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Abstract

Industrialassemblyinvolvessensingthe pose(orientation
andposition)of a part. Efficientandreliablesensingstrate-
gies can be developedfor an assemblytask if the shape
of the partis known in adwance. In this paperwe investi-
gatetheproblemof determiningheposeof acornvex n-gon
from asetof m supportingconesj.e.,coneswith bothsides
supportingthe polygon. An algorithmwith runningtime
O(nm) whichalmostalwaysreducego O(n + mlogn) is
presentedo solve for all possibleposesf thepolygon. As
a consequencehe polygoninscription problemof finding
all possibleposedfor a corvex n-goninscribedin another
convex m-gon, canbe solved within the sameasymptotic
time bound. We prove thatthe numberof possibleposes
cannotexceed6n, givenm > 2 supportingconeswith dis-
tinctvertices.Experimentslemonstratéhattwo suppating
conesaresufiicientto determineahereal poseof then-gon
in mostcases.

Ourresultsimply thatsensingn practicecanbe carried
outby obtainingviewing anglesof aplanarpartatmultiple
exterior sitesin the plane. As a conclusionwe generalize
thisandothersensingnethodsnto aschem@&amedsensing
byinscription.

1 Intr oduction

In this paperwe will studythe problemof detectingthe
posej.e.,theorientationandposition,of aconvex polygon
in the planeby taking views of the polygonfrom multiple
exterior sites. The shapeof the polygonis assumedo
be knownin advance,but the poseof the polygoncanbe
arbitrary Eachview resultsin a coneformedby the two
outermosbccludingraysstarthgfromtheviewing site;that

*Supportfor this researchwas providedin part by CarnegieMel-
lon University, andin part by the National ScienceFoundatiornthrough
thefollowing grants: NSF Researchnitiation Award IRI-9010686,NSF
Presidential¥oungInvestigatormwardIRI-9157643,andNSF GrantIRI-
9213993.

conecorverselyimposesa constrainibnthe possibleposes
of thepolygon—ithasto becontainedn theconeandmake
contactith bothits sides.A containmenlike thisin which
every edgeof the containingobjecttoucheshe contained
objectis called an inscription, so we shall say that the
polygonisinscribedin thecone. Suchconstraintsmposed
by individual views togetherallow only a small number
of possibleposesof the polygon, which often reducego
one. For example,Figurel illustratestwo views takenof
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Figure 1: Sensingheposeof a polygonby takingtwo views.

a corvex 6-gon P in someunknonvn posefrom siteso;
ando; respectiely: Thetwo conesC; andC> thusformed
determinethe real poseof P, andthis posecanbe solved
usingthealgorithmpresentedaterin Subsectior?.4.

The abore sensingapproachappeardo be simple, but
to makeit efficient and to minimize the cost of sensing
hardwarewe would like to have asfew views takenas
possible. This leadsusto the main questionof this paper:
How mary views aresufficientin the generatasein order
to determinehe poseof a corvex n-gon?

11t shouldbenotedthatthereexistcasesn which theposeof a corvex
n-goncannobeuniquelydeterminedcho matterhow manyviewsaretaken.
This happen®nly if the polygonpreserveself-congruencevercertain
rotations. (It is nothardto seethatin sucha casethe rotationanglemust
beamultiple of 2% , wherek is apositveintegersuchthatk|n.) However,

all congruenposesareusuallyconsiderecsthesamen realapplications.



The answerto the above questionis two, andto argue
thisanswemwe will gothroughseveral stepseachof which
occupiesa separatesection: Section2 describeshow to
computethe set of possibleposesfor a convex polygon
inscribedin multiple cones,and derives an upperbound
on the numberof possibleposesfor two-coneinscription
in particular; Section3 empirically demonstrateshat, in
spite of the upperbound, two coneshave turned out to
be suflicient in mostcasego uniquelydeterminethe pose
of an inscribedpolygon; Section4 further discusseghe
extensionsof this methodand proposesa generalsensing
scheme—sensirlgy inscription.

1.1 RelatedWork

Canry andGoldbeg [4] have introduceda Reducedntri-

cay in Sensingand Control (RISC) paradigmthat aims
at improving the accuray, speedand robustnesof sens-
ing by couplingsimpleandspecializechardwarewith fast,
task-orientedjeometricalgorithms.

