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Abstract— In this paper, we investigate the problem of
estimating the instantaneous position, orientation, velocity,
and angular velocity of a rigid body during its free flight.
The flight is under the influences of gravity, air drag, and
the Magnus force. Two high-speed, stereo vision cameras
are synchronized to take images of the flying object. Line
features are extracted from each image as observables
from a governing system which integrates quaternion-
based dynamics with a camera model that deals with lens
distortion. An extended Kalman filter (EKF) is employed
to carry out the online estimation. Experimental validation
using accelerometers and a stepper motor show agreement
with estimated velocities.

I. INTRODUCTION

Real-time tracking of the orientation and position of a
rigid body moving in the space is an important and chal-
lenging problem with applications in space exploration,
air traffic control, missile guidance, underwater vehicles,
robotics, virtual reality, etc. Techniques for estimating
its velocity and angular velocity have relied on either
accelerometers or cameras mounted inside the body, or
cameras stationed outside.

The first estimation approach measured the accelera-
tions at the mounting points of several linear accelerom-
eters along orthogonal axes, and then either solved a
system of kinematic equations for the body’s angular ac-
celeration [1], or determined it through optimization [2],
[3]. In [4], a magnetometer, accelerometer, and angular
rate sensor were employed to obtain measurements from
which a quaternion was calculated and supplied to a
Kalman filter for polishing. Nevertheless, none of the
aforementioned methods addressed how to estimate the
object’s linear velocity.
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The work [5] showed that the rotation motion of
an asteroid about a fixed axis could be recovered on
a spaceship from images taken of outside landmarks
by combining particle filtering with optimization. The
angular velocity, if constant, could be estimated based on
line correspondences among the images by combining a
least-squares method with interpolation [6].

Vision-based estimation often integrated dual quater-
nions into an extended Kalman filter (EKF), taking linear
features from images generated by either a single cam-
era [7], or a network of cameras followed by optimiza-
tion to achieve consensus [8]. Since rigid body dynamics
were not fully integrated into the system, simulation and
experiments were conducted for estimating only constant
velocities and angular velocities.

Our work aims to accurately estimate an object’s pose
and motion during its flight. Accuracy can be difficult
to obtain when working with limited camera hardware,
wide-angle lenses, and severe effects of aerodynamics.
Previous work has not seriously investigated vision-
based estimation of angular information under the “full”
effects of rigid body dynamics. Since highly accurate
state estimation is not required in many robotics tasks,
forces of drag and Magnus, or camera lens distortion,
are often ignored. Furthermore, past efforts have lacked
experiments with low-cost vision systems.

We are interested in tracking the full state of a rigid
body in free flight, which includes its position, rotation,
velocity, and angular velocity. An EKF is used with
system dynamics involving forces of gravity, drag, and
Magnus, and a camera model accounting for radial and
tangential distortions. Observables are provided to the
EKF using line features extracted by two cameras. The
cameras are configured in stereo vision with additional
work on their calibration.

Section II introduces the dynamics model of flight
in a quaternion-based formulation. Section III briefly
discusses the camera projection model, the geometry



Fig. 1. Flying object and image plane.

of two views of a scene, and a calibration method for
estimating all camera parameters. Section IV formulates
the EKF and the measurement model. Section V shows
results from simulation of various objects, as well as
experiments using accelerometers and a stepper motor
for validation of a wooden frame and cuboid object,
respectively. Section VI discusses of work in the near
future.

II. SYSTEM DYNAMICS

Consider a flying object as shown in Figure 1. The
object, with known geometry and physical properties,
has a body frame Fb located at its center of mass ob,
and defined by its principal axes. Under the frame, the
angular inertia matrix Q is diagonalized. The frame Fb

has a translation b from the world frame Fw. The rota-
tion of Fb from Fw is described by a unit quaternion [9]:

r =
(
r0 rT

)T
= (r0, r1, r2, r3)

T
.

