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Abstract— Grasping a deformable object instantaneously re-
quires maintaining equilibrium of its pre- and post-deformed
shapes using the same set of forces. This paper studies the
type of grasps generated by squeezing a planar object with
two fingers. It is shown that the success of such a grasp
is independent of the applied forces in the case of small
deformation. Numerical algorithms are introduced to compute
sets of squeeze grasps with small and large deformations
modeled using the finite element method (FEM) based on the
linear and nonlinear elasticity theories, respectively.

I. INTRODUCTION

Deformable objects are manipulated daily in our life.

The ability to handle such objects constitutes an important

measure of a robot’s dexterity.

Among all manipulation operations, grasping is represen-

tative for its simplicity and robustness. A grasp of a rigid

object achieves force closure if it can resist an arbitrary

external wrench (force plus torque) exerted on the object.

If any motion of an object is prevented, form closure is

achieved. Nguyen’s result [9] on two-finger grasping under

point contact in the plane states that a grasp is force closure

if the two contact friction cones contain the line segment

connecting the two contact points. Ponce et al. [10] derived

several necessary and sufficient conditions for force closure

on polyhedral objects.

For deformable objects, the notion of form closure is

inadequate as the object deforms with infinite many degrees

of freedom. Also, grasp analysis and synthesis are no longer

purely geometric problems. The wrench space will change

as a result of varying shape geometry, which is determined

by either solving a high order differential equation or mini-

mizing the potential energy.

One difficulty in synthesizing a grasp of a deformable

object is that the very set of grasping forces must maintain

equilibrium before and after the deformation, over the object’s

original and deformed shapes, respectively. The pre- and post-

deformation configurations cannot be analyzed separately us-

ing geometric techniques developed for rigid body grasping

which would presume independent sets of forces for the

two configurations. Equilibrium of the post-deformed shape

has to be maintained by the same forces that generated

it, otherwise it would be a violation of the physics of

deformation (described by the elasticity theory).

The other difficulty lies in the need for obtaining deformed

shapes under various finger placements in the search for a

grasp, despite the non-existence of closed-form descriptions.

The high cost in deformation modeling presents an obstacle

for efficiently constructing a grasp.

This paper studies how to grasp a planar object by

squeezing it with two fingers moving toward each other. The

fingers have curved tips that make point contacts with the

object. The object is physically linear (governed by Hooke’s

law) but geometrically either linear or nonlinear. We assume

that deformation happens instantaneously rather than in a

duration so dynamic effects are ignored. Also, this relieves

us from worrying about the same forces staying balanced

throughout the deformation period.

The paper is organized as follows. Section II surveys

related work on grasping of rigid and deformable objects.

Section III defines the grasp of a deformable object and

establishes necessary and sufficient conditions for two-finger

grasps. Section IV describes algorithms that compute sets of

finger placements to grasp an object. Section V goes over

computation of the deformed shape using FEM based on

linear and nonlinear elasticity theories. Simulation examples

are then presented in Section VI. This is followed by some

discussion in Section VII.

II. RELATED WORK

Grasping of rigid objects has been extensively studied in

the last two decades [1]. Such grasps are classified as either

force or form closure1, for which grasp analysis is geometric

and grasp synthesis algorithmic.

Two-fingered force-closure grasps of a polygon are well

characterized and efficiently computable [9]. For a piecewise-

smooth curved 2D object, Ponce et al. [11] utilized cell

decomposition to compute pairs of maximal-length graspable

segments. Two fingers can be positioned independently in

the interior of a pair of such segments to guarantee force

closure. Blake [2] classified planar grasps into three types

using a symmetry set, an anti-symmetry set, and a critical

set. Jia [5] presented a fast algorithm that computes all pairs

of antipodal points on a planar curved object.

An O(n2 log n)-time algorithm was proposed in [8] to

compute an optimal three-finger planar grasp by maximizing

the radius of a disk centered at the origin and contained in the

convex hull of the three unit normal vectors at the finger con-

tacts. Assuming rounded fingertips, an optimality measure

1Form closure can be viewed as force closure with frictionless contact.
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of force-closure grasps was introduced in [7] where efficient

algorithms were presented for polygons and polyhedra.