The cross-beansensingnethoddevelopedin [15] finds
the orientationof a polygon(or polyhedron)y measuring
its diametersalongthreedifferentdirectionsand compar
ing themeasuremenisith theprecomputediameterfunc-
tion[9]; thenit solvesavertex-line correspondengaroblem
for the positionof the polygonby leastsquareditting. This
methodessentiallydetermineghe poseby inscribing the
polygonin ahexagonconstructedrom the sensorydata.

For the specialcasethat the posesare finite, [14] pre-
sentedanefficientmethodof placingaregistrationmarkon
theobjectsothattheposecanberecognizedy locatingthe
mark position (with a simple vision system). For robust-
nessto sensoliimperfectionsthe markedpoint maximizes
the distancebetweenthe nearestpair amongits possible
locations.

Model-basedecognitionandlocalizatiorcanoftenbere-
gardedasaconstaint satisfactiorproblemwhich searches
for a consistenmatchingbetweensensorydata(2-D) and
model(s)3-D) basebnthegeometricconstraintdetween
them. (See[10].) A variety of polygonshapedescriptors
[1], [12] have beenanalyzedtheoreticallyand/ordemon-
stratedexperimentallyto be efficient and robustto uncer
tainties.

Geometrialgorithmsor sensinginknovn posesaswell
asunknavnshapesavealsobeerstudied. ColeandYap[6]
consideredfinger” probinga corvex n-gon (n unknawn)
alongdirectedlines, and gave a procedureguaranteedo
determinghe n-gonwith 3n probes. This work waslater
extendedn [7] whichinvestigateshe compleities of vari-
ousmodelsfor probingcorvex polytopesn d-dimensional
Euclideanspace.

The polygon containmentproblem, that is, deciding
whetheran n-gon P canfit into anm-gon ) undertrans-

lations and/or rotations, has beenstudiedby variousre-
searchersn computationalgeometry (See[2], [3], [5],
[8].) In the casewhere( is cornvex, the bestknown al-
gorithmrunsin time O(m?n) whenboth translationsand
rotationsareallowed[5]. Herewe will dealwith a special
caseof containmenin which eachedgeof ¢) musttouch
P; this constrainttauses reductionof therunningtime to
O(mn), or O(n + mlogn) in practicalsituations.

2 Multi-Cone Inscription

To simplify the presentationlet us agree throughoutthis
sectionthat all anglestake valuesin the half-openinter-
val [0, 27). In accordancevith thisagreementntervalsfor
anglevaluesvhosdeft endpointaregreatethanrightend-
pointsare allowed; for example,aninterval [«, 5], where
0 < 8 < a < 2, is understoodas the interval union
[, 2m) U[O, 5].

2.1 Sliding a Triangle in a Cone

We first deal with the caseof a triangle in a cone, not
only becausét is the simplestbut alsobecausé¢he caseof
a polygon, aswe will seelater, can be decomposednto
subcasesf triangles. Let Apgp1p, bea triangleinscribed
in an upright cone C' with angle ¢ andvertex o, where
0 < ¢ < , makingcontactswith both sidesof theconeat
verticesp, andp, respectrely. Whatis thelocusof vertex
po asedgep1p, slidesagainsthetwo sidesof thecone?
Two differentsituationscanoccurwith this inscription:
(a) po is outsideApiop,, and(b) po is inside (only when
Lpipop2 > ¢). (SeeFigure2.) Assumethat Apgpip, may

(@) (b)

Figure 2: A triangleslidingin a cone. Verticesp; andp, move
alongthetwo sidesof coneC. Thelocusof po is anelliptic curve
(possiblydegeneratingnto a line segment)parameterizetdy the
angley betweerdirectededgepz_p)l andthe z axis. Therearetwo
differentcases:(a) po is above edgepipz; (b) po is below edge
pip2.

degenerateénto ary oneof its edge<ut nota point; writing



a = Zpopzp1, B = Zpopipz, r = |pop2| ands = |pipa|,
this degenerag is takeninto accounty thefollowing con-

straints:

r >0, ifs=0
O0<a,f<m s>0, and ora > 0;
0<r <s, otherwise.

Let ussetup a coordinatesystemwith the origin at o and
the y axis bisectingangle¢, asshovn in Figure2. Then
the orientationof Apgp1p, canbe denotedby the angley
betweenvectorp,p; andthez axis. Notetherangeof valid
~ valuesis a closedinterval. For ary valid v, thereexists
a unigueposeof the trianglein coneC; this allows usto
parameterizénelocus(z, y) of pg by 4.

