will have
strong implications in recognizing general 2-D shapes (and im-
ages).

We would like to find out the robustness of the introduced
invariants in the presence of sensor noise as well as the errors
due to numerical difference in curvature approximation. A re-
liable noise model needs to built. In the future, we would like
to move on to the simultaneous recognition, reconstruction, and
localization of 3-D curved shapes. This will be a much more
challenging task.
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