
Patch Tree: Exploiting the Gauss Map and Principal Component

Analysis for Robotic Grasping

Yan-Bin Jia1, Yuechuan Xue2 and Ling Tang1

Abstract— Grasp planning must consider an object’s local
geometry (at the finger contacts), for the range of applicable
wrenches under friction, and its global geometry, for force
closure and grasp quality. Most everyday objects have curved
surfaces unamenable to a pure combinatorial approach but
treatable with tools from differential geometry. Our idea is
to “discretize” such a surface in a top-down fashion into
elementary patches (e-patches), each consisting of points that
would yield close enough wrenches. Preprocessing based on
Gaussian curvature decomposes the surface into strictly convex,
strictly concave, ruled, and saddle patches. The Gauss map
guides the subdivision of any patch with a large variation in
the contact force direction, with the aid of a Platonic solid.
The principal component analysis (PCA) further subdivides
any patch that has a large variation in torque. The final
structure is called a patch tree, which stores e-patches at
its leaves, and force or torque ranges at its internal nodes.
Grasp synthesis and optimization operates on the patch tree
with a stack to efficiently prune away non-promising finger
placements. Simulation and experiment with a Shadow Hand
have been conducted over everyday items. The patch tree
exhibits different levels of surface granularity. It has a good
promise for efficient planning of finger gaits to carry out
grasping and tool manipulation.

I. INTRODUCTION

Grasping [1], [2] and dexterous in-hand manipulation [3],

[4] involve computation of finger contact locations on the

surface of an object. A placement of m fingers can be

tested for force closure [5], [6], and if verified, evaluated

under various metrics [7]–[9], and optimized over finger

forces [6], [10] via linear or nonlinear programming. As all

the points on the surface constitute a two-dimensional (2-

D) set, all the finger placements form a 2m-D set. To deal

with such a large search space, grasp analysis, synthesis, and

optimization have traditionally focused on polygons [11]–

[14] and polyhedra [15], [16], which are amenable to

combinatorial approaches. Curved shapes (except for those

with symmetries) have received much less attention, and

if so, have been limited to 2-D [17]–[21] or subjected

to discretization [22] in 3-D. This is in sharp contrast to

the study of contact kinematics [23]–[25] and dexterous

manipulation [26], [27] where curved 3-D shapes are often

considered in their original geometry.

Advances in 3-D sensing and scanning have made it

possible for grasping an unknown object based on matching

its surface (as a point cloud or triangular mesh) with that of

1Yan-Bin Jia and Ling Tang are with the Department of Com-
puter Science, Iowa State University, Ames, IA 50011, USA. jia,
ling@iastate.edu

2Yuechuan Xue is with Amazon, Cambridge, MA 02142, USA.
yuechxue@amazon.com

the hand to establish shape complementarity via discretiza-

tion and optimization [28], [29] or with a probability-based

measure [30]. Other approaches extracted “grasping points”

via the use of supervised learning [31] or based on curvature,

and then filtered them under quality measures [32].

Availability of 3D meshes has facilitated grasp synthesis,

whether data-driven [33] or learning-based [34], for everyday

items. Data-driven methods generate grasps on an input

object by transferring those on similar objects, identified

via model matching [35] or deep learning [36], [37], from

a database of annotated grasps, and ranking them under

a geometric or probabilistic quality measure [38], [39].

The “eigengrasp” approach [40] transferred the first two

principal components of human hand configurations to an

anthropomorphic hand through optimization. Other works

on grasping examined how uncertainties in friction affected

grasp qualities [41], and how state estimation and trajectory

optimization were applied in the presence of occlusions [42].

Quality measures were proposed using probability or

considering dynamics for evaluating a grasp in terms of

its ability to handle uncertainties in the object’s pose [43]

or movements [44] during the action. Efforts [45]–[47] to

benchmark robotic grasping have tried to restrict arm-hand

platforms, designate grasp planners, standardize post-grasp

actions for testing, classify failures, and employ common

datasets with or without real experiments. However, these

benchmarks have not reached a level of maturity or generality

to be regarded as “universal” measures of grasp execution.

The hierarchical fingertip space [48] clustered “unit” mesh

regions bottom-up into surface partitions at different levels,

also taking into reachability and adaptability for grasp syn-

thesis. Depending heavily on training data, the clustering

criteria needed more clarity from both geometry and mechan-

ics. In [49], the point cloud of an object was decomposed

into boxes, each mapped to a hand pose and an interaction

wrench under learning, so grasps could be predicted and then

selected under a metric combining multiple cost indices.

With its continuously varying geometry, a curved surface

is not directly tractable using a combinatorial approach. Our

purpose, similar to [48], is to “discretize” the surface into

elementary patches (e-patches) but in a top-down manner.

Within each patch only a small variation exists in the wrench

(force and torque) generated by the same level of normal

contact force, making the patch adequate for contact with at

most one finger. Using first the Gauss map from differential

geometry and later the principal component analysis, we

introduce a tree structure to represent different levels of

subdivision.

Gauss map

Icosahedron

g

T
h

g

T = h(T)

P = g−1(T)

S2 T

P
S

p

o
o

g

n̂

T4

T1

T3

o

T2

g(p) = n̂

P1

P2
P3

P4

Fig. 1. Gauss map and subdivision (stage 1) based on variance of the
surface normal. Surface S and patch P under the map onto the unit sphere
S2, in which an inscribed icosahedron is used for subdividing P and S .

Section II presents the surface subdivision procedure, with

computation treated in Section III. Section IV describes the

patch tree. Section V shows how to use the tree effectively

in grasp synthesis and optimization. Simulation and experi-

mental results are presented in Section VI. Discussions and

future extensions follow in Section VII.