As edgep1p; slidesin the cone,pq tracesout anelliptic
curve C with implicit equation

ax® £ bry + cy® = d,

where

) Siﬂ(%?a) 52 )
a = r —rs 5 ’
S|n§ Z—ZCOS¢

b= (2r cosa — s)s

o sing ’
,  coffFa) 2
C = r —rs ’
cos% 2+ 2cos¢

d = (r(r—s%n:;a)))z.

Herethenotation'+’ means+’ in casga)and'—’' in case
(b) andthe notation* ¥ meangust the opposite. Further
more,if the orientatiorny changesnonotonicallywithin its
range pp movesmonotonicallyalongC exceptwhenC de-
generatesto aline segment? If thatdegenerag happens,
po maycrossthe samepointtwice.

2.2 One-Conelnscription

Now considetthe casethatacorvex n-gon P with vertices
Po, P1, - - -, Pn—1 in counterclockwiserderis inscribedin a
coneC'. Letuschoosehe samecoordinatesystemasused
in the previous subsectionThenthe poseof P is uniquely
determinedy thelocationof someverte, saypog, andthe
anglef betweenthe z axis and somedirectededge,say
popi. Clearlyary orientationd givesriseto a uniquepose
of P; sowe cancomputethe locusof py asa function of

6 over [0, 27). Let p; andp, bethetwo verticescurrently
incidenton the left andright sidesof coneC' respecirely.

(SeeFigure3.) Aslongasp; andp, remainincidenton

2Fromthecurveequationthereadeshouldhavenodifficulty verifying
thatC becomes segmenbnaline throughthe conevertexo whenr = 0

orL — sin(¢Fa
s sing °

Figure 3: A cornvex polygon P rotatingin a cone. The poseof
P is denotedby thepositionof vertex po andtheangled between
directecbdgep@’l andthez axis. Thespaceof orientationg0, 2r)
is partitionedinto closedintenals, eachdefininganelliptic curve
thatdescribeshe correspondindpcusof po.

thesawo sidesrespecitiely, theproblemreducesothecase
of Apopip. slidingin coneC' exceptthatthelocusof pg (an
elliptic curve) now needgo beparameterizetly 4, instead
of v whichwe hadusedbefore.

More obserationsshaw thatthe entirerange[0, 27) of
orientationsanbepartitionednto asequencef closedn-
tervals,within eachof whichtheverticesp; andp, incident
onconeC areinvariant.

We presenta lineartime algorithm that computesthe
above orientationintervals as well as the corresponding
elliptic curves describingthe locus of pp. The algorithm
rotatesthe polygoncounterclockwisén the cone,generat-
ing a new interval whene&er one (or both) of the incident
verticesp; andp, changesthenew incidentvertex (or ver
tices)is determinedy a comparisorbetweerangle¢ and
theangleintersectedy thetwo raysp;—1p; andp,p,—1.

Let [fmin, fmayd denotethe currentinterval, and let ¢;
denotethe interior angle Zp;_1p;pi41 for 0 < i < n —
1. (For corvenience arithmeticoperationgperformedon
the subscriptsof verticesor internal anglesare regarded
asfollowed by a ‘modn’ operation;for example,p_1 is
identifiedwith p,, _1 andp,, with pg.) In thealgorithm,®e
and gy keeptrack of the anglebetweerp;pi+1 andpopi

andtheanglebetweerp,pHi andpopi respectiely. The
algorithmproceedsasfollows:

Algorithm 1

Stepl Startat the posesuchthat edgepopi aligns with
the right sideof C'. Locatethe vertex p; in contact
with theleft sideof C'. Set®er + 37,1 (T — ¢;),

Pright + 0, 0min = — 4,1 + 4, andr + 0.

Step2 Thecurrentorientationinterval hasits left endpoint



at fmin. Outputthe elliptic curve (now parameterized
by 6) resultingfrom sliding edgep; p, in coneC.

Next determinethe right endpointfmax of the current
interval. Let ¢ betheangleintersectedy raysp;_1p;
andp, pr_1; sety < nil if they donotintersect.There
arethreedifferentcases:

Casel ¢ < ¢ or = nil. [Advancep, clockwiseto
the next vertex.] Set®right + Pright + ™ — @,
gmax — q)r|ght+ % — %, andr — r— 1.