Let v be the object’s velocity in Fw, and ω be its
angular velocity in terms of Fb, that is, relative to a fixed
frame instantaneously coinciding with Fb. The angular
velocity is rωr∗ when expressed in Fw, where r∗ =
(r,−rTi )

T is the conjugate of r.
In addition to the gravitational force, the object is sub-

ject to drag and Magnus forces. Based on the works [10],
[11], [12], [14], we approximate the two forces by their
coefficients Cd and Cm, which are dependent on the
object’s shape relative to the flow of air. Let ρ be the
air density and A the area of the object’s cross section
normal to v. Introduce

ed =
1

2
ρACd and em =

1

2
ρACm.

Air drag acts opposite to the object’s velocity, producing
the force

fd = −ed∥v∥v.

Magnus force [13, pp. 16-33] is due to uneven air
pressure created by the air flow passing the object’s

top and bottom parts as it rotates in the air. This force,
traverse to the air flow, is given as

fm = em(rωr∗)× v.

Newton’s equation now takes the form:

v̇ = g − ed∥v∥v + emω × v, (1)

where g is the gravitational acceleration vector. It is
reasonable to assume that the forces fd and fm act
through the object’s center of mass, just like the gravi-
tational force. Then Euler’s equation assumes the form
Qω̇+ω×Qω = 0, from which we immediately obtain

ω̇ = −Q−1(ω ×Qω). (2)

The 13-vector s = (bT , rT ,vT ,ωT )T describes the
state of the flying object. The quaternion r describing the
object’s orientation has the following derivative given in
Appendix C of [9]:

ṙ =
1

2
rω. (3)

This, together with ḃ = v, (1), (2), forms a system of
nonlinear differential equations below:

ds

dt
=


v

1
2rω

g − ed∥v∥v + emω × v

−Q−1(ω ×Qω)

 = a(s). (4)

III. GEMOETRY OF PROJECTION

The object’s state is estimated based on measurements
extracted from its images taken simultaneously by two
cameras. We first focus on one camera to understand
the measurement model. Fig. 1 shows the camera’s focal
point located at c, where a frame Fc is set up with its
z-axis perpendicular to the image plane. The rotation
of Fc from the world frame Fw is described by a
quaternion rc. The image plane Π has a local coordinate
system with the origin at the upper left corner of the
image, the u-axis pointing rightward, and the v-axis
pointing downward.

A. Imaging Model

The projection model used is outlined in detail in [15,
pp. 16–17]. Let p be a point on the object, and denote
bp,wp and cp as its coordinates in the body, world, and
camera frames, respectively. They assume the following
mappings:

wp = b+ r(bp)r∗, (5)
cp = r∗c (

wp− c) rc. (6)
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Letting cp = (cpx,
cpy,

cpz)
T , the pinhole camera

model yields the normalized image coordinates

pp =
1

cpz

(
cpx
cpy

)
. (7)

Brown’s distortion model [16] is then used to map the
undistorted point pp to a distorted point pp̃

pp̃ = δr (
pp) + δt (

pp) , (8)

where the function δr applies radial distortion and δt
applies tangential distortion. Letting pp = (ppx,

ppy)
T

and ρ = ∥pp∥, the distortion functions are defined as

δr (
pp) =

(
1 + k1ρ

2 + k2ρ
4 + k3ρ

6
)
pp, (9)

δt (
pp) =

(
2h1(

ppx
ppy) + h2(ρ

2 + 2 pp2x)

h1(ρ2 + 2 pp2y) + 2h2(ppxppy)

)
, (10)

for some coefficients k1, k2, k3 of radial distortion, and
h1, h2 of tangential distortion.

