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Abstract— Robotic grasping of a deformable object is difficult
not simply due to the high computational cost of deformable
modeling. More fundamentally, the difficulty lies in a wrench
space that changes under deformation, with growing contact
areas, and subject to varying slip/stick modes in these areas.
This paper presents a grasping strategy by squeezing the object
with two fingers. An analysis based on the finite element method
(FEM) proves equilibrium and uniqueness of deformation
during the action, and leads to a (improved) quadratic time
deformation update from the displacements of as few as two
contact nodes. An event-driven algorithm is then presented to
track the contact regions during a squeeze, and determine the
stick/slip mode of every node in contact. The contacts supply the
constraints needed for deformation update using FEM. Several
experiments with a Barrett Hand have been conducted for
validation.

I. INTRODUCTION

Grasping deformable objects is inherently different from

grasping rigid ones for which two types of analysis have

been developed. Form closure on a rigid object eliminates

all of its degrees of freedom, while force closure keeps the

object in equilibrium with the ability to resist any arbitrary

external wrench. A deformable object has infinite degrees of

freedom, which makes form closure impossible. Also, the

grasp wrench space changes as the object deforms, which

makes force closure analysis inapplicable.

Robot grasping of deformable objects is an under-

researched area not only due to the high cost of physics-

based deformable modeling, but also for some fundamental

mechanics reasons. The initial contact point between a finger

and an object grows into an area due to deformation. The

points within the contact area may switch mode between

slip and stick, making a contact mode analysis necessary to

accurately characterize the process. The torques exerted by

the fingers vary as the object’s geometry and contact modes

change, which is different from grasping a rigid body where

torques are invariant under specified grasping forces.

Our approach to grasping of deformable objects has been

conceived with characteristics to address the above issues.

We choose to specify desired displacements of the grasping

fingers rather than the forces they exert, for several reasons.

First, displacement constraints are usually sufficient for com-

puting the deformation. Second, forces obtained using the

FEM automatically ensure equilibrium. Angular momentum

is conserved under force equilibrium [2, 49–52]. Third, in

practice it is much easier to control a finger’s position than

the exerted force. Finally, exact force magnitudes are not

much of our concern as long as an object can be grasped.

To update the deformed shape, we track the varying set

of finger contacts and their modes (stick or slip) and use

them as constraints, as grasping continues. This will lead to

a contact mode analysis with event detection that is quite

different from the one performed on a rigid body.

Computation of a small deformation based on linear

elasticity comes down to solving either a system of fourth

order differential equations (generally with no closed-form

solution), or practically, a large linear system using FEM.

The latter approach takes sub-cubic time in the number of

discretization nodes, which is typically high for accurate

modeling. A large deformation, meanwhile, can only be

modeled by nonlinear elasticity (and computed using the

even more expensive nonlinear FEM).

To make things worse, repeated deformation computations

are needed for verifying a grasp, finding a successful one,

or choosing one with the best quality. The standard FEM

procedure always exerts fixed node constraints by eliminating

the corresponding rows and columns from the object’s stiff-

ness matrix. In grasping, whenever the fingers are relocated,

the (reduced) stiffness matrix varies. An improvement is

only possible if computation works directly on the original

stiffness matrix, as is to be presented in this work.

A. Assumptions and Paper Outline

We make several assumptions about the grasping task.

The object is isotropic, and either planar or thin 2- 1
2D.

Gravity is ignored. Two grasping fingers are in the same

plane, and make frictional area contacts with the object. The

grasp yields small deformations to which the linear elasticity

theory is applicable. Deformation happens instantaneously

such that no dynamics is considered. In this paper, we

picture deformation as a continuous process happening in

an infinitesimal amount of time.

This paper investigates two-finger grasping of an object by

squeezing it. The action is equivalent to keeping one finger

still, while translating the other finger toward it. We call

this a squeeze grasp. The segment connecting the two initial

contact points must lie inside their friction cones to ensure
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deformation. Under the squeeze, each contact point will grow

into a region.