II. SUBDIVIDING THE OBJECT’S SURFACE

The closed surface S of an object is described in a body

frame located at some point o, say, the object’s center of

mass. The surface is positively oriented with unit outward

normal vectors. For consistency with differential geometry

and clarity of description, we treat all normal contact forces

as tensile—that is, they point outward. This merely negates

the wrench space but does not affect the force closure

property of a grasp (which requires the wrench space to

contain the origin in its interior). There will be also no

change to the outcome of evaluation under many grasp

metrics.

In the context of grasping, a finger placed at a point p on

S exerts some contact force inside the friction cone centered

about the outward normal, and subsequently, a torque about

the reference point o. Our objective is to “discretize” S into

small patches, each to be contacted by at most one finger.

Such a patch needs to have small variations in the contact

normal as well as in the torque with respect to o under

unit normal force. Small wrench variations under tangential

friction are subsequently guaranteed as well.

A. Bounding Variation in the Contact Force Direction

We first consider that S is convex and smooth. The normal

varies continuously on S. At the point p with the unit

outward normal n̂, the two principal curvatures κ1 and

κ2 measure the two extreme rates of local bending of the

surface, which are known to be along two orthogonal tangent

directions [50, p. 133]. We have κ1, κ2 ≤ 0 and the Gaussian

curvature K = κ1κ2 ≥ 0 at p. The Gauss map g takes p to

the point n̂ on the unit sphere S2 at o, as shown on the left

in Fig. 1. The image g(S) of S is S2 because every point

on the sphere is the normal of some point on S.

Our subdivision algorithm makes use of a convex, regular

polyhedron D (called a Platonic solid1) inscribed in S2

with congruent triangular facets which tessellate and are

geometrically sturdy and easy to be subdivided. Whether a

tetrahedron, octahedron, or icosahedron is selected depends

on the object’s geometric complexity. Consider a projection h
that maps every point q on D to where the ray

−→
oq intersects

S2. On the far right in Fig. 1 shows that every triangular

facet T on D (an icosahedron) is projected to a spherical

triangle T on S2, which is the image of some surface patch

P ⊆ S under the Gauss map g. Namely, P = g−1(h(T)).
The total Gaussian curvature γ(P) of P is the integral

of K over the patch; it is equal to the area of the image

region g(P) on the unit sphere. The term directly measures

variation in the normal on P . It holds that γ(S) = 4π, which

is the area of S2.2 If γ(P) is not small enough, the patch is

further subdivided. This is done through splitting the triangle

T equally into four triangles Ti, 1 ≤ i ≤ 4, as illustrated

on the right in Fig. 1. Each triangle Ti induces a patch

Pi = g−1(Ti), where Ti = h(Ti) is a spherical triangle.

The Gaussian curvature γ(Pi) as the area of Ti is equal to

the solid angle Ω(Ti) subtended by Ti on S2. (The solid

angle can be evaluated from the triangle’s vertex locations

using a formula derived in [51].) We call Ti the subtending

triangle of the patch Pi.

Subdivision continues until the total Gaussian curvature

of every newly generated patch is below some threshold

δK , so the patch is deemed “flat enough”. The image of

a non-smooth object such as a cylinder or cone under the

Gauss map degenerates into one or more curves and isolated

points. Subdivision of its surface is carried out using the

spherical triangles intersected by such a curve or containing

such a point. Their total area reflects variation of the normal

proportionally.

B. Accounting for Torque Variations

Consider a patch P ′ generated during the subdivision

described above. The unit normal force n̂ applied at p ∈ P ′

yields a torque τ = f(p)
def
= p× n̂ about the origin o. The

patch P ′ is thus mapped to a patch Q = f(P ′) of torques.

Further subdivision of P ′ is needed if Q has wide variations.

Torque variations in Q is best measured via the principal

component analysis [52], which yields the tightest bounding

cuboid C for Q with its three orthogonal axes û1, û2, û3,

referred to as the principal components, indicating respec-

tively the primary, secondary, and tertiary directions along

which the torques on Q are distributed.

Let δ1, δ2, and δ3 be the variations along the three axes,

respectively. If
√

δ21 + δ22 + δ23 > δτ , for some δτ > 0, we

divide the cuboid at the centroid τ̄ of Q along the û1- and

û2-axes equally into four smaller cuboids, and subdivide the

1Only five convex Platonic solids exist: tetrahedron, cube, octahedron,
dodecahedron, and icosahedron.

2by the Gauss-Bonnet Theorem [50, pp. 260–265] which states that this
value for a compact (i.e., closed and bounded) surface equals 4π(1 − ζ),
where ζ is the genus (i.e., the number of holes).

n̂ f

P

o

Q2

P2

û1

τ oτ

p

û3

û2

(a) (b) (c)

Fig. 2. Subdivision (stage 2) based on torque variance. (a) The patch P2,
one of the four patches making up P in Fig. 1, is mapped to the torque
patch Q2 in (b) under f : p 7→ τ = p× n̂. (c) The tightest cuboid of the
torque patch is spanned by the set’s three principal axes û1, û2, û3, the
first two of which can be utilized for subdividing Q2 and P2.

torque patchQ accordingly. This induces a subdivision of the

surface patch P ′ (as illustrated in Fig. 2 on a patch generated

after the first stage of subdivision). The principal rectangle

of the torque patch f(P ′) is defined to be centered at τ̄ with

four vertices τ̄ ± δ1
2 û1 ±

δ2
2 û2. It will be used for grasp

synthesis in Section V.