To convert the point to image coordinates, the follow-
ing intrinsic parameters are needed: scaling parameters
α and β, the skew angle θ, and the image center
(uc, vc)

T . The distorted point is then transformed into
image coordinates by

ip =

(
u
v

)
=

(
α −α cot θ
0 β/ sin θ

)
pp̃+

(
uc

vc

)
. (11)

Note that bp,wp and cp are 3-vectors with bp being
determined beforehand (as the position of a marker),
while pp, pp̃, and ip are 2-vectors. The sequence of
transformations is best summarized as follows:

bp
(5)−→ wp

(6)−→ cp
(7)−→ pp

(8)−→ pp̃
(11)−−→ ip. (12)

B. Two-view Camera Geometry

The two cameras are placed in a stereo vision con-
figuration to produce different views of a scene. From
now on, the single quote will be used to refer to the
second camera. The geometry between these views can
be described by intersecting lines formed from light rays.
These rays originate at a point wp in the world frame,
and pass through the camera centers c and c′ where
they are projected onto the image plane at q and q′,
respectively1. These five points form a plane defined by

(q − c) · [(c′ − c)× (q′ − c′)] = 0. (13)

The points q and q′ relative to their respective camera
frames represent the perspective projection of wp up to a
scale, and thus can be written as pp and pp′, respectively.
Next, let ct = r∗c (c

′−c)rc be the translation vector in the
first camera frame. Denote by ct× the skew-symmetric

1All points have coordinates in the world frame.

matrix that acts through left multiplication as taking a
cross product with ct as the left operand. Let S be
the rotation matrix corresponding with the quaternion
product r∗cr

′
c, where rc and r′c describe the rotations of

the two camera frames from the world frame. Equation
(13) is then rewritten relative to the first camera frame:

(ppT , 1) E (pp′T , 1)T = 0 (14)

where E = (ct×)S [15]. The 3×3 matrix E , referred to
as the essential matrix, is also skew-symmetric and has
rank two with two equal non-zero singular values [17],
[18].

Since equation (14) is defined up to scale, the vector
ct can be made to have unit length after introducing
a scalar value d to represent the distance between the
two cameras. The position of the second camera is then
written as

c′ = c+ drc(
ct)r∗c . (15)

Note that the constraint (14) ignores lens distortion
which causes rays of light to refract off the camera
lens, producing bent lines that are not coplanar. To
accommodate this, image points are first back-projected
and undistorted into the ideal pinhole model by solving
the system of (8) and (11) for pp given ip. This is done
numerically using the Levenberg-Marquardt algorithm
for nonlinear least-squares minimization [19], [20].

C. Calibration

We now present a calibration procedure to accurately
estimate parameters of the camera model subject to
the two-view geometric constraint. A set of l points
wq1, . . . ,

wql are chosen in world coordinates. We ob-
tain their corresponding image coordinates iq1, . . . ,

iql

from the first camera, and iq′
1, . . . ,

iq′
l from the second

camera. This data is then used to calibrate the cameras
together through two steps of minimization where an
initial calibration is needed. Single camera calibration
methods such as the one by Zhang [21] can provide a
good initial estimate.

Introduce the vectors λ and λ′ for the two cameras,
respectively, each containing ten intrinsic parameters:
uc, vc, α, β, θ, k1, k2, k3, h1, h2. The first step is to cal-
culate E via nonlinear optimization as presented by
Hartley and Zisserman [22, pp. 283–284]. First, using
the current values of λ and λ′, undistort iqj and iq′

j

by solving (11) and (8) sequentially to obtain pqj and
pq′

j , j = 1 . . . l. Then, solve the linear system (14) for
the essential matrix E , which has rank 2. Extract from E
the matrix S and unit vector ct [22, pp. 258–259].

In the second step, for each image point iq, we
minimize the reprojection error of the measured world
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coordinate wq passed through the camera model sum-
marized by (12). Denote the reprojected points ip and
ip′ as functions of wqj by concatenating (6), (7), (8),
and (11). Minimization is performed in a least-squares
manner with an objective function that combines the
reprojection error of both cameras:

g(S, ct;x) =

l∑
j=1

∥∥iqj − ip
∥∥2 + l∑

j=1

∥∥iq′
j − ip′∥∥2 .

