
Computation on Parametric Curves with an Application in

Grasping

Yan-Bin Jia

Department of Computer Science

Iowa State University

Ames, IA 50011-1040, U. S. A.

jia@cs.iastate.edu

Abstract

Curved shapes are frequent subjects of maneuvers by the human hand. In robotics it is well
known that antipodal grasps exist on curved objects and guarantee force closure under proper fin-
ger contact conditions. This paper presents an efficient algorithm that computes, up to numerical
resolution, all pairs of antipodal points on a simple, closed, and twice continuously differentiable
plane curve. Dissecting the curve into segments everywhere convex or everywhere concave, the
algorithm marches simultaneously on a pair of such segments with provable convergence and
interleaves marching with numerical bisection recursively. It makes use of new insights into the
differential geometry at two antipodal points. We have avoided resorting to traditional nonlinear
programming which would neither be quite as efficient nor guarantee to find all antipodal points.
A byproduct of our result is a procedure that constructs all common tangent lines of two curves,
achieving quadratic convergence rate. Dissection and the coupling of marching with bisection
constitute an algorithm design scheme potentially applicable to computational problems involv-
ing curves and curved shapes.

KEY WORDS—antipodal point, antipodal angle, inflection, monotonicity, common tangent,
convergence rate, robot grasping

1 Introduction

Geometry often plays an essential role in robot tasks such as sensing, grasping, pushing, path
planning, dexterous manipulation, and control. Sensing, manipulation, and planning strategies
for polygonal and polyhedral objects have been studied extensively in the past. Many of these
strategies are designed using combinatorial techniques that take advantage of the absence of local
(differential) geometry.

Curved shapes, nevertheless, are very common in the real world. They share the differential
nature with contact kinematics and dynamics which are responsible for dexterous maneuvers [2].
Processing of these shapes tends to be difficult because the nature of the problem is no longer
combinatorial but nonlinear instead. The computational aspects have not been studied nearly to
the same extent (as for polygons and polyhedra). In this paper we aim at introducing a scheme for
curve computation within the context of one manipulation task — grasping.
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Figure 1: Eight pairs of antipodal points on a curved shape. The points in each pair are numbered the
same. Two fingers placed at any of these eight pairs of points will form a force-closure grasp of the shape in
the presence of contact friction.

Grasping has remained one of the fundamental problems in robotics research. A grasp on an
object is force closure if and only if arbitrary force and torque can be exerted on the object through
the finger contacts. In the presence of friction, a pair of fingers placed on a two-dimensional
(2D) object achieves force closure if and only if the line segment connecting the two points of
contact lies within the contact friction cones at these points. Based on this result from planar
mechanics, Nguyen [26] offered simple algorithms that synthesize independent grasp regions on
polygons and polyhedra, with or without friction. Decomposing the configuration space into grasp
rectangles, Ponce et al. [28] designed an algorithm that computes pairs of maximal-length segments
on a piecewise smooth 2D shape where the placement of two fingers guarantees force closure with
friction.

A force-closure grasp on a curved 2D object with friction is guaranteed if two fingers are placed
at points whose inward normals are collinear and pointing at each other. Such a grasp is referred
to as an antipodal grasp and the two points are referred to as antipodal points. Figure 1 shows
eight pairs of antipodal points found on the boundary of a curved shape and an antipodal grasp
achieved at one such pair. Implementing fine manipulation with “finger gaits”, Hong et al. [12]
proved the existence of at least two pairs of antipodal points on a smooth convex 2D object. Chen
and Burdick [7] gave the first algorithm for computing antipodal points on 2D and 3D shapes: their
idea was to convert the problem into one of finding the critical points of a grasping energy function
so an existing constrained optimization method could be applied. The early mentioned work by
Ponce et al. [28], however, does not guarantee to return segments containing antipodal points.

The reduction of antipodal point computation to nonlinear programming has several drawbacks.
First, such an approach is incomplete in the sense that it does not guarantee to find any antipodal
points, not to mention all of them. Second, it is inefficient as many initial guesses are often required
to find an antipodal pair. Third, the performance tends to heavily depend on the quality of the
heuristics used.

This paper presents an efficient algorithm that finds all antipodal grasps on a 2D curved shape up
to numerical resolution. The algorithm employs a fast procedure that constructs common tangents
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of two curve segments. The novelty of the algorithm lies in (a) its dissection of the curve into
segments turning monotonically in one direction; and based on the dissection, (b) its combination
of “marching” and numerical bisection with provable convergence. The correctness of the algorithm
will be ensured by the local geometry at antipodal points. The completeness1 in finding all antipodal
points (up to numerical resolution) will be established by performing curvature-based analyses.

1.1 Other Related Work

Mishra et al. [23] gave upper bounds on the numbers of frictionless fingers that are sufficient for
equilibrium and force-closure grasps, respectively, on objects with piecewise smooth boundaries.
They also provided linear-time algorithms that synthesize such grasps for polygonal and polyhedral
objects. Tighter bounds were later obtained by Markenscoff et al. [20] on immobilizing 2D and 3D
objects with piecewise smooth boundaries. Force closure testing was formulated by Trinkle [43] as
a linear program whose objective function measures the robustness of a grasp. In [29], Ponce el al.
reduced the problem of computing force-closure grasps of a polyhedral object to that of projecting a
polytope onto some linear space. Blake and Taylor [4] gave a geometric classification of two-fingered
frictional grasps of smooth contours that include antipodal grasps. Using the parallel-jaw gripper
to orient parts bounded by algebraic curves, Rao and Goldberg [35] offered an efficient algorithm
that produces the shortest plan based on a “grasp” function.

Li and Sastry [18] proposed three quality measures of grasps by multifingered robotic hands.
Algorithms for finding optimal grasps of polygons were developed by a number of researchers
including Markenscoff and Papadimitriou [21] and Mirtich and Canny [22]. Mishra [25] compared
various grasp metrics from the viewpoint of finger and computational complexities. He [24] also
gave the earliest results on the existence of modular fixture designs.2 The problem of optimal
fixture design was later studied by Brost and Goldberg [5] and by other researchers. Teichmann
and Mishra [42] showed that hands controlled by reactive algorithms can grasp polygonal objects
when equipped with light-beam sensors, or objects with smooth boundary when equipped with
simple distance and angle sensors. The designs of these hands are detailed in Teichmann’s Ph.D.
thesis [41]. We refer the reader to a survey [3] conducted by Bicchi and Kumar on grasping and
contact.

Two vertices of a polygon are antipodal if they are incident on parallel supporting lines. The
polygon’s diameter is the distance between the two furthest vertices (which must be antipodal).
Preparata and Shamos [32] described a linear-time algorithm that finds the diameter of a convex
polygon with n vertices by enumerating all O(n) pairs of antipodal vertices in a traversal. This
algorithm was extended by them to determine the diameter of a set of n points in the plane in
optimal O(n log n) time.