Section II will briefly review some basic results from linear

elasticity and FEM. Section III will describe how to compute

the deformation of an object given the displacements of

several boundary points. Section IV will present an event-

driven algorithm to compute a grasp. Several experiments

will be described in Section V, and some discussion on future

research will follow in Section VI.

B. Related Work

Rigid body grasping is an extensively studied area rich

with theoretical analysis, algorithmic syntheses, and imple-

mentations with robotic hands [1]. In particular, two-finger

force-closure grasps of 2-D objects are well understood

and efficiently computable for polygons [10] and piecewise-

smooth curved shapes [11].

Much less work exists on grasping of deformable objects.

In [14], a model for deformable contact regions under a grasp

was introduced to predict contact forces without concern

of grasp computation or modeling of global deformation.

Simulation accuracy and efficiency could be improved based

on derived geometric properties at deformable contact [9].

The work [15] investigated deformable modeling of shell-

like objects that have already been grasped.

Bounded force-closure was proposed in [16]. Visual and

tactile information was effective on controlling the motion

of a grasped deformable object [7]. The deformation-space

(D-space) approach [6] characterized the optimal grasp of a

deformable part as one where the potential energy needed to

release the part equals the amount needed to squeeze it to

its elastic limit — hence the object could not escape.

In [5], an iterative FEM-based solution was given for 2D

elastic contact problems with no friction. It was extended

to deal with friction in [13] with iterative updating of the

contact zone and the modes of individual nodes within the

zone: stick, slip, contact break or establishment. This event-

based approach was extended in [3] to handle geometric

and physical nonlinearities as well as node-edge contacts,

solving for the exact loading condition from prescribed dis-

placements. The load rather than displacement was specified.

Our recent work [8] considered squeeze grasps under

specified forces. Unrealistic constraints had to be imposed

at the contacts for modeling shape deformation. The grasp

synthesis algorithm was also too inefficient to be applicable

to solid 2-D objects.

II. FINITE ELEMENT METHOD

This section reviews planar linear elasticity, describing all

displacement fields representing rigid body transformations,

and characterizing the null space of the stiffness matrix of

an unconstrained object. The result will be used in design of

a squeeze-based grasping strategy.

Consider a solid object bounded by a generalized cylinder

parallel to the z-axis, and two planes z = 0 and z = h >
0, where h is small compared to the generalized cylinder’s

dimensions in the xy-plane. We consider plane stress parallel

to the xy-plane, which assumes zero normal stress σz and

shear stresses τxz and τyz in the x-z and y-z planes. Under

a displacement field (u(x, y), v(x, y))T , every point (x, y)T

inside the object displaces to (x + u, y + v)T . The normal

strains are ǫx = ∂u
∂x

and ǫy = ∂v
∂y

, and the shear strain is

γxy = ∂u
∂y

+ ∂v
∂x

. The strain energy is [4, p. 302]:

U =
hE

2(1 + ν)

∫∫

S

(

ǫ2x + 2νǫxǫy + ǫ2y
1 − ν

+
γ2

xy

2

)

dxdy, (1)

where E > 0 and −1 ≤ ν ≤ 1
2 are Young’s modulus and

Poisson’s ratio of the material, respectively.

Theorem 1: Under linear elasticity, any displacement field

(u(x, y), v(x, y))T that yields zero strain energy is linearly

spanned by (1, 0)T , (0, 1)T , and (−y, x)T .

It is a known result. The fields (1, 0)T and (0, 1)T describe

rigid body translations along the x and y axes respectively,

and (−y, x)T approximates small rotations about the origin.

Generally without closed form of the strain energy in-

tegral (1), it is computed using the FEM. The object’s

cross section is discretized into a finite number of triangular

elements with vertices (or nodes) pk = (xk, yk)T , for 1 ≤
k ≤ n. We place the origin at the centroid of these vertices

so
∑n

k=1 pk = 0. The first m vertices, m ≤ n, lie on the

boundary in counterclockwise order.