Sinha and Jacob [12] introduced a model for deformable

contact regions under a grasp that predicts normal and

tangential contact forces based on nonlinear energy optimiza-

tion. Their work was not concerned with how to compute or

achieve such a grasp, neither did it model the change in

global geometry of the grasped object. Luo and Xiao [6]

derived geometric properties of deformable contacts that

are useful for improving physical accuracy and simulation

efficiency. The recent work by the authors [13] studied

deformable modeling of shell-like objects on which grasps

were also assumed to have been achieved already. It assumed

point contacts and modeled the grasped object’s global shape

change.

Design of grasp strategies for deformable objects has

attracted the attention of robotics researchers in more than

a decade. Wakamatsu et al. [14] proposed the concept of

bounded force-closure for deformable objects. Hirai et al. [4]

used both visual and tactile information to control the motion

of a deformable object.

Manipulation planning of deformable objects was pre-

sented by Wakamatsu and Hirai [15] for linear ob-

jects. Gopalakrishnan and Goldberg [3] introduced the

deformation-space (D-space) of an object, with modeling

based on linear elasticity and frictionless contact.

Most of the above methods have assumed linear elastic

models, which is geometrically inexact for large deforma-

tions.

III. GRASP DEFINITION AND SQUEEZE GRASP

To grasp a deformable object, a finger placement needs

to prevent any Euclidean motion of the object such that the

only possible displacement is deformation. In the presence

of friction, a force-closure grasp constrains a rigid object

completely. Thus a necessary condition for a grasp on a

deformable object is that the grasp would be force closure on

a rigid object of the same shape. Here, uniform mass density

is assumed.

Like in classical elasticity theories, dynamics are ignored

in modeling deformation. It is reasonable to make the fol-

lowing quasistatic assumption about the grasp.

(A1) Deformation happens instantaneously such that the

applied contact forces do not vary during this physical

process, and no velocity of the object builds up.

We also ignore the effect of the gravitational force.

The success of a grasp satisfying the necessary condi-

tion can then be determined based on the object’s post-

deformation geometry and the original forces now applied at

the displaced locations of the same finger contacts. No slip

may happen during the deformation in order for the grasp to

succeed. Under instantaneous deformation, this is guaranteed

if the grasping forces stay inside their respective contact

friction cones before and after the deformation. The object, in

its deformed shape, needs to be constrained from any rigid

motion and maintained at equilibrium by the same finger

placement. The applied forces by these fingers must not vary

though, otherwise the object will continue to deform, making

the equilibrium analysis invalid.

Definition A finger placement exerting a set F of forces on

a deformable object B is a grasp if the same finger placement

(i.e., with no movement along the object’s boundary) would

maintain equilibrium by exerting F on both

1) a rigid object of B’s pre-deformation shape; and

2) another rigid object of B’s post-deformation shape.

In this paper, we consider grasps by two fingers squeezing

a planar object with curved boundary. The following assump-

tions are made about contact and fingertips.

(A2) The fingers make point contacts with the object in the

presence of friction.

(A3) The fingertips are curved and convex (semi-circular,

for instance).

The squeeze action is equivalent to keeping one finger still

and stuck to its contact point, say, q, while translating the

other finger toward q without slip at its contact point, say p.

(C1) The contact point q does not move in the plane.

The situation is illustrated in Fig. 1. We refer to the action

f
p̃

g

p

still finger

deformed

translating

shape

shape

finger

q

original

Fig. 1. Squeeze grasp.

as a squeeze grasp.

Before deformation starts, the finger placement needs to be

force closure to prevent any free motion of the object. This

requires that the segment pq be inside the friction cones at

p and q [9]. As shown in Fig. 1, a force f is applied at p.2

To maintain initial equilibrium, f must be in the direction of

q− p, and the reaction force g at q must satisfy f + g = 0
so that the total wrench is zero. Otherwise, the forces would

result in an Euclidean motion without deformation.

Denote by G(p, q) the finger placement at p and q. The

directions of the squeezing forces are thus determined and

their magnitudes are equal. No slip may happen for a grasp

to be achieved at the contact points p and q. The tangents to

the object at the two points are therefore collinear with those

to the fingers, respectively. Hence the following geometric

condition is satisfied by the deformation generated by a

successful grasp.

(C2) The tangents at p and q do not rotate.