For n points in three dimensions, the number of antipodal pairs can be O(n2) while the diameter
can be achieved by 2n − 2 pairs of points, as shown by Grunbaum [11]. Clarkson and Shor [8]
presented a randomized algorithm that computes the diameter in O(n log n) expected time. Near-
linear-time deterministic algorithms were developed by Chazelle et al. [6] and by Matoušek and
Schwarzkopf [38] through derandomizing Clarkson and Shor’s algorithm while the fastest running
time O(n log2 n) was achieved by Bespamyatnikh [1] and by Ramos [34]. Erdös [9] showed that
O(n2) pairs of points can attain the diameter in dimensions d > 3. Yao [44] offered a different

1The algorithm does not find all force-closure grasps in the presence of friction. In this sense it is incomplete.
However, antipodal grasps are often more robust to uncertainties in finger placement than other force-closure grasps.

2These results were for rectilinear parts.
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approach which led to an o(n2)-time algorithm for computing the diameter of a point set in d
dimensions.

Preparata and Hong [31] developed a “walking” strategy to construct common supporting lines
of two convex polygons in linear time. Their method alternatively marches over the vertices of the
two polygons such that the next vertex to reach on one polygon is always the point of tangency of the
supporting line from the current vertex on the other polygon. The procedure Common-Tangent in
Section 2.3 for computing common tangents of two curve segments can be viewed as the continuous
counterpart of the “walking” strategy except tangent lines (instead of supporting lines) are used to
determine the next stops.

In the preprocessing we will dissect a curve at its points of inflection. In [10], Goodman gave an
upper bound on the number of inflection points on parametric spline curves. Sakai [37] obtained
the distribution of inflection points and cusps on a parametric rational cubic curve. Manocha and
Canny [19] presented a method to detect cusps on rational curves of arbitrary degree and described
the use of the Sturm sequence in finding inflection points.

1.2 Notation and Overview

Throughout the paper we will consider a curve α(u) that is regular3, simple, closed, and twice
continuously differentiable. A counterclockwise movement along the curve increases the value of
the parameter u. In case no ambiguity arises, the parameter u also refers to the point α(u) on the
curve. Denote by T (u) = α

′(u)/‖α′(u)‖ the unit tangent of α at u and by N(u) its unit inward
normal such that T (u)×N(u) = 1.

Without loss of generality, the curvature4 κ(u) of α can be zero at only a finite number of
points. The total curvature of a segment of α over [a, b] is given by Φ(a, b) =

∫ b
a κ(u) ‖α

′(u)‖ du.5

This integral measures the amount of tangent rotation as a point moves from a to b along the curve.
For clarity of presentation, we will focus on the case that α is unit-speed, that is, ‖α′‖ =

1 everywhere. Thus α is parameterized with arc length. Section 2 will present an algorithm
that constructs all common tangents of two curve segments under several conditions that can be
established by the preprocessing described in Section 5. Section 3 will introduce a classification
of antipodal points based on differential geometry. This classification will lead to the design of an
algorithm in Section 4 that finds all antipodal points. The running time of the algorithm will be
analyzed in Section 6.

Section 7 will discuss how the results can be easily extended to arbitrary-speed curves for which
some experiments will be presented in Section 8.

2 Common Tangent

In this section we will introduce an algorithm that constructs common tangents of two segments
on the curve α under some conditions to be introduced shortly. In the end of the section we will
explain how the algorithm can be extended to find all common tangents of two curves.

3That is, ‖α′(u)‖ 6= 0 for any u in the curve domain.
4Two equivalent definitions of curvature are given in Appendix C.
5The total curvature has a closed form if it is within (0, 2π] and can almost always be fast computed otherwise.

More on total curvature is discussed in Appendix C.

4



Two segments S and T of α are defined on subdomains (sa, sb) and (ta, tb), respectively, where
(sa, sb) ∩ (ta, tb) = ∅. Here sa < sb always holds but ta > tb is allowed, in which case (ta, tb) refers
to the interval (tb, ta). The following conditions are satisfied by S and T :

(i) κ > 0 everywhere or κ < 0 everywhere on S and T , with κ = 0 possible only at sa, sb, ta, tb.

(ii) N(sa) +N(ta) = 0 and N(sb) +N(tb) = 0.

(iii) −π ≤ Φ(sa, sb) = −Φ(ta, tb) ≤ π.

Section 5 will describe how to preprocess α to generate pairs of such segments.
Condition (i) states that the inward normal N rotates in one direction when either S or T is

traversed. We call such a curve segment monotone. Under conditions (i)–(iii), every point s on S
uniquely corresponds to a point t on T with the opposite normal. More precisely, the equation

N(s) +N(t) = 0, or equivalently, (1)

T (s) + T (t) = 0. (2)

defines a one-to-one correspondence between the points on S and the points on T . Consider the
equation η(s, t) = N(s) × N(t) = 0. The Frenet formulas for unit-speed plane curves state that
T ′(t) = κ(t)N(t) and N ′(t) = −κ(t)T (t). Hence ∂η

∂t
= N(s) × (−κ(t)T (t)) = −κ(t) 6= 0 under (1).

By the Implicit Function Theorem, the equation η(s, t) = 0 defines t as a function of s on (sa, sb).
From now on, we will refer to t as the opposite point of s.

Differentiate (2) with respect to s and then substitute (1) in:

0 = κ(s)N(s) + κ(t)
dt

ds
N(t)

=

(

κ(s)− κ(t)
dt

ds

)

N(s).

Thus κ(s)− κ(t) dt
ds

= 0 and
dt

ds
=
κ(s)

κ(t)
. (3)

2.1 Number of Common Tangents

Following conditions (i)–(iii), no two points, one on the segment S and the other on the segment
T , can have the same inward normal. Thus any common tangent of S and T must be in contact
with α at points with opposite inward normals.

Lemma 1 Any tangent line of a monotone curve segment over (a, b) with total curvature Φ(a, b) ∈
[−π, π] intersects the segment exactly once.

Proof Without loss of generality, suppose a tangent line L is horizontal and the segment is
locally above the point of tangency c (see Figure 2). Consider a point p moving on the segment
from c to b. Because the segment is monotone, |Φ(c, b)| < |Φ(a, b)| ≤ π and p always moves upward.
Therefore L cannot intersect the segment over (c, b). Similarly, L cannot intersect the segment over
(a, c). Thus L intersects the curve segment over (a, b) exactly once.

Using the above lemma, we can now bound the number of common tangents.
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Figure 2: A monotone curve segment with total curvature in [−π, π] lies on one side of every tangent line.

Theorem 2 Let S and T be two segments of α defined over (sa, sb) and (ta, tb), respectively, and
satisfying conditions (i)–(iii). They have at most two common tangents.