Under deformation, each node pk is displaced by δk =
(δkx, δky)T . The displacement field of an element is linearly

interpolated by its vertices’ displacements. Assembling the

strain energies of all elements gives the total strain energy

U = 1
2∆

T K∆, where K is the 2n × 2n stiffness matrix.

Note that K is both symmetric (by Betti’s law [12, pp. 447–

448]) and positive semi-definite (since U is non-negative).

That U is zero if and only if K∆ = 0 implies ∆ ∈
null(K), the null space of K . Under Theorem 1, we see

that null(K) is spanned by wx = (1, 0, . . . , 1, 0)T , wy =
(0, 1, . . . , 0, 1)T , and wr = (−y1, x1, . . . ,−yn, xn)T .

Thus, rank(K) = 2n−3. Let λi and vi, i = 1, · · · 2n−3,

be the positive eigenvalues and corresponding eigenvectors.

The null eigenvectors v2n−2, v2n−1 and v2n are normalized

wx, wy, wr respectively. We have the Spectrum Decompo-

sition K = V ΛV T , where V = (v1, . . . ,v2n) and Λ =
diag(λ1, . . . , λ2n−3, 0, 0, 0).

Aggregate the applied forces at all nodes into vector F .

Note that F is non-zero only at some boundary nodes.

Minimization of the total potential energy U −F T
∆ yields

K∆ = F . Since K is singular, constraints will have to be

imposed by the fingers to prevent any rigid body movement.

III. DEFORMATION FROM SPECIFIED DISPLACEMENTS

Denote by pi1
, . . . ,pis

the positions of some boundary

nodes. Suppose the displacement of pij
is given as δij

= dj

and fk = 0, ∀k 6= i1, . . . , is. We would like to determine the

forces f ij
exerted at all pij

’s, and the displacements of all n
nodes. Note that the displacements of s > 1 nodes must be

specified, otherwise the object is underconstraint and a rigid

body movement is resulted.
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A. Deformation

Substitute the spectral decomposition K = V ΛV T into

K∆ = F , we obtain ΛV T
∆ = V T F . Expansion of the

above yields vT
k ∆ = 1

λk
vT

k F , k = 1, . . . , 2n − 3. With

them we decompose ∆ in terms of v1, v2, . . . ,v2n:

∆ =

2n−3
∑

k=1

1

λk

(vT
k F )vk +

2n
∑

k=2n−2

gkvk, (2)

where gk = vT
k ∆, k = 2n − 2, 2n− 1, 2n.

Write v̄k = (v2i1−1,k, v2i1,k, . . . , v2is,k)T , for 1 ≤ k ≤
2n, f = (fT

i1, . . . ,f
T
is)

T , and g = (g2n−2, g2n−1, g2n)T .

Since v̄T
k f = vT

k F , from (2) we have, for l = 1, . . . , n,

δl =

2n−3
∑

k=1

1

λk

(

v2l−1,k

v2l,k

)

v̄T
k f +

(

1√
n

0 − yl

ρ

0 1√
n

xl

ρ

)

g,

(3)

Substitute dj for δij
in (3), for 1 ≤ j ≤ s, and assemble

the resulting equations in the form: Af + Bg = d, where

A =
∑2n−3

k=1
1

λk
v̄kv̄T

k , B = (v̄2n−2, v̄2n−1, v̄2n), and

d = (dT
1 , . . . ,dT

s )T . Note that A is symmetric. Meanwhile,

left multiplications of vT
2n−2, v

T
2n−1, v

T
2n respectively with

K∆ = F yield BT f = 0, which implies force equilibrium
∑s

j=1 f ij
= 0 and torque equilibrium

∑s
j=1 pij

× f ij
= 0.

Combine BT f = 0 with Af + Bg = d:

M

(

f

g

)

= (dT , 0, 0, 0)T . (4)

where M =

(

A B
BT 0

)

. Note that M is also symmetric.