Case2 ¢ > ¢. [Advancep;.] SetPje ¢ Piest + 7 —
@1, Omax — Prert + 32 + $,andl « 1 — 1.

Case3 ¢ = ¢. [Advancebothp; andp,.] Set®es <
Diett + 7™ — w1, Pright < Prignt + T — ©r s Omax
Prere + 3 + 4,1« 1 — 1,andr « r — 1.

Outputthe currentinterval [Omin, Omax]- Se€tfmin <
Omax andrepeatStep2 until » changegrom 1 to 0.

Thenumberof intervalsproducedy theabore algorithm
cannotexceed?2n, becausesachloop of Step2 adwances
eitherp, to p._1, or p; to p;_1, or bothto p,_; andp,_1
respectiely, and becausehereare 2n verticesin total (n
eachfor p; andp, ) to advancebeforereturningto theinitial
incidentverticespg andp;.

We caneasilyapplythe abore algorithmfor the general
casein whichthe vertex of coneC' is atanarbitrarypoint
(z0, yo) andthe axis of the coneforms an anglefy with
the y axis. Eachgeneratedntenal [«, 5] nhow needsto
beright shiftedto [« + 6o, 3 + 0], andthe corresponding
locus of pg can be representeds (a, cost + b, siné +
xo, ay COSf + by Siné + yo), wherea,, b, ay andb, are
constantsleterminedy 6o, ¢ andApep;p-. (Theequations
for theseconstantaregivenin [11].)

2.3 Upper Bounds

The precedingsubsectiortells us that the setof possible
posesfor a corvex polygoninscribedin one conecanbe
describedyy a continuousandpiecavise elliptic curve de-
finedover orientationspace0, 2r). We call this curve the
locuscurvefor theinscription. This subsectiorwill shav

thatonly finite possibleposesexist for a cornvex n-gon P

inscribedin two conessolong asthe verticesof the cones
donotcoincide.An upperoundonthenumberof possible
posesanbeobtainedstraightforwardby intersectingwo

locuscunes,eachresultingfrom theinscriptionof P in one
cone.

Claim 1 Thee exist no mote than 8n possibleposesfor
a convex n-gon P inscribedin two conesC; and C, with
distinctvertices.

Proof. Let po, ..., pn_1 betheverticesof P in coun-
terclockwiseorder;thenaposeof P canberepresentetly
the locationof pg aswell asthe angled betweendirected
edgepop; andthe z axis. Let C1(#) andC(0) bethetwo
locuscurves,for the inscriptionsof P in conesC; andC>»
respectrely. We only needto shav thatC; andC,; meetat
most8n times,thatis, they passghroughcommonpointsat
no morethan8n valuesof 6.

It is known thateach(; consistsof at most2n elliptic
cunes definedover a sequencef intervals that partition
[0, 2). Intersectinghesetwo sequencesf intervalsgives
apartitionthatconsistof atmost4n intervals. Within each
interval thepossibleorientationghencehepossibleposes)
of P canbefoundby computingwherethe corresponding
pair of elliptic curvesmeet. Accordingto the lastsubsec-
tion, this pairof curvesmaybewrittenin theparameterized
forms

(@iz COSO + b SING + 25, a;y, COSH + by SING + y;),

for i = 1,2. Here (z;,y;) is the vertex of cone Cj,
and a;z, biz, a;y, by are constantsdeterminedoy P and
C;. Using the condition (z1,y1) # (z2,¥y2), we sup-
posexz; # 2 without loss of generality and let A =
V(a1 — az;)2 + (b1z — b2y )2. Thenit is nothardto shav
thatthesetwo curvesdo not meetif |z; — 22| > A. Other
wisethey maymeetonly at

0=03—-a« and f=m—pF—aq,

wherea = atar{ &e3%e  be2bec) gndg=sin~1&28, 0O

The upperbound8r is not tight: A lower one canbe
obtainedeven without using two conesto constrainthe
polygon. Notice in the proof above thatthe boundcame
from a partition of orientationspace[0, 2r) into up to 4n
intervals which combinedthe individual poseconstraints
imposedby the two cones. Thereforean improvementon
that boundmustrequirea differentpartitioningof [0, 2r).
To seethis, we regardeachconeastheintersectiorof two
half-planesand decomposets constrainton the polygon
into two constraintsntroducedby the half-planesndepen-
dently.