Conditions (C1) and (C2) will be used later as constraints

for solution of the deformed shape.

2Note that the force includes a tangential component due to friction.
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Due to instantaneous deformation, the forces f and g do

not change their directions. To maintain equilibrium after the

deformation, the displaced location p̃ of p must lie on the

line segment pq.3

Theorem 1: A finger placement G(p, q) applying squeez-

ing forces of magnitude f is a grasp if and only if the

following two conditions are satisfied:

(G1) pq lies inside the friction cones at p and q on the

object’s pre-deformation shape;

(G2) the displaced location p̃ of p lies on the pq.

Proof: We first establish the sufficiency of the two

conditions. Condition (G1) implies no slip at the start of

deformation when the forces are applied. Since the contact

point on the moving finger is translating toward q, con-

dition (G2) ensures that this point and p (on the object)

move together, hence their contact sticks during the defor-

mation. The still finger also sticks to its contact, since con-

straints (C1) and (C2) are applied in obtaining the deformed

shape. Thus the contact friction cones will not rotate. The

same pair of opposing forces will still be inside these cones

after the deformation, which in turn guarantees no slip during

the grasp.

The necessity can be easily shown by contradiction. Sup-

pose that condition (G1) does not hold. Then no applied

forces can achieve equilibrium even before deformation

happens, let alone a grasp. Suppose condition (G2) does not

hold. Then the upper finger contact will slip as the finger

translates. The grasp at p and q will not be achieved.

Verifying condition (G2) involves computing the displaced

location q̃ (and possibly the deformed shape) using the

elasticity theory.

IV. GRASP SYNTHESIS

For small deformations, the linear elasticity theory applies.

Whether a placement will result in a grasp is independent of

the force magnitude.

Theorem 2: Under the linear elasticity theory, if a finger

placement G(p, q) squeezing a deformable object with forces

of magnitude f achieves a grasp, then the same placement

will result in a grasp with any force magnitude within the

theory’s application range.

Proof: Let p̃ be the displaced location of p under

squeezing forces of magnitude f . Thus p̃ lies on the line

segment pq. Condition (G1) holds.

We first show that p is displaced to a location p̂ on the

segment pq when the force magnitude changes to f + ∆f
for small enough ∆f . Under the linear elasticity theory, the

new displacement is p̂ − p = (1 + ∆f/f)(p̃ − p). Since

p̃−p has the direction of q−p, so does p̂−p. Hence p̂ lies

on the ray from p to q. Because of the small deformation

required by the linear theory, it cannot move past q, hence

staying on pq. Condition (G2) still holds. The conclusion

follows from Theorem 1.

Theorem 2 reduces grasp computation to a geometric

problem for small applied forces.

3Throughout this paper, the tilde notation ‘˜’ always refer to the displaced
location of a point.

q

p1

q

f

r2 = p2

p

p2

p1

−f

p̃

r1

Fig. 2. Finding the segment of points forming a grasp with q.

A. Fixed Contact for One Finger

Suppose one finger must stay in contact with a boundary

point q of the deformable object. We would like to locate

the other finger to form a grasp. Let the object’s original

boundary be described by the curve σ(s), where s is arc

length. As shown in Fig. 2, we first find a boundary arc
⌢

p1p2 on which every point p satisfies condition (G1) with

q. When σ is convex, this can be done in the following steps.

(1) Intersect the edges of the friction cone at q with σ(s).
Let the right and left intersections be r1 and r2,

respectively.

(2) If the friction cone at r1 contains q, then let p1 = r1.

Otherwise, march from r1 toward r2 on σ until it stops

at a point p1 whose right friction cone edge passes

through q, or r2 is reached.

(3) Find p2 via a symmetrical march from r2 toward r1.

The march in step (2) can be treated as finding a root of

the equation (q − p)× er(p) = 0 where er is the direction

of the friction cone’s right edge at p. Note that the feasible

segment
⌢

p1p2 may not exist.

In case σ is not convex, we first split it at points of

inflection into “monotone” segments on each of which the

tangent rotates in one direction [5]. Then apply the algo-

rithm described above on each monotone segment inside the

friction cone at q.