The above subdivision step is repeated until the torque

variation within every newly generated patch is within some

threshold δτ . The generated patches, with small variations

in normal force direction and torque, are called elementary

patches (e-patches).

The subdivision strategy, in two stages based on surface

normal and torque, respectively, does not take into account

forces and torques generated due to friction. Grasp synthesis

and optimization leveraging e-patches in Section V will take

full account of friction, hence nothing is compromised.

C. The Case of a Non-Convex Solid

When the surface S is non-convex, it can be divided into

patches that are convex (the Gaussian curvature K > 0
and the two principal curvatures κ1, κ2 < 0 everywhere),

concave (K,κ1, κ2 > 0 everywhere), developable (K = 0
everywhere), or saddle-shaped (K < 0 everywhere). The

resulting patches are referred to as monotone patches. Each is

subjected to the two-stage subdivision described in Section II

A and B.3

III. COMPUTATION OVER A TRIANGULAR MESH

The object is input as a triangular mesh. The normal,

Gaussian curvature K , and mean curvature H at a vertex v
of the mesh are estimated using a known method (supported

by analyses) from [53].

The mesh is decomposed into regions representing mono-

tonic surface patches of the object. This is carried out in

one or more rounds of depth-first search (DFS). Each round

starts at an unvisited vertex. The search backtracks every

time the Gaussian curvature K changes its sign, whether

from ‘+’ or ‘−’ to 0, or from 0 to ‘+’ or ‘−’.4 Even though

3A point on the object’s surface can be contacted by the fingertip only if it
does not have a principal curvature greater than −κmax, where κmax < 0
is the maximum principal curvature anywhere on the (convex) fingertip. A
point violating the above condition must appear on a concave, ruled, or
saddle patch, and should be excluded from the patch.

4Numerically, we deem K as zero if its value is small enough.

a convex patch and a concave patch both satisfy K > 0,

their mesh regions will always be traversed in different DFS

rounds because K becomes zero at the their boundary, where

the current traversal ends, if the two are adjacent.

During the DFS traversal of the mesh region RM repre-

senting a monotonic patch PM , we also estimate the total

Gaussian curvature γ(PM) as follows. Consider a triangular

facet T inside RM with vertices, say, v1, v2, and v3, and

its represented patch element E on S. The total Gaussian

curvature γ(E) of E is equal to the solid angle Ω(T)
subtended by the triangle T with n̂(v1), n̂(v2), and n̂(v3)
as vertices. We have γ(PM) ≈

∑

T⊂RM
Ω(T). Because the

patch is monotonic and the triangular facets tessellate RM ,

the spherical triangles induced by them also tessellate on the

unit sphere. The evaluation thus has high accuracy.

Consider a mesh region R representing the patch P with

vertices, say, v1, v2, . . . , vk. The PCA for R is conducted

over the torques τ1, τ2, . . . , τk generated by unit normal

force at these vertices. The principal components û1, û2, û3

and variations δ1, δ2, δ3 are extracted from the matrix L =
(τ1− τ , τ2− τ , . . . , τk − τ), where τ is the centroid of the

torques.

IV. PATCH TREE

Subdivision is conducted simultaneously with the con-

struction of a patch tree Υ, in which every node N represents

a patch, denoted by PN , and its corresponding mesh region,

denoted by RN . The leaves L1, L2, . . . , Lh of Υ store

the meshes R̆1, R̆2, . . . , R̆h, called elementary regions (e-

regions), which correspond to the e-patches P̆1, P̆2, . . . , P̆h.

The root of Υ represents the object’s surface S. Every

child node M of the root represents a monotonic patch PM ,

for which a separate Platonic solid DM and a separate unit

sphere S2
M are devoted to its subdivision. The node M stores

the triangular facets of DM intersected by the normals of PM

on S2
M .5 Every child of M , at depth 2 and storing exactly

one triangular facet, is the root of a quadtree Ψ [54, pp. 307–

315] to be generated from the two-stage subdivision strategy

described in Section II.6

An internal node N of the quadtree Ψ does not store the

represented patch PN . If the node results from a normal-

based subdivision, then it stores the subtending triangle TN

of PN in its spatial location. If it results from a torque-based

subdivision, then it stores the principal rectangle BN (in the

torque space) of the torque patch f(PN). The smaller patches

generated from splitting PN are passed on to the children

of N . In the tree Ψ, only the e-patches P̆1, P̆2, . . . , P̆h are

explicitly stored — at the leaves.7 The overall storage is thus

dominated by the size n of the object’s mesh, that is, O(n).
The first stage of subdivision is represented in the tree

up to the depth b1 = log4(4π/δK), where δK is the earlier

introduced threshold on the Gaussian curvature. The effort of

5In the case of a cylinder, for example, these facets are intersected by the
unit disk bounded by the equator.

6Every further subdivision step generates up to four smaller patches.
7To facilitate grasp synthesis, every leaf also stores the innermost vertex

of its region.

...

...

...

...

...

...

...

Subdivided pebble surface M1 M2

N2N1
RN2

RN3

N ′
3

RN ′

1

R̂i+1

R̂i+2

R̂i+3

RM1
RM2

RN1

N ′
1 N ′

4

R̂i

RN ′

3
RN ′

4RN ′

2

N ′
2

N3

Υ

Fig. 3. Patch tree constructed for a pebble (with the subdivided surface
shown on the upper left). Shown next to an internal node N generated from a
normal-based subdivision is the represented patch, whose image (red) under
the Gauss map is drawn at N together with an icosahedron (on which the
patch’s representing triangle(s) TN are covered by the image). At the four
leaves as children of N ′

3
generated from a torque-based subdivision, only

their represented patches are displayed because the representing principal
rectangles are in the torque space. The threshold values are δG = π/10 on
the total Gaussian curvature and δτ = 0.008 on torque variation.

computation at every depth is O(n). Let b2 be the maximum

steps of torque-based subdivision in the second stage. The

PCA on a torque patch takes time linear in its number of

vertices. For all the nodes corresponding to the same step of

subdivision in the second stage, the total amount of effort

remains O(n). Hence, construction of the entire patch tree

is done in O(nb) time, where b = b1 + b2 is the tree height.