B. Uniqueness of Deformation

Now we will establish that the matrix M is nonsingular

so (f , g)T can be uniquely determined from (4) given d.

Lemma 2: For s ≥ 2, x 6= 0, xT Ax > 0 if BT x = 0.

Proof: Consider the matrix V̄ = (v̄1, . . . , v̄2n). Since

these selected rows from V are orthogonal to each other,

rank(V̄ ) = 2s, which is also the matrix’s column rank.

Therefore, the vector x of dimension 2s must be spanned

by the columns of V̄ .

Suppose BT x = 0. Because s ≥ 2, rank(V̄ ) ≥ 4
and rank(BT ) ≤ 3 < rank(V̄ ). We infer that the vector

x, orthogonal to v̄2n−2, v̄2n−1, v̄2n, is a linear combina-

tion of v̄1, v̄2, . . . , v̄2n−3. There exists some v̄j , 1 ≤
j ≤ 2n − 3 such that v̄T

j x 6= 0. Therefore, xT Ax =

xT
(

∑2n−3
k=1

1
λk

v̄kv̄T
k

)

x ≥ 1
λj

(v̄T
j x)2 > 0.

Theorem 3: The matrix M is nonsingular for s ≥ 2.

Proof: We prove that M
(f
g
)

6= 0 whenever f 6= 0 or

g 6= 0. There are two cases:

• BT f 6= 0.

(

A B
BT 0

)

(f
g
)

=
(Af+Bg

BT f

)

6= 0.

• BT f = 0. We have

(fT , gT )

(

A B
BT 0

)(

f

g

)

= fT Af + gT BT f + fT Bg

= fT Af > 0 (BT f = 0, and Lemma 2).

This implies M(f , g)T 6= 0.

Corollary 4: If d is part of a rigid body displacement,

then f = 0.

Proof: In case s = 1, we know that rank(BT ) = 2, so

BT f = 0 implies f = 0.

In case s ≥ 2, (f , g)T = M−1(dT , 0, 0, 0)T . Let

ci = dT v2n−3+i/||v2n−3+i||, for i = 1, 2, 3, and δ =
(v2n−2, v2n−1, v2n)(c1, c2, c3)

T . Then δ is a rigid body

displacement and it contains d. So F = Kδ = 0. The

uniqueness of solution indicates that f is the corresponding

part of F , and is thus 0.

C. Running Time

Since M is nonsingular, we solve (f , g)T from (4). Then

each δl is computed from (3) in O(n) time, taking the small

number of contacts as a constant. Thus the total computation

takes O(n2) time after SVD which takes O(n3) time.

IV. TWO-FINGER SQUEEZE GRASP

We place two fingers F1 and F2, with identical semicir-

cular tips of radius r and centers o1 and o2, on the object

at boundary nodal points pi and pj , respectively. The finger

orientations are irrelevant assuming that only the tips will be

in contact. Also, o1 and o2 must lie on the object’s normal

at pi and pj . The finger placement is thus fully specified.

p
(0)
j

F1

F2

o
(0)
2

y

xo

o
(0)
1

p
(0)
i

F1

F2

o
(0)
1

o2

friction
cone

pi

θj

fj

o

pj

(a) (b)

Fig. 1. Object (a) before and (b) after a squeeze grasp.

As shown in Fig. 1(a), we place the origin at the center of

the object, and let the y-axis point toward pj . Finger F1 is

motionless, while finger F2 translates in the direction pi−pj

by a distance d > 0, which is referred to as the squeeze depth.

As the squeeze continues, some boundary nodal points may

come into contact with the fingers, as illustrated in Fig. 1(b),

while others may break contact with them. A node in contact

may be sticking to a fingertip or sliding on it. The contact

configuration at the squeeze depth d describes which nodal

points are in contact, and among them, which are sticking

or sliding. The contact configuration is critical because it

yields position and force constraints that are needed by FEM

to compute the deformed shape under the squeeze. We will

incrementally track the contact configuration as d increases.