Proof We need only consider the case of two common tangents Lc and Ld of S and T and show
that a third one cannot exist. Let sc and tc be the points of tangency of Lc; and let sd and td be
the points of tangency of Ld. Suppose sc < sd. Following Lemma 1, Lc intersects neither S nor T
more than once. For the ease of argument (but without loss of generality), we assume that Lc is
horizontal and sc is to the left of tc on Lc. Two cases arise depending on the positions of S and T
relative to Lc.

Case 1: S and T on opposite sides of Lc. Since S cannot intersect Lc or Ld more than once, it
is bounded by Lc and Ld. Similarly, T is bounded by Lc and Ld on the opposite side. This
configuration is shown in Figure 3. It is clear that no common tangent can be incident on any
point in (sc, sd), or equivalently, on any point in (tc, td). Consider an arbitrary tangent line

L d

sd

sx

td

tx

c

s

s

s

t

t
t

c

a

a

b

c

b

L

T

S

Figure 3: Two curve segments on opposite sides of every common tangent.

of S incident on some point sx ∈ (sd, sb) and the tangent line of T incident on its opposite
point tx ∈ (td, tb), where N(sx) +N(tx) = 0. These two tangent lines always intersect Ld on
different sides of the line segment sdtd. Therefore they will never coincide, implying that no
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common tangent can be incident on a point in (sd, sb). Similarly, no common tangent can be
incident on a point in (sa, sc).

Case 2: S and T on the same side of Lc. Without loss of generality, suppose tc is to the left of sc

on Lc, as shown in Figure 4. Then Ld must have a negative slope under the condition that
|Φ(sa, sb)| ≤ π. Clearly, any line through a point in (sc, sd) and its opposite point in (td, tc)

sc

sd

td

t c

L d

c

s

sa

tb

ta

b

LS
T

Figure 4: Two curve segments on the same side of every common tangent.

cannot be tangent to either S or T . Meanwhile, any tangent line of T incident on a point in
(td, tb) cannot intersect S; let alone be a common tangent. Similarly, any tangent line of T
incident on a point (ta, tc) will not intersect S; let alone be a common tangent line.

2.2 Configurations of Common Tangents

The proof of Theorem 2 in the previous section has also established the following fact:

Corollary 3 Let S and T be a pair of segments that satisfy conditions (i)–(iii). Then they are
always on the same side of every common tangent or always on different sides of every common
tangent.

Following the corollary there are a total of four configurations (shown in Figure 5) in which at least
one common tangent of S and T exists:

(a) Two common tangents with the curve segments on the same side.

(b) Two common tangents with the segments on different sides.

(c) One common tangent with the segments on the same side.

(d) One common tangent with the segments on different sides.
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(a)

(c) (d)

(b)

Figure 5: Four configurations where S and T share at least one common tangent.

In configurations (a) and (c) the two curve segments bend in the same direction while in (b)
and (d) they bend in opposite directions. The bending direction of the curve α at a point u, where
κ(u) 6= 0, is indicated by κ(u)N(u). Let sm = sa+sb

2 and tm be its opposite point. We check the
dot product

κ(sm)N(sm) · κ(tm)N(tm) = −κ(sm)κ(tm).

If the dot product is positive, then the two segments S and T bend in the same direction. If it is
negative, the two segments bend in opposite directions.

The common tangent algorithm will rely on the above classification of configurations. Below we
look at how to recognize each configuration as well as the configuration where no common tangent
exists.

Define the function d(s) as the translational distance along the normal N(s) from the tangent
line of S at s to the tangent line of T at its opposite point t. Thus we have

d(s) = N(s) ·
(

α(t)−α(s)
)

.

In the example shown in Figure 6, d(sa) > 0 and d(sb) < 0. The function d is continuous since the
curve α is continuously differentiable. Obviously, d(s) = 0 if and only if the tangent line through
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Figure 6: The values of the function d at sa and sb have opposite signs.

s is a common tangent. It follows from the monotonicity condition (i) that d′(s) 6= 0 whenever
d(s) = 0.

When d(sa) and d(sb) have different signs, there exists some sc ∈ (sa, sb) such that d(sc) = 0.
Namely, the line passing through sc and its opposite point on T is a common tangent. Because
there are at most two common tangents and the function d has only simple zeros, we can infer that
this is the unique common tangent of S and T and the configuration is either (c) or (d) in Figure 5.
These two configurations can be further distinguished by comparing the bending directions of S
and T .

When d(sa) and d(sb) have the same sign, S and T may have two common tangents as in
configuration (a) or (b) or they may not have a common tangent at all. Let La and Lb be the
tangent lines of S at sa and sb, respectively, and O be their intersection point.6 Let L′

a and L′
b be

the tangent lines of T at ta and tb, respectively, andO′ be their intersection. SinceN(ta)+N(sa) = 0
and N(tb) +N(sb) = 0, we know that La ‖ L

′
a and Lb ‖ L

′
b.

How to distinguish configuration (a) from a configuration where S and T bend in the same
direction but do not have a common tangent? Since the total curvatures Φ(sa, sb) = −Φ(ta, tb) ∈
[−π, π], S lies inside △saOsb and T lies inside △taO

′tb.

• If none of these two triangles contains the other, then S and T do not have a common tangent
under the condition that d(sa) and d(sb) have the same sign. This is shown in Figure 7(a).

• Otherwise, suppose that △taO
′tb is inside △saOsb. To share two common tangents, T must

be in the shaded region in Figure 7(b). Since S and T bend in the same direction, we see
that T is in the shaded region whenever ta and tb are. In fact, we need only check if ta lies in

6Such an intersection does not exist if |Φ(sa, sb)| = π. In this case, the triangle △saOsb becomes an open region
bounded by La, Lb and the line segment sasb.
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sa

O
O’

sb

S
T

S

T
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L’aL
ta

t b

L b

a

L’

L’aLa

L b

ta

t b

L’b

(a) (b)

Figure 7: Two cases of S and T bending in the same direction: (a) no common tangent; and (b) two
common tangents. In (a), neither of △saOsb and △taO′tb contains the other. In (b), △saOsb contains
△taO′tb.

the shaded region. This is because under the condition that d(sa) and d(sb) have the same
sign, tb is in the shaded region if and only if ta is. A procedure for testing if a point lies in
the shaded region is described in Appendix B.

How to distinguish configuration (b) in Figure 5 from a configuration where S and T bend in the
opposite directions but do not have a common tangent? The two tangent lines La and Lb partition
the plane into four regions. As shown in Figure 8(a), we let R1 be the region that neither contains
nor borders S, and let R2 be the open region bounded by S, La, and Lb. Similarly, as shown in

L’a

R’2

L

L

L’

sa

sb

b

a

O’

O

sa

L

L

L’

L’

sb

b

b

a

a

2

t b
ta

b

1

T

S
S

T

R’1

ta

R

R

t b

(a) (b)

Figure 8: The curve segments S and T bend in opposite directions and have two common tangents.