Fig. 3 illustrates a patch tree Υ of height 4 and with 215

leaves as constructed over the triangular mesh of a pebble

generated by a 3D scanner from Next Engine, Inc. The two

nodes at depth 1 represent monotonic mesh regionsRM1
and

RM2
. The convex region RM1

is subdivided into 20 smaller

regions at depth 2 based on the surface normal using an

icosahedron. Only three of these regions are shown due to

the limited space. The middle region RN2
is further split

into R′
N1

,R′
N2

,R′
N3

, and R′
N4

at depth 3. Based on torque

variation, one of them, say, R′
N3

, is split into four smaller

regions stored at leaves.8 The concave monotonic region

RM2
has one child, four grandchildren, and five leaves at

depth 4.

V. GRASP SYNTHESIS AND OPTIMIZATION

Consider a placement G of m fingers at the locations

p1,p2, . . . ,pm on the object’s surface. At the contact point

pi with the i-th finger, we let n̂i be the unit outward normal,

and ŝi and t̂i be two orthogonal tangent vectors. The finger

exerts the force fi inside the contact friction cone, and also a

8The principal rectangle in the torque space used in the partitioning is
not shown to avoid a mixing of two different spaces.

torque pi×fi. To compare force and torque, we will divide

the latter by the “average” radius of gyration ρ =
√

Ī/m,

where Ī is the average moment of inertia over all possible

axes of rotation on the unit sphere S2. (It can be shown that

Ī equals the average of the moments of inertia about the

three principal axes.)

A. Force Closure and Grasp Quality Evaluation

The contact map for the i-th finger,

Gi =

(

n̂i ŝi t̂i
pi × n̂i/ρ pi × ŝi/ρ pi × t̂i/ρ

)

,

generates the primitive wrench set under unit normal force:

Wi = {Gi(1, fis, fit)
T | f2

is + f2
it ≤ µ2}.

where µ is the coefficient of friction. The grasp wrench

space [56] is the convex hull of W = ∪mi=1Wi, namely,

CH(W) =

{

Gf

∣

∣

∣

∣

∣

fin ≥ 0,

m
∑

i=1

fin = 1, f2
is + f2

it ≤ µ2f2
in

}

,

where G = (G1, G2, . . . , Gm) ∈ R
6×3m is the grasp

matrix [55, pp. 218–219] and f = (f⊤
1 ,f⊤

2 , . . . ,f⊤
m)⊤. The

space includes all the wrenches that can be generated by unit

total normal force from the fingers, All the possible wrenches

generated by the grasp form a set

C = {λw | λ ≥ 0 and w ∈ CH(W)}.

The grasp G achieves force closure if the origin is in the

interior of CH(W). It is not difficult to show that force

closure is equivalent to satisfaction of two conditions: i)

rank(G) = 6 and ii) −wc ∈ C, where

wc =
1

m

m
∑

i=1

(

n̂i

pi × n̂i

)

∈ CH(W) ⊂ C.

A commonly used grasp quality [14] is the mini-

mum distance from the origin to CH(W), i.e., d(G) =
min

w∈CH(W) ‖w‖. Here, we use the algorithm from [9]

which computes the following equivalent form:

d(G) = min
u∈R6,‖u‖=1

max
w∈W

uTw. (1)

The algorithm begins with a force closure test, which checks

if W is full rank and, if so, employs a procedure from [57] to

verify that −wc is in the cone C. It then iteratively updates

a convex hull in 6D that contains the origin in the interior,

each time adding a vector from W which maximizes the dot

product with the normal of the current closest facet to the

origin. The algorithm can achieve a quality estimate less than

d(G) by any small ǫ > 0.

B. Quick Rejection of a Finger Placement

For m fingers to reach force closure under contact friction,

m > 2 is necessary. Given a total of t e-patches, a brute-force

strategy would enumerate
(

t
m

)

patch combinations (each

determining a finger placement) until a grasp is found. With

the patch tree Υ, we can prune away many combinations of

e-patches contained in one or multiple larger patches which

together are impossible to yield a grasp.

To avoid duplicates for specifying a finger placement, we

order all the nodes in Υ by the visit time during a postorder

traversal. Two nodes N1 and N2 assume N1 � N2 if either

they are the same node or N1 precedes N2 in the traversal.

For example, in Fig. 3, N1 � N ′
1 � N ′

4 � N2 � N3 �
M1 �M2.

We impose Ni � Nj for the patches PNi
and PNj

in

respective contact with the fingers Fi and Fj , i < j. An

m-tuple 〈N1, N2, . . . , Nm〉 of nodes in the patch tree Υ is

said to be a valid finger placement if N1 � N2 � · · · � Nm.

The finger placement 〈N1, N2, . . . , Nm〉 is subjected to

a quick test over the triangles TNi
or principal rectangles

BNi
, 1 ≤ i ≤ m, stored at these nodes to represent the

patches PN1
,PN2

, . . . ,PNm
. If the patches have all resulted

from normal-based subdivision (or all from torque-based

subdivision), the test fails if the triangles (or the principal

rectangles) lies on or to one side of some plane through

the origin. 9 If the patches are mixed. The same checking

is performed after replacing every patch from torque-based

subdivision with the triangle of its closest ancestor in the

patch tree generated from normal-based subdivision.