A polygonP is saidto beembeddeah ahalf-planeh if P
iscontainedn h andsupportedbyitsbourding line. ThusP
isinscribedin aconeif andonlyif it isembeddedh thetwo
half-planesdefiningthe coneby intersection. Two cones
with distinct verticestogetherprovide threeor four half-
planes.of which no threehave concurent boundinglines,
i.e.,boundindinesthatpasghroughacommorpoint. Such
threehalf-planesare indeedenoughto boundthe number
of possibleposesof P within 6n.

Theorem 1 Theke existnomote than6n possibleposedor
a corvex n-gon P embeddeth threehalf-planeswith non-



concurent boundinglines; furthermoe, this upperbound
is tight.

Proof. Let l;, [ andl3 be the boundinglines of the
threehalf planesrespectrely. We canassumehat these
linesarenot all parallel;otherwiseit is easyto seethatno

feasibleposefor P exists. Sosupposéd; and!, intersect;
their correspondindhalf-planesform a conein which P

is inscribed. Let the orientationof P be representedby

the angle § betweenthe 2 axis and somedirectededge
of P. Then orientationspace[0, 2x) is partitionedinto

at most 2n intervals, accordingto which pair of vertices
arepossiblyon /; andl, respectiely. In the meantime,

it is alsopartitionedinto exactly n intervals, accordingto

whichvertex is possiblyon /3. Intersectingheintervalsin

thesetwo partitionsyields a finer partition of [0, 2r) that
consistof atmost3n intenals,eachcontainingorientations
at which P is to be supporteddy /3, I, andl; at the same
threevertices.

Let us look at one suchinterval, andlet p;, p; andpy
bethe verticesof P only, I, andis respectrely wheneer
a possibleorientationexists in the interval. The possible
orientation®ccurexactly wherels crossesnelliptic curve
C(9) tracedout by p; whensliding p; andp; on!, andi,
respectiely. Now we prove that this interval containsat
mosttwo possibleorientations NoteC doesnotdegenerate
into a point becausethe casep; = p; = pr Will never
happengiven!s, [, andlz arenot concurrent. Therefore
C is either an elliptic sgmentmonotonicin ¢ or a line
segmentthat attainsary point for at mosttwo ¢ values.
(SeeSubsectior?.1.) In bothcasesit is clearthatC crosses
{3 for nomorethantwo 6 values.Thusthereareat most6n
possibleposesn orientationspacd0, 2r).

[11] givesan examplein which a polygoncanactually
have 6n poseswhenembeddedn threegiven half-planes,
therebyproving thetightnessof thisupperbound. |

Sinceary two coneswith distinct verticesare formed
by threeor four half-planeswvith non-concurrenbounding
lines, andsinceembeddinga polygonin threehalf-planes
with non-concurrenboundingdinesis equivalenttoinscrib-
ing it in ary two conesdeterminedy intersectinga pair of
thehalf-planesye immediatelyhave

Corollary 1 Thee exist at most6n possibleposesfor a
convex n-goninscribedin two coneswith distinctvertices,
andthis upperboundis tight.

Would more half-planes(or cones)further reducethe
numberof possibleposesfor an embeddegolygonto be
asymptoticalljfessthann? Theanswelis no. For example,
an embeddedegular n-gonwill alwayshave kn possible
poseswherel < k < 6, no matterhow mary half-planes
arepresent.However, the experimentalresultsin the next
sectionwill shawv thattwo cones(or four half-planesare

usuallysufiicientto determinea uniqueposefor a generic
polygon.

2.4 An Algorithm for Inscription

With theresultsn theprevioussubsectionsyeherepresent
analgorithmthatcomputesall possibleposedor a convex

n-gon P to be inscribedin m conesCy, ..., C,,, where
m > 2. (The verticesof theseconesare assumedo be

distinct.) Let po, . . ., p,—1 betheverticesof P in counter

clockwiseordet

Algorithm 2

Step1 [Computean initial setof posesw.r.t. two cones.]
Solwe for all possibleposesof P wheninscribedin
conesCy andC> (useAlgorithm 1 andseethe proof
of Claim1), andletsetS consisiof theresultingposes
(alreadysortedby orientation).Seti < 3.