Figure 8(b), we let R′
1 be the region formed by L′

a and L′
b that neither contains nor borders T and
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2t 1s
2s

0t 0s

0s
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t c
c

c

t a
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sa
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sa

t a

t b

Figure 9: Constructing a common tangent iteratively. The iteration starts at sa and ta and maintains two
invariants that the line through si+1 and ti is tangent to S and that N(si) +N(ti) = 0. The sequences {si}
and {ti} converge to the tangencies sc and tc at a quadratic rate.

R′
2 the open region bounded by T , L′

a, and L′
b. Since d(sa) and d(sb) have the same sign, there are

only three cases:

• ta and tb in R1. Hence T is contained in R1 under conditions (i)–(iii). Because no point in
R1 is on any tangent line of S, there does not exist a common tangent.

• ta and/or tb in R2. No common tangent exists.

• ta and tb outside R1 and R2. Two common tangents exist if both sa and sb are outside R′
1

and R′
2. Otherwise, none exist.

It is easy to determine if a point is outside R1 or R′
1. Checking if a point is outside R2 given

that it is outside R1, however, is slightly more involved. We need to check if this point and S are
on different sides of La, or they are on different sides of Lb, or the point lies in the closed region
bounded by La, Lb, and S. This is done by a procedure described in Appendix B.

2.3 An Iterative Procedure

Below we offer an iterative method to construct one common tangent. The method makes the
following two assumptions that will be removed in Section 2.4:

1. There exists exactly one common tangent Lc of S and T incident on sc and tc, respectively.

2. A point traversing T from ta to tb is moving toward sc at the time it reaches tc. So the two
segments and Lc are in one of the two configurations shown in Figure 9.

The iteration starts7 at s0 = sa and t0 = ta and generates two sequences s0, s1, s2, . . . and
t0, t1, t2, . . . according to the equations:

(

α(si+1)−α(ti)
)

× T (si+1) = 0; (4)

7In Figure 9(a) it can also start at s0 = sb and t0 = tb.
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N(si+1) +N(ti+1) = 0. (5)

The point si+1 ∈ (si, sb) is found by a primitive point-of-tangency described in Appendix A.
Such a point of tangency always exists under assumptions 1 and 2. The procedure call for finding
the two points of tangency sc and tc is referred to as Common-Tangent(sa, sb, ta, tb).

Lemma 4 The two sequences {si} and {ti}, starting at s0 = sa and t0 = ta and generated according
to (4) and (5), never move past the two points of tangency sc and tc. Furthermore, the arc lengths
|si − sc| > |si+1 − sc| and |ti − tc| > |ti+1 − tc| for all i ≥ 0.

Proof It suffices to show that the sequence {si} will not pass sc. That {ti} does not pass tc will
then follow from the one-to-one correspondences between si and ti for all i and between sc and tc.
Here we only give the proof for configuration (a) in Figure 9 in which S and T are on the same
side of the tangent line La. The proof for configuration (b) is similar.

As shown in Figure 10, the segment S and its two tangent lines La and Lb at sa and sb,
respectively, divide the plane into three regions: R1, R2, and the rest of the plane. Without loss of

R 1

t

t

ss
c

bt

c

0

1

0 = s

L

R

cL

2

L a

b

t 0 = ta

sb

sa

Figure 10: Proof of Lemma 4.

generality, the common tangent Lc is drawn horizontal. The two regions R1 and R2 (excluding S)
contain all the points not lying on any tangent line of S.8

We now prove that the endpoint t0 = ta lies in neither R1 nor R2.

• Since |Φ(ta, tb)| ≤ π, we have |Φ(ta, tc)| < π. Thus t0 = ta must be above the tangent line Lc.
Similarly, |Φ(sa, sc)| < π and |Φ(sc, sb)| < π. The intersection of La and Lb must be below
the horizontal line Lc,

9 and so must be the region R1. Therefore t0 /∈ R1.

8The region R1 will disappear if the total curvature of S is π or −π.
9The intersection does not exist when Φ(sa, sb) = π.
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• Assume t0 ∈ R2. Then the section of T over (ta, tc] would have to intersect La to enter
R2. This, however, would imply that |Φ(ta, tc)| > |Φ(sa, sc)|, contradicting the condition that
they must be equal.

Therefore t0 6∈ R1 and t0 6∈ R2. So t0 must be on some tangent line of S. Let s1 be the point
of tangency on S. Because t0 is above Lc, it follows that s1 /∈ (sc, sb). Hence s1 ∈ (sa, sc) and
|s0− sc| > |s1− sc|. Generalizing the above argument to the curve sections over (si, sb) and (ti, tb),
we conclude that si+1 ∈ (si, sc) and |si − sc| > |si+1 − sc| for all i.

Lemma 4 establishes that the sequences {si} and {ti} are monotone and bounded by sc and tc.
So they must converge to, say, s∗ and t∗ such that (α(s∗)−α(t∗))× T (s∗) = 0. Hence s∗ = sc and
t∗ = tc.

Next, we determine the order of convergence of {si} and {ti}. Let h be the iteration function
implicitly defined by (4) and (5) such that si+1 = h(si). Apply Taylor’s expansion on h at s∗ and
use the fact that s∗ = h(s∗):

si+1 − s
∗ = h(si)− h(s

∗)

= h′(s∗)(si − s
∗) + h′′(s∗)(si − s

∗)2 + · · · .

The local convergence rate [40, p. 264] is determined by the least integer k > 0 such that h(k)(s∗) 6=
0. When k = 1, the local convergence rate is linear only if |h′(s∗)| < 1,

Differentiate equation (4) with respect to si:
(

T (si+1)
dsi+1

dsi
− T (ti)

dti
dsi

)

× T (si+1) +
(

α(si+1)−α(ti)
)

×N(si+1)κ(si+1)
dsi+1

dsi
= 0.

Simplify the above equation and substitute (3) in:

−T (ti)× T (si+1)
κ(si)

κ(ti)
+ ‖α(si+1)−α(ti)‖κ(si+1)

dsi+1

dsi
= 0.

So we obtain the derivative of the iteration function:

h′(si) =
dsi+1

dsi

=
T (ti)× T (si+1)

‖α(si+1)−α(ti)‖κ(si+1)

κ(si)

κ(ti)
. (6)

As si tends to sc and ti tends to tc, the above equation becomes

h′(sc) =
T (tc)× T (sc)

‖α(sc)−α(tc)‖κ(sc)

κ(sc)

κ(tc)
= 0, since T (tc)× T (sc) = 0.

Meanwhile, we also obtain

h′′(sc) =
(

T (tc)× T (sc)
) d

ds





1
∥

∥

∥α

(

h(s)
)

−α(t)
∥

∥

∥ κ
(

h(s)
)

κ(s)

κ(t)





∣

∣

∣

∣

∣

s=sc

+

(

κ(tc)N(tc)
κ(sc)

κ(tc)
× T (sc) + T (tc)× κ(sc)N(sc)h

′(sc)

)

1

‖α(sc)−α(tc)‖κ(tc)

=
κ(sc)

κ(tc)‖α(sc)−α(tc)‖
since T (tc)× T (sc) = 0 and h′(sc) = 0

6= 0.
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Hence the sequence {si} converges quadratically.