Every point p = σ(s) on the arc
⌢

p1p2 is displaced to some

point p̃ = σ̃(s) under a squeezing force in the direction of

q − p. Determining grasp existence becomes finding a root

s of the equation

(σ̃(s)− q)× (σ(s)− q) = 0. (1)

This can be done numerically using either Newton’s method,

bisection, or by a march. At each iteration, the displaced

location p̃ is determined from recomputing the partial or

entire deformed shape.

No grasp placing one finger at q exists if the algorithm

finds no feasible arc
⌢

p1p2 or no root of (1) on the arc.

B. Graspable Segments

Suppose a grasp G(p0, q0) exists. Consider relocating

the lower finger to a point q slightly away from q0. With

squeezing forces of the same magnitude, the root p of (1)

must exist and be close enough to p0 under continuity of

the physics for deformation. The friction cones at q and the

displaced location p̃ on the deformed shape will contain p̃q.
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Equation (1) thus locally defines the upper finger location

p as a function of the lower finger location q, in order to

achieve a grasp. More formally, let q0 = σ(t0), p0 = σ(s0),
and q = σ(t). There exists a function ω(t) such that ω(t0) =
s0 and G(σ(ω(t)), σ(t)) is a grasp. The segment consisting

of all such q surrounding q0 is called graspable.

Generally, the function ω is defined over disjoint intervals

of the domain [0, L) of the boundary curve σ(s). Each

interval corresponds to a segment on which anywhere one

finger is placed, the other finger can be property placed at

some boundary location to form a grasp with it.

We can trace out the maximal graspable segment P =
σ[ta, tb] containing q0 as follows. Repeatedly, we place one

finger at σ(t1), σ(t2), . . ., where ti = t0 + iτ with a small

step size τ on the object’s boundary, and find locations

σ(s1), σ(s2), . . . for the other finger, where si+1 is searched

in the neighborhood [si−̺, si+̺] for some constant multiple

̺ of τ . Until sk+1 cannot be found, set tb ← tk. Similarly,

we repeatedly test t0 − τ, t0 − 2τ, . . . , to determine ta.

To find all graspable segments, we discretize the object’s

boundary. Place one finger sequentially at each discretization

point and use the procedure in Section IV-A to search for

a location of the other finger for a grasp. For each grasp

G(pi, qi) found, use the procedure described above to trace

out the graspable segments containing qi and pi.

V. COMPUTING THE DEFORMED SHAPE

The grasping algorithms in Sections IV-A and IV-B require

repetitively relocating one or two fingers on the boundary

of an object and computing their locations after the re-

sulting deformations. Generally, there exists no closed-form

description of the deformed shape — it has to be computed

numerically via minimizing the object’s potential energy

under the squeezing force.

A. Potential Energy Minimization

From now on, we focus on perhaps the simplest non-

trivial class of isotropic objects. Every object from the

class is swept out by a rectangular cross section along a

2-dimensional closed curve σ referred to as the middle

curve. The cross section has width w and height h, both

significantly less than the length of the curve. Fig. 3 shows

a section of the object. Because of its small dimensions, the

n

hu

w

v
σ(s)

u
t

Fig. 3. Segment of a curve-like shape with rectangular cross section.

cross section assumes no deformation. So Poisson’s ratio is

zero. The shape is essentially a degenerated shell very small

in two out of three dimensions. It can be used to approximate

linear objects resting on a planar surface, for instance.

The middle curve σ(s) is parametrized by arc length,

though computation easily carries over to an arbitrary-speed

curve, as already shown for shells in our recent work [13].

We follow Kirchhoff’s assumption that fibers initially normal

to σ remain straight after deformation, do not change their

lengths, and remain normal to the middle curve of the

deformed geometry. The stress and strain at any point v

inside the object can be represented in terms of those at the

intersection point u of σ(s) with the normal section through

v. The displacement of u is best described in terms of its

unit tangent t and unit normal n as δ(s) = α(s)t + β(s)n.

For a small deformation, we obtain the extensional strain

ǫ and the change in curvature ζ with a reduction of one

dimension from those for shells [13]:

ǫ = ∇tα + (∇tn · t)β = α′ − κβ, (2)

ζ = ∇t (−∇tβ + (∇tn · t)α)

= −β′′ − κ′α− κα′. (3)

Here, ∇tα is the directional derivative of α with respect to

t, and ∇tn is the covariant derivative which measures the

rate of change of the normal n along the middle curve at p.