Step2 [Verify with the remainingcones.]If i = m + 1
or S = { thenterminate. Otherwisego to Step3 if
|S| = 1or|S| = 2. Otherwiseapply Algorithm 1 to
generatehelocuscurve C; (#) for theinscriptionof P
in C;. Sequentiallyerify whethereachposein S is
onC;(#), deletingfrom S thoseposeghatarenot. Set
t < i+ 1l andrepeatStep2.

Step3 [More efficiently verify oneortwo poses.JFor each
posein S, let polygon P’ be P in thatposeanddo the
following: For i < j < m constructthe supporting
coneC; of P atthevertex of coneCy; if thereexists
some(; thatdoesnot coincidewith C;, thendelete
thecorrespondingosefrom S.

Whentheabove algorithmterminatessetS will contain
all possibleposesfor the inscription. Corollary 1 shavs
thatthereareatmost6n posedn S afterStepl. Sincethe
supportingconeof P fromapointcanbeconstructedh time
O(logn) usingbinary search{13], the runningtime of the
algorithmis O((k — 1)n + (m— k + 1) logn), i.e.,O(mn)
in the worstcase wherek is thevalueof variable: when
leaving Step2. However, the experimentsn Section3 will
demonstrateéhat £ = 3 almostalwaysholds, henceStep
2 will almostnever getexecutedmorethanonce,reducing
therunningtimeto O(n + mlogn).

Sincea cornvex m-gon @ is naturallythe intersectiorof
m conesgachwith avertex of @ asits vertex andwith the
internalangleat that vertex asits apex angle,we canuse
Algorithm 2 to computeall possibleinscriptionsof P in
@ with the sametime cost. This problemshall be called
the polygoninscription problem, which can be regarded
as anotherversionof multi-coneinscription becausehe
intersectiorof multipleconeds alwaysa polygon(possibly
unboundedr empty).



3 Experiments

Thefirst setof experimentsvereconductedo find outhow
mary possibleposeausuallyexist for a polygonembedded
in three half-planeswith non-concurrenboundinglines,
andtheresultsaresummarizedn Tablel.

#tests| data # poly vertices | # possibleposes

source | range| mean| range| mean
10000| 10saq. 3-9 | 5.9376| 1-16 | 5.5436
10000| 1Ocir. 3-9 | 6.1208| 2-16| 5.7006
1000 | 100sqg. | 6-19 | 11.917| 2-16 7.242
1000 | 100cir. | 10-22| 15.108| 2-24 | 10.012
1000 | 1000sq. | 11-24| 18.43| 2-18 7.84
1000 | 1000cir. | 23-43| 33.595| 2-60 | 18.709
1000 | cir. mar | 3-15 8.98| 2-14| 4.537

Table 1: Experimentson embeddinga polygonin three half-
planes.

Seven groupsof convex polygonsweretestedasshavn
in the abore table. The first six groupsconsistedof con-
vex hulls generateaver 10, 100 and 1000randompoints
successkly, andfor eachnumbeyin two kindsof uniform
distributions—inside a squareandinside a circle respec-
tively. It canbe seenin thetablethatthe polygonsin these
groupshad a wide range(3—43)of sizes,i.e., numbersof
vertices, but their shapeswere not arbitrary enough,ap-
proachingeithera squareor a circle when large number
of randompoints were used. So we introducedthe last
group of datathat consistedof polygonsgeneratedby a
methodcalledcircular march which outputstheverticesof
acornvex polygonasrandompointsinsidea circle in coun-
terclockwiseorder Thesizeof apolygonin thisgroupwas
randomlychosenbetween3 and 15. We refer the reader
to [11] for detailson how all cornvex polygondatawere
randomlygenerated.

Given a corvex polygon, three supportinglines, each
boundinga half-planeon the side of the polygon, were
generatedaccordingto the uniform distribution; namely
with probability 5>+ eachline passedhroughvertex p;
with internalangley;. An additionalcheckwasperformed
to ensurethat theselines were not attachedto the same
vertex of thepolygon. Thenumberof possiblgposedor the
polygonto beembeddedh thesegeneratedhalf-planesvas
then computed,and the summarizedesultsfor all group
arelistedin thelasttwo columnsof thetable.