Theorem 5 Let S over (sa, sb) and T over (ta, tb) be two segments of α satisfying conditions
(i)–(iii). Suppose S and T have exactly one common tangent with points of tangency sc on S
and tc on T . Also suppose that a point traversing T from ta to tb is moving towards sc at the
moment it reaches tc. Then the two sequences s0(= sa), s1, s2, . . . and t0(= ta), t1, t2, . . . generated
by Common-Tangent(sa, sb, ta, tb) converge quadratically to sc and tc, respectively.

Let us look at the time cost required for numerically solving (4) and (5) for the two points of
tangency sc and tc. Suppose ω binary bits of precision are required. Since h′(sc) = 0, Taylor’s
expansion yields

si+1 − sc = h(si)− h(sc)

= h′′(sc)(si − sc)
2 +O

(

(si − sc)
3
)

.

So there exists some C > 0 such that

|sn − sc| ≤ C|sn−1 − sc|
2

≤ C · C2|sn−2 − sc|
22

...

≤ C2n−1|s0 − sc|
2n

.

Without loss of generality, we assume that |s0 − sc| < 1. Otherwise, there exists some k such that
|sk − sc| < 1 since the sequence {si} is monotone. To reach a precision of 2−ω, the number of
iteration steps10 must satisfy

n ≥ logω − log

(

−
logC

2
− log |s0 − sc|

)

.

In other words, the length of the sequence {si} (and thus of {ti}) needs to be O(logω). Obtaining
si+1 and ti+1 from si and ti requires a call to each of the primitives point-of-tangency and
point-with-normal, which take time O(ω) as analyzed in Appendix A. Thus the number of
low-level iteration steps in constructing the common tangent is O(ω log ω).

2.4 The Construction Algorithm

We now remove the two assumptions in Section 2.3 and describe how to compute common tangents
of S and T when they satisfy conditions (i)–(iii). First, we use the procedure described in Section 2.2
to determine if a common tangent exists, and if so, classify the configuration of S and T as one of
Figure 5(a), (b), (c), (d).

If S and T have two common tangents, then the procedure Common-Tangent will find the one
whose tangency points are the closest to sa and ta. This removes the first assumption in Section 2.3.

To remove the second assumption in Section 2.3, we need to determine the order of the four
endpoints passed on as arguments for calling Common-Tangent. This order determines which of the

10Here we make the assumption that − log C

2
− log |s0 −sc| > 0 as otherwise some sk instead of so will always satisfy

the inequality.
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two pairs of opposite endpoints to start the iteration at, and, within the pair, which endpoint to
update first. This would not be an issue for configuration (b) in Figure 5, where the two common
tangents can be found using the procedure calls

Common-Tangent(sa, sb, ta, tb) and Common-Tangent(sb, sa, tb, ta)

regardless of the endpoint labeling.
When the configuration is one of (a), (c), (d), we look at the parallel tangent lines La and L′

a

of α at sa and ta, respectively. For instance, if the translation from La to L′
a is along the bending

direction of S then we use the procedure call Common-Tangent(ta, tb, sa, sb). The iteration starts
by updating from t0 = ta to t1, the point of tangency of a tangent line to T through sa, then from
s0 = sa to s1, where N(s1) +N(t1) = 0, and so on.

2.5 Common Tangents of Two Curves

A common tangent of two curves (not necessarily closed) is incident on two points, one on each
curve, whose normals are either the same or opposite to each other.

To construct all common tangents, we generate pairs of segments from different curves that
satisfy conditions (i)–(iii). This is done as follows. Dissect both curves at their points of inflection
and further split each segment with total curvature beyond [−π, π]. Enumerate all pairs of the
resulting segments that are from different curves. On each pair, chop off sections if necessary until
the endpoints have opposite normals as described by condition (ii). The above operations constitute
the first three steps of preprocessing detailed in Section 5.

For each pair of segments construct their common tangents (if exists) as described in Section 2.4.
Every common tangent found thus far will be incident on two points with opposite normals.

Next, we reverse the directions of all normals on one curve. Regenerate segment pairs that
satisfy conditions (i)–(iii) and find the common tangents of every pair if they exist. Every common
tangent found now is incident on two points whose normals were the same before the reversal.

3 Geometry at Antipodal Points

Recall from Section 1.2 that the curve α is simple, closed, and twice continuously differentiable.
Two points a and b on α are antipodal if their inward normals are collinear and pointing at each
other, or more precisely, if the following three conditions hold:

N(a) +N(b) = 0,

N(a)×
(

α(b)−α(a)
)

= 0, (7)

N(a) ·
(

α(b)−α(a)
)

> 0.

At least one pair of antipodal points exists on α.11 This is proved by Hong et al. [12] using a
distance function

χ(s, t) =
(

α(s)−α(t)
)

·
(

α(s)−α(t)
)

.

11In fact, α need only be continuously differentiable for such existence.
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Let s∗ and t∗ be the two points on α that maximize χ. Immediately,

∂χ(s∗, t∗)

∂s
= 2T (s∗) ·

(

α(s∗)−α(t∗)
)

= 0;

∂χ(s∗, t∗)

∂t
= −2T (t∗) ·

(

α(s∗)−α(t∗)
)

= 0.

The unit normals N(s∗) and N(t∗) are thus collinear. In fact, N(s∗) + N(t∗) = 0. To see this,
assume that N(s∗) and N(t∗) are in the same direction, and without loss of generality, in the
direction of α(t∗)−α(s∗). Let u be the intersection of α with the ray extending N(t∗), as shown
in Figure 11. Then we see that χ(s∗, u) > χ(s∗, t∗), contradicting that χ(s∗, t∗) is the maximum.
By a similar reasoning we obtain that N(s∗) · (α(t∗)−α(s∗)) > 0. So s∗ and t∗ are antipodal. The

s*

t*

u

Figure 11: Diameter points must be antipodal.

maximum distance
√

χ(s∗, t∗) is called the diameter of α.
In [12], it was also established that at least two pairs of antipodal points exist when the curve

is convex. Here we derive this result in a different way when κ = 0 at no more than a finite number
of points. Note that for every point s, there exists exactly one point t with the opposite normal,
that is, N(t) = −N(s). The function l(s) = χ(s, t(s)) attains at least one local maximum and one
local minimum on the curve. They happen at critical points where l′(s) becomes zero, that is,

(

T (s)− T (t)
dt

ds

)

·
(

α(s)−α(t)
)

= T (s)

(

1 +
κ(s)

κ(t)

)

·
(

α(s)−α(t)
)

= 0.