The object’s strain energy is represented as

U =
1

2
Ew

∫ L

0

(

hǫ2 +
h3

12
ζ2

)

ds. (4)

The linear component in the height h represents the ex-

tensional energy, while the cubic component represents the

bending energy.

In the squeeze grasp shown in Fig. 1, one finger makes

fixed contact at a boundary point q, while the other applies

a force f at another point p toward q, displacing p to p̃.

The potential energy of the contact forces is

W = −f · (p̃− p). (5)

The deformed middle curve σ(s) + δ(s), determined by the

displacement field δ, minimizes the total potential energy

Π = U + W. (6)

B. Finite Element Method

We discretize the middle curve σ into N finite (linear)

elements. The problem of finding a minimizing displacement

field δ for the potential energy (6) reduces to that of deter-

mining the displacements δi of the endpoints pi (referred to

as nodes) of these elements, 0 ≤ i ≤ N − 1.

The ith element pipi+1 has a parametrization ei(u) =
∑i+2

j=i−1
bj(u)pj over [0, 1] depending on four neighboring

nodes. The coefficients b0, . . . , bN−1 are chosen as cubic B-

spline basis functions. The displacement of a point on the

same element is δ(u) =
∑i+2

j=i−1
bj(u)δj .

Following the standard FEM steps, over each element we

use its displacement field to obtain strains (2) and (3), and

substitute them into the strain energy (4). Extract out of the

integral the products (all quadratic) of the coordinates of

the nodal displacements δi−1, . . . , δi+2 , and integrate the

remainder over the element domain [0, 1]. Assembling over

all elements, we can rewrite the strain energy into a matrix

form: U = 1

2
∆

T K∆, where ∆ = (δT
0 , . . . , δT

N−1)
T , and

K is the 2N × 2N stiffness matrix.
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The nodes are numbered such that p0 and pk are the

lower and upper finger contacts q and p, respectively, (see

Fig. 1).4 Meanwhile, let Q be the vector of forces exerted at

the nodes p0, . . . ,pN−1, which are all zero but at p0 and pk.

The potential energy of the applied forces is W = −∆
T Q.

The total potential energy (6) is minimized only if ∂Π/∂∆

vanishes, yielding the equation K∆ = Q to be solved for

the deformed shape.

C. Boundary Conditions and Efficient Grasp Computation

That p0 does not move provides two scalar constraints

δ0 = 0. No rotation of the tangent at p0 and pk, under

finite-difference approximation of derivatives, become two

equational constraints: (δ1 − δN−1) · n0 = 0 and (δk+1 −

δk−1) ·nk = 0, where n0 and nk are the respective normals

at the two points. These two constraints are exerted via two

Lagrange multiplies λ1 and λ2. This yields an “enlarged”

stiffness matrix K ′ of dimension (2N + 2) × (2N + 2)
for 2N + 2 variables δ0, . . . , δN−1, λ1, λ2. Since δ0 = 0,

we remove the first two rows and columns from K ′. The

resulting matrix L can be shown to be non-singular.

The matrix L does not change when the lower finger

contact is fixed at p0. We compute its inverse L−1 = (lij).
It can be shown that G(pk, p0), 1 ≤ k ≤ N − 1, is a grasp

if and only if p0 − pk is an eigenvector of the following

submatrix around the diagonal of L−1:
(

l2k−1,2k−1 l2k−1,2k

l2k,2k−1 l2k,2k

)

.

Search for pk is thus performed efficiently.

D. Large Deformation

When the object is squeezed harder, it will undergo a large

deformation that needs to be modeled using the nonlinear

elasticity theory. Theorem 2 is no longer applicable. The

success of a grasp depends on the finger placement as well

as on the finger force magnitude. To verify whether a given

finger placement G(p, q) is a grasp squeezing with forces

of magnitude f , we need to verity conditions (1), (G1), and

(G2).

For curve-like objects introduced in Section V-A, the non-

linear model can be specialized from that for shells [13]. The

extensional strain and the curvature variation now include

some nonlinear terms:

ε11 = ǫ +
1

2
(ǫ2 + φ2),

ζ11 = (1 + ǫ)(−β′′ − κ′α− 2κα′ + κ2β)

−φ(α′′
− κ′β − 2κβ′

− κ2α).