(16)
The function is minimized over the parameter vector
x = (λT ,λ′T , rc, c, d)

T using the Levenberg-Marquardt
algorithm. Note that the rotation r′c and translation c′ of
the second camera are omitted as they are calculated re-
spectively from S along with rc, and from equation (15)
along with the parameter d.

Given an initial calibration, we perform the afore-
mentioned steps repeatedly until convergence of the
reprojection errors.

IV. STATE ESTIMATION

We use an extended Kalman filter (EKF) [23, p. 405]
to observe the state s = (bT , rT ,ωT ,vT )T of the
flying object. The EKF evaluates the state’s system
dynamics from Section II in continuous-time, while
obtaining observables from the cameras at discrete time
instants. Denote the function h(s) as the measurement
model to predict observables from the state estimate.
The algorithm makes use of the Jacobians of a and h:

A =
∂a

∂s
and H =

∂h

∂s
, (17)

which can be derived from equation (4) and the chain
of equations summarized by (12), respectively.

The measurement model consists of observables com-
puted from lines along the object’s edges. Line fea-
tures are used as opposed to point features since they
are more reliable for pose estimation [7]. Consider
three incident edges sharing a vertex on the object.

Fig. 2. Edge triple for a
cuboid. Each vector forms
an angle θ ∈ [0, 2π) with
the x-axis.

We obtain observables from
their projections in the two-
dimensional image, referred to
as the edge triple. Fig. 2 shows
the image of a cuboid object
and its edge triple. Let ipj , j =
1, 2, 3 be the vertices opposite
to a shared vertex ir, referred
to as the reference vertex. Or-
dering of vertices as well as
which vertex becomes the ref-
erence can be determined based
on which faces are visible. With

known positions bp in the body frame, the vertices ipj

and reference vertex ir are computed from the chain of
equations in (12). Each axis is then identified by a line
direction

il̂j = (uj , vj)
T =

ipj − ir

∥ipj − ir∥
,

for j = 1, 2, 3. The phase angles θj = atan2(vj , uj)
of these vectors relative to the u-axis are used as ob-
servables. The three angles combined with the reference
vertex ir make up the observables of one camera. The
measurement vector is then written as

y = (irT , θ1, θ2, θ3,
ir′T , θ′1, θ

′
2, θ

′
3)

T = h(s, ϵ). (18)

The measurement error ϵ follows a normal distribution
with zero mean and a covariance matrix R, i.e., ϵ ∼
(0, R).

V. SIMULATION AND EXPERIMENT

A. Simulation

Simulation is performed to demonstrate accuracy and
convergence of the EKF for three objects varying in
shape and complexity: a solid rod (radius 3 cm and
height 30 cm), bowling pin2, and bowl (hollow hemi-
sphere with a radius of 10 cm). All objects have a mass
of 0.1 kg.

The drag coefficient Cd is approximated from studies
on the aerodynamics of general shapes [24], [25]. Values
of Cd and the cross sectional area A are calculated as
functions of the velocity direction at each time instant.
In the case of the bowl, when air flows against the
open side, Cd = 1.42, and against the rounded side,
Cd = 0.38. For orientations between these two, the
coefficients are linearly interpolated. Due to a lack of
studies on values of Cm for arbitrary objects, it is set
to 0.15 for all objects. This was a median value found
through experiments to be reasonable for various shapes
thrown by hand with a magnitude of angular velocity in
the range of 5–25 rad/s.

The EKF is initialized with no information, such
that position and velocity estimates started at zero.
The state covariance matrix is initialized with diagonal
components of 0.01 for positions, 0.005 for rotations,
and 0.1 for both linear and angular velocities. The initial
true state has a velocity of (−3.5, 1.5, 3)T , and angular
velocity of (−2,−2,−4)T . It was propagated by the
system dynamics for 200 iterations and with a time
interval of 5 ms, totaling 1 s of flight over 4.5 m.