A. Contact Configuration

The squeeze depth will be sequenced into d0 = 0 < d1 <
· · ·, such that at d = dl some event happens to trigger a

change in the contact configuration. For d > dl, we use the
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new configuration and evaluate the changes in f and ∆ using

the FEM, and predict dl+1.

At dl, we maintain two sets: T of nodes sticking with a

finger, and P of nodes sliding on a finger. Translate F2 down

by a small extra distance ǫ > 0. Suppose T and P do not

change as d varies within [dl, dl + ǫ).
For each node pk ∈ T ∪ P , denote by θk its polar

angle with respect to the center of the contact fingertip. See

Fig. 1(b) for an illustration on pj . Denote δk = δ
(l)
k and

θk = θ
(l)
k when d = dl. We can determine the displacement

δk = δ
(l)
k + δ̊k when d = dl + ǫ as follows. If pk is on F2,

δ̊k = −ǫŷ + r

(

cos θk − cos θ
(l)
k

sin θk − sin θ
(l)
k

)

, (5)

where ŷ =
(

0
1

)

. If pk is on F1, the term −ǫŷ in (5) vanishes.

A sticking contact at pk imposes a position constraint θk =

θ
(l)
k on deformation. If pk slips, the contact force fk =

f
(l)
k + f̊k must stay on one edge of the friction cone at pk as

the node moves. Let φ = tan−1 µ, where µ is the coefficient

of contact friction. This imposes a force constraint:
(

f
(l)
k + f̊k

)

×

(

cos(θk ± φ)

sin(θk ± φ)

)

= 0, (6)

where the sign ‘+’ or ‘−’ can be determined either from the

previous step or using hypothesis-and-test.

Since equation (4) is linear, we gather the changes δ̊k in

the displacements of all contacts into a vector d̊ and replace

d with d̊, f with f̊ , g with g̊ in (4). Solve for f̊ and g̊.

Then in (3), which is also linear, replace f , g, δl with f̊ , g̊,

δ̊l, respectively. This gives us δ̊l and thus δl, for 1 ≤ l ≤ n,

which are linear in terms of ǫ, cos θt, and sin θt, ∀pt ∈ P .

Substitute the expression for f̊k in (6). This yields an

equation linear in ǫ and quadratic in cos θt and sin θt, for

every pt ∈ P . There are a total of |P | such equations that

form a system S in the same number of variables θt. Given

a value of ǫ, we can solve for these θts. Since ǫ is small,

Newton’s method converges fast with the initial values θ
(l)
t .

Hence ∆ and f are updated.

With θk known for every sliding contact pk, we can also

determine the derivative dθk

dǫ
, which will be used for checking

whether a node pk switches from slip to stick. Differentiate

both sides of every equation in the system S with respect

to ǫ. This yields a new linear system of |P | equations in |P |
derivatives dθt

dǫ
, pt ∈ P . Simply solve the system.

B. Contact Event Detection

Now we look at how to predict the value of ǫ such that

the next event occurs at squeeze distance d(l+1) = d(l) + ǫ
to trigger a change in one or both of the contact sets T and

P . There are four types of events described as follows.
1) Event A — New Contact: A boundary node pk comes

into contact with one of the two fingers. This happens when

its distance to the center of the contacting fingertip reduces

to r, or equivalently, when the following condition holds

(assuming the moving finger F2 to be in contact):

||p̃k − õ2 +

(

0

ǫ

)

|| = r. (7)

Here we denote q̃ as the displaced position of a point q.

For completeness, we ought to check every boundary node

that is currently not in contact with any finger. Often a new

contact node is adjacent to an outermost contact node.

To determine the mode of contact for pk, we first hypoth-

esize that it sticks, apply a small extra squeeze, and check if

the resulting contact force fk stays inside the friction cone.

If not, the node slips. Add pk to T or P accordingly.