They replace ǫ and ξ respectively in the strain energy formula

(4). In the FEM formulation, the strain energy becomes

a quartic polynomial in terms of the nodal displacement

vector ∆. The conjugate gradient method is used in the

solution.

4The curve-like object’s cross section is small enough to be viewed as a
point such that a contact point is identified with the corresponding point on
the object’s middle curve.

VI. SIMULATION RESULTS

In all simulation instances, the cross sections of the curved

objects have both width and height 0.1mm, and lengths

over 20mm. We let Young’s modulus E = 106Pa and the

coefficient of friction µ = 1.0 at all contacts.

Fig. 4 shows a computed grasp G(p, q) of a cubic spline,

assuming small deformation of the curve. Under a squeezing

q

p

p̃

Fig. 4. Grasp G(p, q) of a closed cubic spline. Friction cones are drawn
at the contact points.

force of 0.3N in the direction of q − p, the upper finger

contact moves from p to p̃ along the line segment pq.

The first row in Table I shows pairs of boundary segments

for grasp that are computed on three different shapes with

perimeters 24.2mm, 35.6mm and 117.5mm, respectively. On

each shape, the two segments in a pair are colored and

numbered the same. Every finger location p on one segment

forms a grasp with some location q on its paired segment.

To better visualize the relationship, the second row in the

table displays a chart for each shape which plots all such

pairs (p, q) in arc length values as found by our algorithm.

Given the placement of one finger, it is easy to determine

that of the other using such a chart.

Due to numerical errors and computational limitation, the

algorithm cannot guarantee to find all graspable segments

on an object. More feasible grasps may be found with finer

discretization, as shown in Fig. 5.

−0.1 0 0.1 0.2 0.3 0.4 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

q

p

 

 

Pair1

Pair2

Pair3

(a) (b)

Fig. 5. Higher resolution yields one more pair of graspable segment on the
second shape shown in Table I. The number of discretization points doubles
from 500 to 1000.

Consider the grasp in Fig. 4. Increase the squeezing force

from 0.3 to 0.6. Due to the large deformation, nonlinear

elasticity theory is used in the modeling.5 The result is shown

in Fig. 6.

5Here, only the constraint of no rigid body rotation is imposed. The
tangents of contacts are subject to change.
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shape

grasp set

−0.2 0.05 0.3
0.2

0.6

1

q

p

 

 

Pair1

Pair2

−0.05 0.2 0.45
0.45

0.6

0.8

q

p

 

 

Pair1

Pair2

0.1 0.2 0.3
0.54

0.57

0.59

q

p

 

 

Pair1

Pair2

{(p, q)}

N 500 700 1000 500 700 1000 500 700 1000

t(s) 137.45 467.41 1667.22 146.5 926.2 3040.9 131.5 277.3 664.4

TABLE I

GRASPABLE SEGMENTS COMPUTED ON THREE SHAPES (ROW 1) AND PLOTTED AS SETS OF FINGER LOCATIONS IN ARC LENGTH (ROW 2). THE BLACK

DOT ON EACH SHAPE REPRESENTS THE POINT OF ARC LENGTH ZERO. ROWS 3 AND 4 DISPLAY VARIOUS DISCRETIZATIONS AND RESULTING

EXECUTION TIMES (IN SECONDS) ON DELL OPTIPLEX 960 WITH INTEL CORE CPU OF 3.33GHZ.

p

p̃

q

Fig. 6. The same finger placement G(q, p) as in Fig. 4 retains the grasp
under force of magnitude 0.6 and nonlinear elasticity modeling.

VII. DISCUSSION AND FUTURE WORK

This paper presents a preliminary study of two-finger

grasps of planar deformable objects by squeezing. A grasp

has to keep equilibrium before and after the deformation

generated by the very set of same forces. That it seems

harder to grasp a deformable object with slight force may

be explained from that geometry has not changed enough to

help the task.

Extension to solid planar objects is undergoing. While the

presented algorithms are still applicable, the main effort is

on efficiency of grasp computation.

We would like to investigate grasps yielding large de-

formations. Observations in our simulation suggest that one

finger could often squeeze the object toward the other finger

placed at one of a continuum of locations to form a grasp.
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