C. Search for a Grasp

We start with all the children M1,M2, . . . ,Ma, from

left to right, of the root of Υ. Enumerate, in the reverse

lexicographic order, valid m-tuples 〈Mi1 ,Mi2 , . . . ,Mim〉,
1 ≤ i1, i2, . . . , im ≤ a, with repeats of an index al-

lowed since multiple fingers can be placed on the same

patch out of PM1
,PM2

, . . . ,PMa
. Every enumerated m-tuple

〈Mi1 ,Mi2 , . . . ,Mim〉 is subjected to the quick rejection test

in Section V-B, and after passing it, pushed onto an initially

empty stack Q as (1, 〈Mi1 ,Mi2 , . . . ,Mim〉).

In every iteration, the top element (i, 〈N1, N2, . . . , Nm〉)
is popped out of the stack. The node Ni is up for expansion.

If Ni is not a leaf node, set k ← i. If it is, we search for the

first k, cyclically from i+1 to m to 1 and to i−1, such that

Nk is not a leaf node. Replace Nk in the m-tuple with each

of its children N ′ satisfying Nk−1 ≺ N ′ if Nk−1 is a leaf or

Nk−1 � N ′ otherwise. Every replacement results in a new

m-tuple α which, after passing the test in Section V-B, is

pushed onto the stack as an element ((k mod m) + 1, α) in

the reverse lexicographic order.

If no such Nk is found after k reaches i− 1, the element

has only distinct e-patches, say, P̆1, P̆2, . . . , P̆m. We perform

the force closure test on the innermost vertices of the

corresponding mesh regions R̆1, R̆2, . . . , R̆m. This finger

placement, after passing the force closure test, is checked for

kinematic feasibility to ensure that these innermost vertices

can be simultaneously reached by the fingers of the robotic

hand. This is an inverse kinematics problem solvable using,

say, the Levenberg-Marquardt method [58].

9It suffices to check their vertices. The situation happens if and only if
there exists two vertices whose cross product has dot products with the
remaining vertices that have the same sign or are equal to zero.

(a)

Bottle Screwdriver Handle Mug Cup

δG π/25 π/5 π/5 π/5

δτ 0.015 0.01 0.01 0.01

Height of Υ 8 6 6 7

Leaves (t) 329 172 250 157

(b)

Fig. 4. (a) Subdivided surfaces of a bottle, screwdriver handle, mug, and
cup. (b) Thresholds used by and statistics of the generated patch trees.

D. Grasp Optimization

Grasp synthesis may stop as soon as the kinematic fea-

sibility test is passed. To find the optimal grasp under (1),

we continue until the stack Q becomes empty. The grasp G0
with the highest score d(G0) is selected.

Improvements over G0 can be done by locally moving

the fingers F1,F2, . . . ,Fm within their respectively elemen-

tary regions. The optimization proceeds in multiple rounds.

Within each round, it randomly orders the fingers and adjust

their positions one by one. A finger under adjustment is

relocated to a neighboring vertex within the same elementary

region for the most grasp quality increase. No action is taken

if such a neighboring vertex does not exist. The algorithm

terminates after a round in which no finger gets repositioned.

The grasp G∗ with the fingers placed at their final locations

v∗1 , v
∗
2 , . . . , v

∗
m is returned.

VI. SIMULATION AND EXPERIMENT

Fig. 4(a) shows the subdivided surfaces generated on the

mesh models of a bottle, screwdriver handle, mug, and coffee

cup. The first and third models are drawn from the datasets

provided by the Dexterity Network [59], while the second

and fourth ones were scanned. All objects are non-convex

with holes in the last three. Part (b) of the figure lists the

control parameter values used in the constructions as well as

some statistics about the resulting patch trees.

The grasp optimization algorithm is simulated for three

fingers on a second pebble (different than the one in Fig. 3),

a potato, a mouse, and the mug in Fig. 4. As shown in

Fig. 5(a), the algorithm has pruned away 80−90% of triples

of e-patches. Grasp executions with the Shadow Hand are

simulated using the MuJoCo physics engine [60]. To test the

robustness, the normal finger contact forces are initialized

to counter the gravity of the object only. As the adversary

force in one direction increases, impedance control adjusts

the finger forces accordingly. The maximum force magnitude

just before a contact slip is recorded for the direction. Part

Pebble Potato Mouse Cup

Triples evaluated 14.21% 10.24% 21.06% 18.41%

d(G0) 0.2720 0.3267 0.2302 0.2130

d(G∗) 0.3127 0.3556 0.2476 0.2354

(a)

(b)

x (N
)

y (N)

z (N)

x (N
)

y (N)

z (N)

x (N
)

y (N)

z (N)

(c)

Fig. 5. (a) Qualities of optimal three-fingered grasps (µ = 0.5 uniformly).
(b) Grasps on the first three objects with qualities 0.199, 0.2024, 0.195,
respectively, as executed by the Shadow Hand. (c) Polytopes of maximum
resistible forces by these grasps under impedance control with the normal
contact force initialized to balance gravity.

(c) of the figure plots a polytope that approximates maximum

resistible forces in all directions for each of the first three

objects.