2) Event B — Contact Break: As ǫ increases, the force

fk at a node pk varies inside or on one edge of the contact

friction cone. When its magnitude reduces to zero, it is about

to point into the finger. This implies that the contact breaks

when ‖fk‖ = 0. Remove pk from P or T that contains it.

3) Event C — Stick to Slip: When the contact force fk

applied on a sticking node pk is rotating out of the inward

friction cone (cf. Fig. 1(b)) as d increases, the contact starts

to slip. The rotation of the force fk at the moment is

indicated by its derivative with respect to ǫ. We need to check

the conditions:

fk×

(

cos(θk ∓ φ)

sin(θk ∓ φ)

)

= 0 and ∓
dfk

dǫ
×

(

cos(θk ∓ φ)

sin(θk ∓ φ)

)

> 0

(8)

for reaching the left (sign ‘−’) or right (‘+’) edge, respec-

tively. Remove pk from T and add it to P .

4) Event D — Slip to Stick: As ǫ increases, the contact

node pk slides, and its polar angle θk with respect to the

corresponding fingertip’s center varies. Slip changes to stick

when dθk/dǫ = 0. In this case, move pk from P to T .

C. The Squeeze Algorithm

The algorithm starts at d = 0. At step l, it hypothesizes

each of the four events for every possible node, and computes

the extra squeeze distance ǫ for the first hypothesized event to

happen. Let dl+1 = dl+ǫ. Event testing involves solving for ǫ
and polar angles θt of all sliding contacts pt from the event

condition and the corresponding |P | equations. Analytical

solution is difficult if not impossible.

Here we employ a numerical routine that increments the

squeeze depth d by a small step size h. Because h is small,

Newton’s method converges fast in computing θt for pt ∈ P .

Checking whether an event happens becomes testing either

an inequality or whether an expression changes sign. If no

event happens for the current increment h, the algorithm

simply continues.

The algorithm terminates if the grasp succeeds when the

specified d is reached, or if the grasp fails when all contacts

with some finger slip before d is reached.

D. Finger Kinematics

In reality, the robotic fingers may have to rotate while

squeezing. Let the changes in orientation of F1 and F2 be

α1(d) and α2(d), respectively, according to hand kinematics.

Some of the above derivations need adaption. Redefine θk

as pk’s polar angle with respect to the center of the fingertip

in the finger’s local frame. In Equations (5) and (6), and

the conditions for Event C and D, θk should be replaced by

θk + αi if pk is on Fi.
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V. EXPERIMENTS

We performed experiments using a Barrett Hand on two

types of objects: ring-like ones and solid ones. The Barrett

Hand was mounted with small spherical finger tips for

ringlike objects, and cylindrical tips for solid ones.

A. Ring-like Objects

Two hollow objects displayed in the first column of Fig. 2

were grasped. They were trimmed from cookie cutters. Such

an object may be viewed as one swept out by a rectangular

cross section with width w and height h along a closed 2-D

curve γ(s) parametrized by arc length s and having perimeter

L. The curve has a displacement field δ(s) = α(s)t+β(s)n,

where t and n are the unit tangent and normal on the curve.

Let κ be its curvature. The strain energy takes the form Uc =
1
2Ew

∫ L

0 (hǫ2 + h3

12 ζ2)ds [8], where ǫ = dα
ds

− κβ is the

extensional strain and ζ = − d2β
ds2 − dκ

ds
α−κdα

ds
is the change

in curvature. The curve is discretized into FEM elements with

the strain energy Uc written in the form U = 1
2∆T K∆.

Fig. 2. Successful grasps of two deformable objects.

The two fingers make small area contact with the object

that can be approximated by point contact. The analysis from

Section III and the squeeze grasp algorithm from Section IV-

C carry over. Since each finger has only one contact point,

the grasp fails at a squeeze depth when the contact force

reaches one edge of the friction cone and slip starts.