Table1 tells usthat threehalf-planesare insuficientto
limit all possibleposef anembeddegolygonto aunique
one,namely the real pose;in fact the table suggestdhat
linear(in thesizeof the polygon)numberof possibleposes
will usuallyexist. We canseein thetablethatdespitethe

appearancesf caseswith oneor two possibleposesthe
ratio betweerthe meanof numbersof possibleposesand
meanpolygonsizeliesin theapproximateange0.43-0.93,
decreasingery slowly asthemeanpolygonsizein agroup
increasesTheseresultstendto supporta conjecturghatin
theaveragecasahereexistO(n) possiblgposedor acorvex
n-gon embeddedn threehalf-planeswith non-concurrent
boundinglines.

The abore conjecturemay be very difficult to prove.
However, a plausibleexplanationfor the experimentalre-
sultscanbesought.Recall,apolygonwith threehalf-planes
definesa partitionof orientationspacef0, 2r) into at most
3n intervals, eachcontainingorientationsthat would al-
low the samethreeincidentverticeswhene&er a possible
poseexists atthatorientation. The feasibleorientationdn
eachinterval occurwhen one supportingline crosseshe
locus curwe of its associatedncidentvertex. The locus
cune resultsfrom maving the othertwo incidentvertices
alongtheir supportinglines. As thesecurwes (for all in-
tenvals) may oftenclustertogetherthelikelihood thatthey
getcrossed)(n) timesin total by thefirst supportingine
is quite large. This happenegbarticularlyoften during the
experimentswhena vertex coincidedwith anintersection
of two supportindines. (SeeFigure4.)

<
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Figure 4: Eight possibleposesfor a corvex 6-gonboundedby
threesupportingines (astakenfrom a samplerun). Thefirst one
representghe real posewhosesupportinglines as shavn were
generatedandomly;theremainingsevenrepresenall otherposes
consistentwith the supportingline constraints. Notice in this
examplethatthreeof the eight posesoccurredwhena vertex of
thepolygoncoincidedwith anintersectiorof two supportindines.

The purposeof the secondset of experimentswas to



studyhow mary posesusuallyexist for a corvex polygon
inscribedinto two or moreconeswith distinctvertices.We
first testedwith two conesusingthe samesourceof ran-
dom datageneratedn the way we did for the first setof
experiments andthe resultsare shavn in Table2. Since

#tests| data # poly vertices | # possibleposes
source | range| mean| range| mean
10000| 10sq. | 3-10 | 5.9493| 1-2 1.036
10000| 1Ocir. 3-10 | 6.1113| 1-2 | 1.0117
1000 | 100sg. | 6-18 | 12.002| 1-2 1.01
1000 | 100cir. | 9-21 | 15.138| 1-1 1
1000 | 1000sq. | 10-26| 18.073| 1-2 1.002
1000 | 1000cir. | 26-45| 33.665| 1-2 1.003
1000 | cir. mar | 3-15 | 9.009| 1-2 1.106

Table2: Experiment®n inscribingpolygonswith two cones.

a polygonwas alwaysgeneratednside a square(circle),
the coneverticeswerechosemasrandompointsuniformly
distributedbetweerthis boundaryanda larger squarg(cir-
cle). Theratio betweernthesetwo squaregcircles)wasset
uniformly to be% for all sevengroupsof data.

In contrastto Table 1, Table 2 tells us that two cones
allow a uniqueposeof aninscribedpolygonin mostcases.
In eachgroup of tests,only caseswith one poseor two
posesccurred andthemeanof possibleposestayedvery
closeto 1, independenof themeanpolygonsize. (It is not
hardfor usto seethatthe percentagef two-posecasesvas
very low in the range0%-3.6%for the first six groupsof
data. Thepercentagé0.6%for the seventhgroupwasa bit
high but expected becausg@olygonsgeneratedby circular
marchweremorelikely to bein a certainshapehatwould
oftenincur two possibleposesaswe will discusdater)

Testaverealsoconductedvith 3—10coneonreproduced
dataof four of thesevengroupswhile the otherexperiment
parametersverekeptthe same. As shovn in Table 3, the
meansof possibleposesdid not decreaselramaticallyas
comparedo thosein Table2. Finally, we repeatedhefirst
groupof testswith two conesbut chosetheir verticesfrom
two wider ranges(with the previous ratio % replacedby
ratios% and 1—10 respectiely), andtheresultsareshavn in
thelasttwo rows of thesametable.