The grasping algorithm was tested with a Shadow Dexter-

ous Hand driven by a 4-DOF WAM Arm on the same potato,

mouse, and cup used in the simulation. Each object is placed

manually into the hand in a configuration computed from the

grasp under test via inverse kinematics. The contact forces

were estimated from the hand’s strain gauge readings using

a procedure from our previous work [61]. Slight position

adjustments were made on the fingertips such that the sums

of normal contact forces were kept at 3 N for all tested

grasps.

The WAM Arm shook the grasped object of mass m along

the y- and z-axes.10 The acceleration a during a shaking

action yielded the inertial force −ma that was identified

with disturbance. The acceleration value was calculated from

differentiating the velocity of the WAM Arm’s open end. On

each of the potato, mouse, and cup, the optimal grasp and

an “ordinary” grasp (arbitrarily picked) were tested.

Fig. 6 displays all six grasps. The potato in the ordinary

grasp was dropped during the shakes along the y- and z-

axes (pointing rightward and upward, respectively) at the

arm’s accelerations −3.0721 m/s2 and −1.0863.3 m/s2 (see

Fig. 6(e)), respectively. It was held firmly in the optimal

grasp at the extreme accelerations 3.2369 m/s2 and −4.3491
m/s2 along the y-axis, and 2.7841 m/s2 and −4.7740 m/s2

along the z-axis. The mouse in the ordinary grasp was

10The WAM Arm’s payload, though increased from the specified 4 kg
after removal of its forearm, slightly exceeded the hand weight of 4.3 kg. As
a result, only small accelerations could be generated. Shaking along the x-
axis would demand joint torques approaching their limits, causing the Arm
to vibrate constantly and its acceleration estimate not to be trustworthy.

z

y x

z z

y x

z

x

z

(a) (b) (c) (d) (e)

z

y x

z z

y x

z

x

z

(f) (g) (h) (i) (j)

z

y

z

x

z

y

z

x x

z

(k) (l) (m) (n) (o)

Fig. 6. Grasp tests. Optimal grasps, with qualities 0.3556, 0.2476, and
0.2354, respectively, on (a–b) the potato and (f–g) the mouse from Fig. 5(b),
and (k–l) the cup from Fig. 4(a). Arbitrarily chosen grasps (c–e), (h–j), and
(m–o) on them with qualities 0.1030, 0.0300, and 0.0467, respectively.

dropped along the same two axes at accelerations −3.1268
m/s2 and 2.7251 m/s2 (see Fig. 6(j)), respectively, while

no drop happened from the optimal grasp at the extreme

accelerations 2.3406 m/s2 and −2.9784 m/s2 along the y-

axis, and 2.9042 m/s2 and −5.4973 m/s2 along the z-axis.

The cup was dropped in the ordinary grasp along the z-axis at

acceleration −1.3676 m/s2 (see Fig. 6(o)) but held firmly at

the extreme accelerations 2.7364 m/s2 and −3.8293 m/s2

along the z-axis, and at 3.0503 m/s2 and −3.8418 m/s2

along the y-axis.

VII. DISCUSSION AND FUTURE WORK

The main contribution of this paper is introduction of the

patch tree structure and algorithms operating on it to facilitate

grasp analysis and synthesis. Simulation and experiment

demonstrate the soundness of grasps on real objects obtained

using an existing quality measure. The work does not develop

a new grasp metric or a control strategy for grasp realization.

The patch tree does not just have a one-time usage for

grasp synthesis. The full potential of its induced hierarchical

partitioning, as we believe, will be in planning efficient

finger gaits to form a grasp [61], [62], achieve it, and

even to manipulate the object, especially when it is a tool.

This planning will be at the top level, in conjunction with

dynamics-based trajectory planning for gaits at the middle

level and control-based execution at the bottom level.

The thresholds δG and δτ for e-patches are currently hand-

tuned. We will look into automatic value setting from bal-

ancing the tree height, range of wrench variation, and grasp

quality. Subdivision of a non-convex solid needs further

investigation to exclude patches such as pockets that are

impossible to reach.

VIII. ACKNOWLEDGMENT

We would like to thank Amazon Robotics AI for its do-

nation of the Shadow Dexterous Hand used in this research,

and the anonymous reviewers for their valuable feedback.

REFERENCES

[1] K. B. Shimoga. Robot grasp synthesis algorithms: a survey.
Int. J. Robot. Res., vol. 15, no. 3, pp. 230–266, 1996.

[2] A. Bicchi and V. Kumar. Robotic grasping and contact: A review. In
Proc. IEEE Int. Conf. Robot. Automat., 2000, pp. 348–353.

[3] A. Bicchi. Hands for dexterous manipulation and robust grasping: a
difficult road toward simplicity. IEEE Trans. Robot. Automat., vol. 16,
no. 6, pp. 652–662, 2000.

[4] A. M. Okamura, N. Smaby, and M. R. Cutkosky. An overview of
dexterous manipulation. In Proc. IEEE Int. Conf. Robot. Automat.,
2000, pp. 255–262.

[5] J. C. Trinkle. A quantitative test for form closure grasps. In Proc. IEEE

Int. Conf. Robot. Automat., 1992, pp. 1670–1677.

[6] Y.-H. Liu. Qualitative test and force optimization of 3-D fric-
tional form-closure grasps using linear programming. IEEE

Trans. Robot. Automat., vol. 15, no. 1, pp. 163–173, 1999.

[7] B. Mishra. Grasp metrics: optimality and complexity. In Ken Gold-
berg et al., ed., Algorithmic Foundations of Robotics, pp. 137–165.
A. K. Peters, Boston, MA, 1995.

[8] M. A. Roa and R. Suárez. Grasp quality measures: review and
performance. Autonomous Robots, vol. 38, no. 1, pp. 65–88, 2015.