2Composed of an ellipsoidal bottom with radii of 3 cm about the
semi-minor axis and 10 cm about the semi-major axis, a cylindrical
neck of radius 1.4 cm and height of 2.25 cm, and a spherical top of
radius 2.5 cm.
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Errors (×10−2)
Variable Rod Pin Bowl Unit

b =

bx
by
bz

 −0.16 −0.53 −0.24

m0.12 0.07 0.11
0.00 −0.16 −0.03

r =

rw
rx
ry
rz


−0.37 −0.99 −0.13

–
−0.22 1.46 0.80
0.36 0.68 −0.15

−0.54 6.63 −0.52

v =

vx
vy
vz

 0.32 0.11 0.27

m/s1.07 1.65 1.05
0.12 −0.20 0.20

ω =

ωx

ωy

ωz

 −0.72 −11.3 −1.48

rad/s−5.13 23.4 5.45
−0.42 −25.6 −2.62

TABLE I
ESTIMATION ERRORS FROM SIMULATION

Table I gives the mean errors for position and ve-
locity estimates from 20 flight instances of each object.
Observables are calculated from three fixed body coor-
dinates marked as black dots on the images in the first
row. The points are projected onto the image and noise
is added according to the covariance matrix R with its
diagonal elements set to 2.25 pixels for each component
of ir, and 0.001 rad for θj , j = 1, 2, 33. In the case of
the pin, these points form an edge triple that is elongated,
spanning primarily the z-axis. Despite this, small error is
still obtained, where it is noticeably higher in the angular
velocity estimates.

B. Experiment

Experiments were performed to demonstrate accu-
racy and robustness of the estimation algorithm using
three methods of validation. Two Ximea MQ022CG-
CM high-speed, color cameras were used to capture
images simultaneously. Both were equipped with Navitar
NMV-6 lenses with a 81.9 degree field of view. The
cameras were carefully calibrated using the procedure
from Section III-C with data points obtained by images
of a 3D calibration cube. An object was then thrown
across the camera’s view approximately 2.3 m away.
The initial estimate of the object’s pose was computed
by undistorting image points, triangulating the world
coordinates, and using Horn’s method[26] to estimate
orientation.

3Producing measurement error of about ±4.5 pixels and ±0.01 rad.

battery

accelerometer

wireless
transmitter

Fig. 3. Single axis of a wooden frame object with accelerometers
attached. The y-axis shown (colored green) has one accelerometer at
the end of the axis and another near the intersection of the axes. The
x (red) and z (blue) axes have one accelerometer each at the ends of
their axes. Each axis is 30 cm long and 2.9 cm wide. The object has a
mass of 0.31 kg, drag coefficient 1.05, and Magnus coefficient 0.15.

0.07 s 0.58 s0.34 s

Camera 1

Camera 2

Fig. 4. Cropped images of the wooden frame in flight. Observables
from vision are drawn as dashed black lines and predictions from the
state estimate as white lines. The object’s position is plotted as a white
‘x’. Labels at the top indicate the time since the start of estimation.

In the first experiment, a wooden frame object was
thrown by hand. Linear accelerations were measured
by four tri-axis ADXL335 accelerometers from Analog
Devices, capable of measuring ±29.4 m/s2. The data
were transmitted wirelessly using four Digi XBee Series
1 modules. Fig. 3 shows the configuration of one axis of
the frame. Before the object was thrown, the accelerom-
eters were calibrated by repeatedly measuring voltages
corresponding to the force of gravity while laying flat
on a table. The object’s inertia tensor was also adjusted
to account for the accelerometers as point masses. Fig. 4
shows images of the wooden frame in flight. The object
was estimated for 0.69 s at a rate of 230 frames per
second (fps) for a distance of 2.27 m within the image.