Theexperimentaresultthattwo non-incidentonesusu-
ally allow auniqueposeof aninscribedcornvex n-gon P has
in facta very intuitive explanation. As mentionedefore,
two suchconegyenerallyprovidefour half-panesary three
of whichwill limit the numberof possibleposef P to at
most6n. Let polygonsPs, .. ., P,,, wherem < 6n, repre-
sentP in all possibleposegespectiely whenembeddeéh
thefirst threehalf-planesithenthoseP; correspondindo
thefinal possibleposeanustbe supportedy thebounding

#tests| data # poly vertices | # possibleposes
source | range | mean| range| mean
10000| 10sg. | 3-10 5.95| 1-2 | 1.0056
1000 | 100sq. | 6-19 | 11.901| 1-1 1
1000 | 1000sg. | 10-27| 18.26| 1-1 1
1000 | cir. mar | 3-15 8.96 | 1-2 1.022
10000| 10sg. | 3-10 | 5.9587| 1-2 | 1.1158
10000| 10sg. | 3-10 | 59741 1-2 | 1.1738

Table 3: More experimentson inscribing polygonswith cones.
The first four groupsof dataweretestedwith arandomnumber
(betweer8 and10) of conesthelasttwo groupsweretestedwith

two conesvhoseverticeswerechoserfrom widerrangeghanthe
previoustests.

line [ of the fourth half-plane. So the probability that a
two-posecaseoccursis no morethanthe probabilitythat!
passeshroughavertex of P; andavertex of P}, for i # j.
Note the verticesof P, ..., P,;, togetheroccupy®(mn)
pointsin theplanein generalpnly oneof whichmustlie on
[. If notwo of theseverticescoincide,the probability that
[ passeshroughtwo verticesof differentpolygonsis zero
(assuminghat! is independenof the otherthreebound-
ing lines), which meanghata two-posecasealmostnever
occursin this situation. Otherwisesupposéwo vertices
of P; and P; respectiely areat the samepoint p for some
i # j, thentheprobabilitythat! passeshroughp is ©(-1-).
Thisis ©(Z) in theaveragecasegiventhatm = O(n) as
suggestethy thefirst setof experiments.Sincein theusual
casethereonly exist a constanhumberof suchcoincident
vertex pairs,theprobability@(ﬁlz) is anapproximateipper
boundonhow oftentwo-posecase®ccur Thisboundturns
outto beconsistentvith thepercentagesf two-posecases
in Table2.

It wasobsenedduringtheexperimentghatalargenum-
berof two-posecaseoccurredvhenboth coneshappened
to be supportingthe polygon at the samepair of vertices.
(SeeFigure5.) Thetwo possibleorientationsdifferedby

Figure5: Two possibleposedor acorvex 6-goninscribedn two
conedqastakenfrom asamplerun). Thetwo conesaresupporting
thepolygonata pair of vertices.

m, andeachsupportingvertex in one posecoincidedwith
the otherin the otherpose. This situationoften happened



whenthedistancebetweeronepair of verticesof the poly-

gonwas muchlargerthanthe distancebetweenary other
pair of vertices,or whenthe siteswerefar away from the
polygon(asevidencedby the high percentagesf two-pose
casesn thelasttwo groupsof testsin Table3).

4 Conclusion

The analysesand experimentsin this paperhave laid out
thebasisfor a generakensingschemeapplicableto planar
objectswith known shapes.The schemetermedsensing
by inscription, determineghe poseof anobjectby finding
its inscriptionin apolygonof geometricconstraintslerived
from the sensorydata. A specificimplementatiorof this
schememay employ certain combinationsof simple and
robustsensordo obtainthe necessargonstraints.Iln par
ticular, two supportingconesareoftenenoughto detectthe
real poseof a polygonalobject. In real situations,if two
(or more)possibleposesarisefrom a two-coneinscription,
they canbe distinguishedby probingat a point contained
insideonly oneof theposes’

Though only the inscription of a corvex polygon is
treatedn thispapeytheextensiongo ary arbitrarypolygon
andary polyhedronwith nearconstantross-sectioalong
somedirection) shouldbe straightforward;but the exten-
sionto a closedand piecavise smoothcurve needdurther
study Thetechniquecanalsobeappliedin objectrecogni-
tion: A finite setof polygonsaregenerallydistinguishable
by inscription.

Futurework will involve the designof specializeccone
sensor®r othersensorsuitedfor inscription,aswell asan
investigationof a theoreticalframevork for incorporating
sensinguncertaintiesnto theinscriptionalgorithms.
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