[9] Y. Zheng. An efficient algorithm for a grasp quality measure. IEEE

Trans. Robot., vol. 29, no. 2, pp. 579–585, 2013.

[10] S. P. Boyd and B. Wegbreit. Fast computation of optimal contact
forces. IEEE Trans. Robot., vol. 23, no. 6, pp. 1117–1132, 2007.

[11] V.-D. Nguyen. Constructing force-closure grasps. Int. J. Robot. Res.,
vol. 7, no. 3, pp. 3–16, 1988.

[12] X. Markenscoff and C. H. Papadimitriou. Optimum grip of a polygon.
Int. J.Robot. Res., vol. 8, no. 2, pp. 17–29, 1989.

[13] Y. C. Park and G. P. Starr. Grasp synthesis of polygonal objects using
a three-fingered robot hand. Int. J.Robot. Res., vol. 11, no. 3, no. 163–
184, 1992.

[14] C. Ferrari and J. Canny. Planning optimal grasps. In Proc. IEEE

Int. Conf. Robot. Automat., 1992, pp. 2290–2295.

[15] J. Ponce, S. Sullivan, J.-D. Boissonnat, and J.-P. Merlet. On charac-
terizing and computing three- and four-finger force-closure grasps of
polyhedral objects. In Proc. IEEE Int. Conf. Robot. Automat., 1993,
pp. 821–827.

[16] J. Ponce, S. Sullivan, A. Sudsang, J. Boissonnat, and J. P. Merlet.
On computing four-finger equilibrium and force-closure grasps of
polyhedral objects. Int. J. Robot. Res., vol. 16, no. 1, pp. 11–35,
1997.

[17] J. Ponce, D. Stam, and B. Faverjon. On computing two-finger force-
closure grasps of curved 2D objects. Int. J. Robot. Res., vol. 12, no. 3,
pp. 263–273, 1993.

[18] I-M. Chen and J. W. Burdick. Finding antipodal point grasps on
irregularly shaped objects. In Proc. IEEE Int. Conf. Robot. Automat.,
1992, pp. 2278–2283.

[19] E. Rimon and A. Blake. Caging planar bodies by one-parameter two-
fingered gripping systems. Int. J. Robot. Res., vol. 18, no. 299–318,
1999.

[20] Y.-B. Jia. Computation on parametric curves with application in
grasping. Int. J. Robot. Res., vol. 23, no. 7–8, pp. 825–855, 2004.

[21] A. Rodriguez and M. T. Mason. Grasp invariance. Int. J. Robot. Res.,
vol. 31, no. 2, pp. 236–248, 2012.

[22] D. Ding, Y.-H. Liu, and M. Y. Wang. On computing immobilizing
grasps of 3-D curved objects. In Proc. IEEE Int. Symp. Comput. In-

tell. Automat., 2001, pp. 11–16.

[23] C. Cai and B. Roth. On the spatial motion of a rigid body with point
contact. In Proc. IEEE Int. Conf. Robot. Automat., 1987, pp. 686–695.

[24] D. J. Montana. The kinematics of contact and grasp. Int. J. Robot. Res.,
vol. 7, no. 3, pp. 17–32, 1988.

[25] Z. Li and J. Canny. Motion of two rigid bodies with rolling constraint.
IEEE Trans. Robot. Automat., vol. 6, no. 1, pp. 62–72, 1990.

[26] A. A. Cole, P. Hsu, and S. Sastry. Kinematics and control of
multifingered hands with rolling contact. IEEE Trans. Autom. Control,
vol. 34, no. 4, pp. 398–404, 1989.

[27] N. Sarkar, X. Yun, and V. Kumar. Dynamic control of a 3-D rolling
contacts in two-arm manipulation. IEEE Trans. Robot. Automat.,
vol. 13, no. 3, pp. 364–376, November 1997.

[28] Y. Fan and M. Tomizuka. Efficient grasp planning and execution
with multifingered hands by surface fitting. IEEE Robot. Auto. Lett.,
4(4):3995–4002, 2019.

[29] M. Kiatos, S. Malassiotis, and I. Sarantopoulos. A geometric ap-
proach for grasping unknown objects with multifingered hands. IEEE

Trans. Robot., vol. 37, no. 3, pp. 735–746, 2021.

[30] M. Adjigble, N. Marturi, V. Ortenzi, V. Rajasekaran, P. Corke, and
R. Stolkin. Model-free and learning-free grasping by local contact
moment matching. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Sys.,
2018, pp. 2933–2940.

[31] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic grasping of novel
objects using vision. Int. J. Robot. Res., vol. 27, no. 2, pp. 157–173,
2008.

[32] B. Calli, M. Wisse, and P. Jonker. Grasping of unknown objects
via curvature maximization using active vision. In Proc. IEEE/RSJ

Int. Conf. Intell. Robots Sys., 2011, pp. 995–1001.

[33] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp
synthesis—a survey. IEEE Trans. Robot., vol. 30, no. 2, pp. 289–309,
2014.

[34] R. Newbsbury, M. Gu, L. Chumbley, A. Mousavian, C. E. J. Leitner,
J. Bohg, A. Morales, T. Asfour, D. Kragic, D. Fox, and A. Cosgun.
Deep learning approaches to grasp synthesis: A review. IEEE

Trans. Robot., vol. 39, no. 5, pp. 3994–4015, 2023.

[35] C. Goldfeder and P. K. Allen. Data-driven grasping. Autonomous
Robots, vol. 31, pp. 1–20, 2011.