Given the convexity of α, the above implies that T (s)·(α(t)−α(s)) = 0 andN(s)·(α(t)−α(s)) > 0.
Therefore s and t are antipodal. Also since there is at least one s value at which l(s) attains local
minimum and at least one different s value at which l(s) attains local maximum,12 there exist at
least two different pairs of antipodal points. Imagine a pair of parallel lines that are tangent to
the curve as in Figure 12. As the lines rotate along the curve boundary while maintaining the
tangencies, their distance changes. Antipodal points correspond to the points of tangency where
the two lines are (locally) the closest to or the furthest away from each other.

A closed convex simple curve can have as many pairs of antipodal points as possible. One trivial
example is a circle whose curvature is constant everywhere. Every two points on the circle that

12Unless l(s) has the same value everywhere in which case every pair of s and t are antipodal.
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N(   )uN(   )s

N(   )t

s

t

T(   )

u

u
α

Figure 12: At least two pairs of antipodal points exist on a closed convex curve. Two parallel tangent lines
rotate around the curve and are separated by locally maximum or minimum distance at antipodal points.

determine a diameter are antipodal. To exclude this degenerate (and trivial) case, we assume that
α has a non-constant curvature function.

An arbitrary number of pairs of antipodal points can still appear on curves with non-constant
curvature. An example is a family of curves with convexities [39, pp. 183-185] defined in polar
coordinates as

ρ(φ) =
p

1 + ǫ cosmφ
, p > 0, 0 < ǫ < 1, integer m > 1. (8)

Figure 13 shows two curves in the family and the antipodal points on them. Such a curve has m

(a) (b)

Figure 13: Two curves from the family ρ(φ) = p

1+ǫ cos mφ
and their antipodal points: (a) p = 3, ǫ = 1

2
,m = 3

with 6 pairs antipodal points; (b) p = 9

2
, ǫ = 1

5
,m = 4 with 16 pairs of antipodal points. As many as

(

2m

2

)

−2m
pairs may exist.

axes of symmetry passing through m different pairs of antipodal points. These 2m points, with
extremum curvatures, are called the vertices of the curve. When m is even, both vertices on the
same axis of symmetry have the maximum curvature or both have the minimum curvature. When

17



m is odd, one of them has the maximum curvature and the other has the minimum curvature.
When m is large enough and ǫ is close enough to 1, the vertices can assume very high absolute
curvature such that the neighborhoods of any two non-adjacent vertices will contain one distinct
pair of antipodal points. So there can be as many as

(2m
2

)

− 2m pairs of antipodal points.
The remainder of this section examines the differential geometry at antipodal points and clas-

sifies them into five types based on a novel definition of “antipodal angle”. The classification will
be used in Section 4 for the development of an algorithm that finds all antipodal points.

3.1 Antipodal Angle

From now until Section 5 we focus our study on a pair of segments S and T of α over (sa, sb) and
(ta, tb) that meet conditions (i)–(iii) in Section 2 in addition to the two conditions below:

(iv) Neither sa and ta nor sb and tb are antipodal.

(v) N(s) ·
(

α(t)−α(s)
)

> 0 for all s ∈ (sa, sb).

Condition (iii) already ensures that a pair of antipodal points cannot appear on the same segment,
which does not include the points sa, sb, ta, or tb. Condition (iv) states that the boundary points
(not part of the two segments) are not antipodal. Condition (v) addresses that two opposite points
may be antipodal only if their normals do not point away from each other.

Pairs of segments on α that satisfy conditions (i)–(v) will be generated in the preprocessing
phase described in Section 5.

Define the antipodal angle θ(s) as the rotation angle from the normal N(s) to the vector r(s) =
α(t)−α(s).13 See Figure 14. Under condition (v), θ ∈ (−π

2 ,
π
2 ). By definition s and t are antipodal

N  s(  ) N  t(  )

T  s(  )

r  s(  )

s

t

θ

(  )T  t

S

T

Figure 14: Antipodal angle θ.

if and only if θ(s) = 0.
Below we determine the rate of change of the antipodal angle θ. First from

‖r(s)‖ =
√

r(s) · r(s)

we calculate the derivative:

d

ds
‖r(s)‖ =

d

ds

√

(

α(t)−α(s)
)

·
(

α(t)−α(s)
)

13In [4], Blake and Taylor referred to it as the friction angle.
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=

(

T (t) dt
ds
− T (s)

)

· r(s)

‖r(s)‖

= −

(

dt

ds
+ 1

)

T (s) ·
r(s)

‖r(s)‖
by (3)

= −

(

κ(s)

κ(t)
+ 1

)

cos
(π

2
+ θ

)

=

(

κ(s)

κ(t)
+ 1

)

sin θ.

From Figure 14 we also see that

sin θ = N(s)×
r(s)

‖r(s)‖
. (9)

Differentiate both sides of the above equation and substitute the expression for d
ds
‖r(s)‖ in:

cos θ · θ′(s) = −κ(s)T (s)×
r(s)

‖r(s)‖

+ N(s)×

(

T (t) dt
ds
− T (s)

)

‖r(s)‖ − r(s) d
ds
‖r(s)‖

‖r(s)‖2

= −κ(s) cos θ +N(s)×
− dt

ds
− 1

‖r(s)‖
T (s)−

(

dt

ds
+ 1

)

sin2 θ

‖r(s)‖

= −κ(s) cos θ +

κ(s)
κ(t) + 1

‖r(s)‖
cos2 θ.

On (sa, sb), θ ∈ (−π
2 ,

π
2 ) and cos θ > 0. Divide both sides of the above equation by cos θ:

θ′(s) = −κ(s) +
cos θ

‖r(s)‖

(

κ(s)

κ(t)
+ 1

)

. (10)

3.2 Higher Order Antipodal Points

Suppose α is at least k+1 ≥ 2 times continuously differentiable. Two opposite points s∗ and t∗ on
α where θ(s∗) = θ′(s∗) = · · · = θ(k−1)(s∗) = 0 but θ(k)(s∗) 6= 0 are called antipodal points of order
k. If k = 1, then s and t are also referred to as simple antipodal points.

When s∗ and t∗ are antipodal points of order 2, equation (10) reduces to

‖r(s∗)‖ =
1

κ(s∗)
+

1

κ(t∗)
. (11)

Because 1
|κ(s∗)| and 1

|κ(t∗)| are the radii of the osculating circles14 at s∗ and t∗, respectively, these
two circles are tangent to each other.

We are primarily interested in finding simple antipodal points, which will be simply referred to
as antipodal points whenever no ambiguity arises.

14Definition of the osculating circle is given in Appendix C.
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3.3 A Classification

At a pair of simple antipodal points s∗ and t∗, θ(s∗) = 0 and equation (10) becomes

θ′(s∗) = −κ(s∗) +
1

‖r(s∗)‖

(

κ(s∗)

κ(t∗)
+ 1

)

. (12)

Let us rearrange the terms in the above equation:

(

1 +
θ′(s∗)

κ(s∗)

)

‖r(s∗)‖ =
1

κ(s∗)
+

1

κ(t∗)
.