The object’s velocities were then calculated in the
body frame. The readings ai from the ith accelerometer
satisfy the kinematics equation ai = v̇ + ω̇ × ri +
ω × (ω × ri), where ri locates the accelerometer in
the body frame. Using four accelerometers, we obtain
twelve quadratic equations in total with nine unknowns
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in v̇, ω, and ω̇. The equations can instead be written
as a linear system with twelve (dependent) unknowns:
three for v̇, and nine for a 3 × 3 matrix W composed
from ω̇ and ω. Formulation of the linear system and
extraction of ω from W is discussed in [3]. Last, the
linear velocity v was obtained by integration over v̇.

(a) (b)
Fig. 5. Plots of the estimated and observed (a) linear and (b) angular
velocities. Velocity readings from accelerometers in the x, y, and
z directions are plotted as solid lines in light red, green, and blue,
respectively. The estimated velocities are plotted as dashed lines in a
darker red, green, and blue.

Fig. 5 plots the measured and estimated values
of velocity and angular velocity. The final estima-
tion errors at 0.69 s were (0.036, 0.089, 0.085)T

for velocity, and (0.011, 0.230,−0.032)T for angu-
lar velocity. In addition, another EKF was formu-
lated without drag and Magnus forces and used to
estimate the same flight. The estimation errors for
this EKF were (0.076, 0.098, 0.137)T for velocity, and
(0.013, 0.223,−0.031)T for angular velocity. Note that
in Fig. 4, only two axes are detected at 0.34 s due to
occlusion of the third. Regardless, the EKF continues to
converge from 0.25 s to 0.45 s while observables are
missing, although some errors in ωy and ωz can be seen
to accumulate.

Initial

Estimate

0 s

0.04 s

0.12 s

0.18 s

0.24 s

0.3 s

0.35 s

(a) (b)
Fig. 6. Images from the first camera of the flying cuboid. The object
from different images are superposed at the corresponding location in
a single image. (a) shows the estimate early on and (b) shows after a
few iterations of the EKF.

Next, a hollow, plastic cuboid was thrown and images
were captured and processed at a rate of 120 fps. The
cuboid had each face colored differently to allow for
identifying which faces, edges, and vertices were visible
in each image. Fig. 6 shows two images containing

(a) (b)
Fig. 7. (a) Images of a hollow cuboid mounted on a stepper motor
spinning at 12 rad/s. The cuboid has sides of lengths 3.1 and 6.4 cm,
mass 0.103 kg, drag coefficient 0.9, and Magnus coefficient 0.15.
(b) Angular velocity estimates, where the dashed black line marks 12
rad/s.

poses of the object at different time instants. The initial
estimate and early iterations are shown in (a), and later
iterations in (b). The edge triple is drawn in black, and
its position predicted from the pose estimate is drawn in
white.

Last, the same cuboid object was fixed to a stepper
motor along its y-axis, and set to spin at a rate of
12 rad/s. The object was imaged for 2 s at a rate of
500 fps, and estimated by an EKF with the dynamics
of linear velocity removed. Fig 7(a) shows images of
the cuboid rotating. For 182 out of the 1000 images,
observables were not visible, but estimation continued
undeterred. The estimated angular velocities are plotted
in Fig 7(b). The estimate reached 12 rad/s about the y-
axis at 0.5 s with errors of (−0.99,−0.04,−0.73)T , and
converged during the remaining 1.5 s with a mean error
of (−0.04, 0.07,−0.11)T .

VI. DISCUSSION

Accurate, high-speed motion estimation of an object
flying and tumbling in space can be a daunting task
for two fixed cameras. Modeling of flight dynamics
can be inaccurate due to air drag and Magnus effects.
Cameras can have significant nonlinear distortion that
effects accuracy of features extracted from the object.
We have presented an approach that demonstrates high
accuracy of both linear and angular position and velocity
by formulating an EKF with a complete model of system
dynamics and camera projection.

Additional effort will be spent on validation, including
experiments with objects that experience larger forces
of drag and Magnus (e.g. a bowl or soccer ball) in
the near future. Also, further estimation of drag and
Magnus coefficients awaits investigation. Last, obtaining
more calibration data may be necessary to ensure that
camera parameters are well estimated for all subspaces
containing the object’s trajectory.
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