Fig. 2 shows two successful grasps in column 2 that agreed

with the algorithm’s predictions in column 3. The heart-

shaped band has physical parameter values (E, µ, h, ρ) =
(2GPa, 0.26, 5mm, 10%), where h is the thickness, and ρ
is the relative squeeze depth to the distance between the

two initial finger contacts. The leaf-shaped band has physical

parameter values (2, 0.26, 5, 11%).
Under a squeeze, the two contact friction cones sometimes

rotate toward each other, making the applied forces more

aligned with the axes of the cones, and the grasp more stable

(Fig. 3(b)). In some other cases, the two cones rotate away

from each other, breaking the grasp, as shown in Fig. 3(c).

B. Solid Objects

A 0.1m by 0.1m square made of rubber foam (thickness

0.0254m) was grasped by the Barrett Hand. Fig. 4 compares

the actual grasp configuration with one simulated by the

squeeze grasp algorithm. In the center, the deformed mesh

from simulation is superposed onto the real shape with an

almost perfect alignment (average error is 1.3mm while

the edge length is 0.1m) after data matching that aims

at minimizing discrepancies introduced by the choices of

shape
original

forces

deformed
shape

(a) (b) (c)

Fig. 3. During a grasp (a), contact friction cones rotate toward each other
(b). During another grasp, they rotate away to break a grasp (c).

coordinate systems in simulation and experiments. Left and

right columns compare contact regions by simulation and

from experiment, on the two fingers respectively.

F1 superposition F2

Fig. 4. Grasp configuration with contact regions: simulation vs. experiment.

The contact forces evolve as the squeeze deepens, as

shown in Fig. 5. The magnitude of the contact force at each

nodal point calculated from simulation was transformed to

the force density over curve length, while the direction was

represented as its polar angle. The nodal values were then

interpolated with cubic splines. The density in the center of

the contact is generally bigger than that on the edge. Also,

The force on each segment, and the total force, increases

with deeper squeeze. The directions of the contact forces

show a general trend of decreasing along curve length. As

the squeeze continues, the curve spans over more nodes,

indicating a growing contact area.

Fig. 5. Force profile. At different relative squeeze depth d, the forces
exerted by finger 1 (left column) and 2 (right column) were decomposed to
force density (upper row) and polar angle (lower row).
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The position of a point in contact with the finger tip can

be described by its polar angle with respect to the finger

center. Fig. 6 shows movements of sliding contacts as the

Fig. 6. Sliding profile. Here, d is the relative squeeze depth.

squeeze depth increases. At a squeeze distance, the contact

node positions are interpolated by a cubic spline to give a

continuous illustration of point movement over the contact

segment. As d increases, we can see that the sliding distance

of the contacts increases.

C. Sliding/Sticking Transition

Among the four types of events introduced in Section IV,

Event A is easy to picture with common sense. Event B was

so rare that it was not observed in our experiment. Event

C was widely observed in both simulation and experiment

wherever friction is insufficient. Fig. 7 shows some grasps

in which Event C happened. Each of the yellow and red

arrows in the middle and lower rows emphasizes one point

on the objects and fingertips respectively. Note the changes

in their relative positions when squeeze deepened, indicating

an Event C. Event D happened a lot less than Event C. Fig. 8
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Fig. 7. Event C

g
ra

sp
st

ar
t

sl
id

in
g

st
ic

k
in

g

Fig. 8. Event D

shows a point on the object in three configurations: initial

stick (first row), intermediate slip (second row), and final

stick again(third row).

VI. DISCUSSION AND FUTURE WORK

This paper studies grasping planar deformable objects by

squeezing them with two fingers. One key idea is to specify

displacements rather than forces, and use them as constraints

to the object. Another one is to keep track of and predict

the contact configuration at a squeeze depth (needed for

computing the deformation) in an event-driven manner. We

have conducted several experiments to validate the squeeze

grasp algorithm, rotation of a contact friction cone, growth

in a contact region, and pointwise contact mode switch.

In the next phase, we would like to design a quality

measure for grasps and investigate grasp optimization.
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