[36] J. Mahler, F. T. Pokomy, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg. Dex-Net 1.0: A
cloud-based network of 3D objects for robust grasp planning using a
a multi-armed bandit model with correlated rewards. In Proc. IEEE

Int. Conf. Robot. Automat., 2016, pp. 1957–1964.

[37] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg. Dex-Net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics. In Robot.:
Sci. Syst., 2017.

[38] R. Paolini, A. Rodriguez, S. S. Srinivasa, and M. T. Mason.
A data-driven statistical framework for post-grasp manipulation.
Int. J. Robot. Res., vol. 33, no. 4, pp. 600–615, 2014.

[39] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg. Dex-
Net 3.0: Computing robust vacuum suction grasp targets in point
clouds uing a new analytic model and deep learning. In Proc. IEEE

Int. Conf. Robot. Automat., 2018, pp. 5620–5627.

[40] M. T. Ciocarlie and P. K. Allen. Hand posture subspaces for deterous
robotic grasping. Int. J. Robot. Res., vol. 28, no. 7, pp. 851–867, 2009.

[41] K. Hang, F. T. Pokorny, and D. Kragic. Friction coefficients and grasp
synthesis. In IEEE/RSJ Int. Conf. Intell. Robots Sys., 2013, pp. 3520–
3526.

[42] G. Kahn, P. Sujan, S. Patil, S. Bopardikar, J. Ryde, K. Goldberg,
and P. Abbeel. Active exploration using trajectory optimization
for robotic grasping in the presence of occlusions. In Proc. IEEE

Int. Conf. Robot. Automat., 2015, pp. 4783–4790.

[43] J. Weisz and P. K. Allen. Pose error robust grasping from contact
wrench space metrics. In Proc. IEEE Int. Conf. Robot. Automat.,
2012, pp. 557–562.

[44] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard.
Physically based grasp quality evaluation under pose uncertainty. IEEE

Trans. Robot., vol. 29, no. 6, pp. 1424–1439, 2013.

[45] F. Bottarel, G. Vezzani, U. Pattacini, and L. Natale. GRASPA 1.0:
GRASPA is a robot arm grasping performance benchmark. IEEE
Robot. Auto. Lett., vol. 5, no. 2, pp. 836–843, 2020.

[46] Y. Bekiroglu, N. Marturi, M. A. Roa, K. Jean Maxime Ad-
jigble, T. Pardi, C. Grimm, R. Balasubramanian, K. Hang, and
R. Stolkin. Benchmarking protocol for grasp planning algorithms.
IEEE Robot. Auto. Lett., vol. 5, no. 2, pp. 315–322, 2020.

[47] B. Denoun, M. Hansard, B. León, and L. Jamoone. Statistical
stratification and benchmarking of robotic grasping performance. IEEE

Trans. Robot., vol. 39, no. 6, pp. 4539–4551, 2023.

[48] K. Hang, M. Li, J. A. Stork, Y. Bekiroglu, F. T. Pokorny, A. Billard,
and D. Kragic. Hierarchical fingertip space: A unified framework
for grasp planning and in-hand grasp adaption. IEEE Trans. Robot.,
vol. 32, no. 4, pp. 960–972, 2016.

[49] A. Palleschi, F. Angelini, C. Gllieri, D. W. Park, L. Pallottino,
A. Bicchi, and M. Garabini. Grasp It Like a Pro 2.0: A data-
driven approach exploiting basic shape decomposition and human data
for grasping unknown objects. IEEE Trans. Robot., vol. 39, no. 5,
pp. 4016–4036, 2023.

[50] A. Pressley. Elementary Differential Geometry. Springer-Verlag, 2001.

[51] A. Van Oosterom and J. Strackee. The solid angle of a plane triangle.
IEEE Trans. Biomed. Eng., vol. BME-30, no. 2, pp. 125–126, 1983.

[52] I. T. Jolliffe. Principal Component Analysis. Springer, 2 ed., 2002.
[53] M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. Discrete

differential-geometry operators for triangulated 2-manifolds. In Vi-

sualization and Mathematics III, 2002, pp. 35–57,
[54] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Compu-

tational Geometry. Springer-Verlag, 3 ed., 2008.
[55] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction

to Robotic Manipulation. CRC Press, Boca Raton, FL, 1994.
[56] N. Pollard. Synthesizing grasps from generalized prototypes. In

Proc. IEEE Int. Conf. Robot. Automat., 1996, pp. 2124–2130.
[57] Y. Zheng and C.-M. Chew. Distance between a point and a convex

cone in n-dimensional space: Computation and applications. IEEE
Trans. Robot., vol. 25, no. 16, pp. 1397–1412, 2009.

[58] T. Sugihara. Solvability-unconcerned inverse kinematics by the
Levenberg-Marquardt method. IEEE Trans. Robot., vol. 27, no. 5,
pp. 984–991, 2011.

[59] Berkeley AUTOLab. Dex-net. https://berkeleyautomation.
github.io/dex-net/.

[60] E. Todorov. Convex and analytically-invertible dynamics with contacts
and constraints: Theory and implementation in Mujoco. In IEEE

Int. Conf. Robot. Autom., 2014, pp. 6054-–6061.
[61] Y. Xue, L. Tang, and Y.-B. Jia. Dynamic finger gaits via pivoting and

adapting contact forces. In Proc. IEEE/RSJ Int. Conf. Intell. Robots

Sys., 2023, pp. 8784–8791.
[62] L. Tang, Y.-B. Jia, and Y. Xue. Robotic manipulation of hand tools:

The case of screwdriving. In Proc. IEEE Int. Conf. Robot. Automat.,
2024, pp. 13883–13890.