Let Os be the center of curvature at s∗ and Ot the center of curvature at t∗. Clearly, s∗, t∗, Os, Ot are
collinear. We now classify simple antipodal points into the following five types which are illustrated
in Figure 15:

Type A : α convex at both s∗ and t∗ and 1
κ(s∗) + 1

κ(t∗) < ‖r(s∗)‖. In this case θ′(s∗) < 0 and the

order along r(s∗) is s∗, Os, Ot, t
∗.

Type B : α convex at both s∗ and t∗ and 1
κ(s∗) + 1

κ(t∗) > ‖r(s∗)‖. In this case θ′(s∗) > 0 and the

order along r(s∗) is s∗, Ot, Os, t
∗.

Type C : α convex at one of s∗ and t∗ while concave at the other and 1
κ(s∗) + 1

κ(t∗) > ‖r(s∗)‖. The
osculating circle at the concave antipodal point is entirely contained within the osculating
circle at the convex antipodal point. In this case θ′(s∗) and κ(s∗) have the same sign.

Type D : α convex at one of s∗ and t∗ while concave at the other and 1
κ(s∗) + 1

κ(t∗) < ‖r(s∗)‖.
The osculating circle at the concave antipodal point is not contained in the osculating circle
at the convex antipodal point. In this case θ′(s∗) and κ(s∗) have opposite signs.

Type E : α concave at both s∗ and t∗. That 1
κ(s∗) + 1

κ(t∗) < ‖r(s∗)‖ always holds. In this case

θ′(s∗) > 0.

4 Computation of Antipodal Points

This section presents an algorithm that finds all simple antipodal points on two segments S and T
of α under conditions (i)–(v) given in Sections 2 and 3.1. Recall that S and T are defined over the
intervals (sa, sb) and (ta, tb), respectively. The algorithm works by alternatively marching on the
two segments and bisecting them. Its behavior is determined by the signs of the antipodal angles
at the endpoints sa and sb as well as by the convexity of the segments.

Table 1 gives the pseudocode of the algorithm as a procedure Antipodal-Points and its two
subroutines Bisect and March. The procedure Antipodal-Points invokes either Bisect or March
according to whether the signs of the antipodal angles θ(sa) and θ(sb) are the same or not. The
subroutine Bisect performs numerical bisection to find a pair of antipodal points. This will be
described in Section 4.1. The subroutine March searches for antipodal points in a march starting
at one pair of opposing endpoints of S and T . It employs one of two different strategies, detailed
in Sections 4.2.1 and 4.2.2, respectively, depending on whether one or both of the segments are
convex.
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Figure 15: Five types of simple antipodal points.
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Antipodal-Points(sa, sb, ta, tb)
1 if θ(sa) · θ(sb) < 0
2 then Bisect(sa, sb, ta, tb)
3 else March(sa, sb, ta, tb)

Bisect(sa, sb, ta, tb)
1 bisect the segments as described in Section 4.1
2 output the found pair of antipodal points (s∗, t∗)
3 if S or T is convex
4 then March(sa, s

∗ − ǫ, ta, t
∗ − δ1)

5 March(s∗ + ǫ, sb, t
∗ + δ2, tb)

March(sa, sb, ta, tb)
1 if both S and T are convex
2 then march on the segments as described in Section 4.2.1
3 else march on the segments as described in Section 4.2.2
4 if two antipodal points s∗ and t∗ are found
5 then output (s∗, t∗)
6 if the march started at sb and tb
7 then Bisect(sa, s

∗ − ǫ, ta, t
∗ − δ1)

8 else Bisect(s∗ + ǫ, sb, t
∗ + δ2, tb)

Table 1: The procedure Antipodal-Points finds all antipodal points (up to numerical precision) on a
pair of segments over (sa, sb) and (ta, tb), respectively. The subroutines March and Bisect call each other
recursively. In the pseudocode, ǫ > 0 is a small constant, t∗ − δ1 is the opposite point of s∗ − ǫ, and t∗ + δ2
is the opposite point of s∗ + ǫ.

The subroutines Bisect and March call each other recursively to partition the two segments
into smaller pieces and examine them. The recursive calls always terminate at the subroutine March
unless S and T are both concave.

Whenever the subroutine Bisect is invoked, the two antipodal angles θ(sa) and θ(sb) have
opposite signs. Clearly, this is true in line 2 of Antipodal-Points. This is also true in lines 7–8
of March, as will be seen in Sections 4.2.1 and 4.2.2. So the subroutine guarantees to find one pair
of antipodal points. In the case where S and T are concave, at most one pair of antipodal points
exists. This fact will be established in Section 4.1.

Figure 16 illustrates the working of Antipodal-Points on an ellipse. The ellipse is equally
divided into two convex segments over (sa, sb) and (ta, tb), respectively, where α(sa) = α(tb),
α(sb) = α(ta), and N(sa) = −N(ta). Here θ(sa) < 0 and θ(sb) < 0. The subroutine March

performs a clockwise march starting at sb and tb in line 2 of its pseudocode and finds the first pair
of antipodal points s∗1 and t∗1. For small enough ǫ > 0, θ(s∗1 − ǫ) > 0. In line 7, the subroutine
Bisect is invoked on (sa, s

∗
1− ǫ) and (ta, t

∗
1− δ1), where N(t∗1− δ1) = −N(s∗1− ǫ). This subroutine

finds a second antipodal pair s∗2 and t∗2 in its line 1. Finally, in lines 4–5 of Bisect, a march is
invoked on the pair (sa, s

∗
2 − ǫ) and (ta, t

∗
2 − δ2) and another march on the pair (s∗2 + ǫ, s∗1 − ǫ) and

(t∗2 + δ3, t
∗
1 − δ1). No more antipodal points are found. Figure 16 (b) gives the recursion tree for
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Figure 16: (a) Two pairs of antipodal points (s∗1, t
∗

1) and (s∗2, t
∗

2) on an ellipse; and (b) the recursion tree
for finding them. Here α(sb) = α(ta) and N(sa) = −N(ta).

the example.

4.1 Opposite Angle Signs at Endpoints

The subroutine Bisect is invoked when the antipodal angles θ(sa) and θ(sb) have different signs.
At least one pair of antipodal points exists. The bisection method [33, pp. 261–263] guarantees
to find one such pair, say (s∗, t∗). Suppose θ(sa) < 0 and θ(sb) > 0. Bisection starts by setting
(s0, t0) ← (sa, ta) and (s1, t1) ← (sb, tb). Then it evaluates s2 ←

s0+s1
2 and finds t2 ∈ (t0, t1)

such that N(t2) = −N(s2). If θ(s2) > 0, set (s1, t1) ← (s2, t2); otherwise, set (s0, t0) ← (s2, t2).
Repeat the above steps until θ(s2) approaches 0. For the evaluation of θ(s2),

15 a primitive call
point-with-normal(t0, t1,−N(s2)) is made to find t2.

Three cases arise based on the convexities of S and T .

• Both S and T are concave. So κ(s) < 0 and κ(t) < 0. It follows from (10) that θ′(s) > 0. The
antipodal angle θ increases monotonically from sa to sb. A unique pair of antipodal points (of
Type E) exists if θ(sa) < 0 and θ(sb) > 0. Otherwise, no antipodal points exist. Figure 17(a)
shows an example.

• Both segments are convex. Either θ′(s∗) < 0 or θ′(s∗) > 0 holds. The antipodal points are of
either Type A or Type B accordingly. An example of Type B antipodal points is shown in
Figure 17(b).

• One of segment is convex and the other is concave. Either θ′(s∗) > 0 or θ′(s∗) < 0 holds. So
s∗ and t∗ are of either Type C or Type D as shown in Figure 17(c) and (d), respectively.

Each step of bisection halves the interval, increasing the precision on the estimates of s∗ and t∗

by one binary bit. A precision requirement of ω binary bits can thus be achieved in ω+log(sb−sa) =

15In implementation, we do not need to compute θ(s) explicitly. Instead we evaluate the cross product N(s)×r(s).

That −π/2 < θ < π/2 guarantees a one-to-one correspondence between θ and sin θ = N(s)× r(s)
‖r(s)‖

. For instance, to

test the condition θ(s2) > 0, we would actually test the condition N(s2) × r(s2) > 0.
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Figure 17: Antipodal points s∗ and t∗ found using bisection, where Os and Ot are the centers of the
osculating circles at s∗ and t∗, respectively. (a) two concave segments; (b) two convex segments with
θ′(s∗) > 0; (c) a convex segment and a concave segment with θ′(s∗) > 0; (d) a convex segment and a concave
segment with θ(s∗) < 0. 24



Θ(ω) steps. Every bisection step involves a call to the primitive point-with-normal to find ti from
si. This requires O(ω) numerical steps. So the total number of low-level numerical steps is O(ω2).16

4.2 Same Angle Sign at Endpoints

When the antipodal angles θ(sa) and θ(sb) have the same sign, at least one of S and T must
be convex in order to have antipodal points. Sections 4.2.1 and 4.2.2 will present two different
“marching” strategies to find one pair of antipodal points if exists. Together they implement the
subroutine March in Table 1.

4.2.1 Two Convex Segments

Since κ(s) > 0 over S and κ(t) > 0 over T , we cannot determine the sign of θ′(s). A march on S
and T is performed in the search for antipodal points, based on the following fact.

Proposition 6 When S and T are convex, the vector r(s) rotates counterclockwise as s increases
from sa to sb.

Proof We need only show that dr
ds
× r < 0. Differentiate the vector r:

dr

ds
=

d

ds

(

α(t)−α(s)
)

= T (t)

(

1 +
κ(s)

κ(t)

)

.

Hence dr
ds

is in the direction of T (t) since κ(s), κ(t) > 0. Meanwhile, from condition (v) that
r(s) ·N(s) > 0 it follows that

T (t)× r(s) = −T (s)× r(s)

= −N(s) · r(s)

< 0.

Therefore dr(s)
ds
× r(s) < 0.

Figure 18 illustrates the march when θ(sa) < 0 and θ(sb) < 0. It starts with s and t at s0 = sb

and t0 = tb, respectively. By Proposition 6, the vector r(s) rotates clockwise as s decreases to sa.
In the ith iteration, move s from si to si+1 at which the normal is parallel to the vector r(si). If
no such point si+1 exists, stop. Otherwise, move t from ti to ti+1 where N(ti+1) + N(si+1) = 0.
The iteration continues until si and ti converge to a pair of antipodal points, as in the figure, or no
si+1 can be found (that is, sa has been reached), in which case no antipodal points exist.

Lemma 7 In the case θ(sa) < 0 and θ(sb) < 0 of marching, si > si+1 and every s ∈ [si+1, si]
satisfies θ(s) < 0 for all i ≥ 0.

16In fact, we may also apply Newton-Raphson’s method to find s∗ and t∗, where the derivative θ′ is evaluated
according to (10). If Newton-Raphson fails, then we fall back on bisection. However, evaluation of the derivative of
antipodal angle might be expensive enough to offset the quadratic convergence of Newton-Raphson.
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Figure 18: Geometry at two antipodal points s∗ and t∗ with positive curvatures: θ′(s∗) < 0 and s∗ is closer
to the center of curvature Os at s∗ than to the center of curvature Ot at t∗. Here θi = θ(si).

Proof We use induction. That θ(s0) = θ(sb) < 0 follows directly from the initial condition.
Suppose θ(si) < 0. The normal N(s) rotates clockwise as s decreases from si. Also since N(si)×
r(si) < 0 and the normal N(si+1), if si+1 exists, is in the direction of r(si), we know that

si+1 < si;

N(s)× r(si) < 0, for all s ∈ (si+1, si). (13)

Under condition (v), r(si+1) ·N(si+1) > 0; hence r(si+1) ·r(si) > 0. By Proposition 6, r(s) rotates
clockwise from si to si+1. It then follows that

r(si)× r(s) < 0, for all s ∈ [si+1, si). (14)

Combining inequalities (13) and (14) with condition (v), we have

N(s)× r(s) < 0, for all s ∈ [si+1, si).

Thus θ(s) < 0 for all s ∈ [si+1, si).

Lemma 7 states that the sequence s0, s1, s2, . . . generated above according to the equation

N(si+1)× r(si) = 0 (15)

is strictly decreasing and no antipodal point exists on [si, sb) = ∪i
k=1[sk, sk−1) for all i > 0. The

sequence {si} is bounded from below by s∗, the closest antipodal point to sb if exists. So it must
converge to some ξ ∈ (sa, sb) where N(ξ)× r(ξ) = 0. Hence ξ is an antipodal point and ξ = s∗.
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Next, we determine the local convergence rate of the sequence {si}. We want to look at f ′(s∗)
first. For simplicity, denote the antipodal angle θ(si) as θi. By the definition of antipodal angle
and also from that r(si) and N(si+1) are in the same direction we have

sin θi = N(si)×N(si+1).

Differentiating both sides of the above equation yields

cos θi θ
′(si) = −κ(si)T (si)×N(si+1) +N(si)×

(

−κ(si+1)f
′(si)T (si+1)

)

= −κ(si) sin

(

π

2
+ θi

)

− κ(si+1) sin

(

θi −
π

2

)

f ′(si) from Figure 18(b)

= −κ(si) cos θi + κ(si+1) cos θif
′(si).

Hence

f ′(si) =
θ′(si) + κ(si)

κ(si+1)
,

f ′(s∗) =
θ′(s∗)

κ(s∗)
+ 1 (16)

=
κ(s∗) + κ(t∗)

κ(s∗)κ(t∗)‖r(s∗)‖
> 0, by (12)

where t∗ on T is the opposite point of s∗. The march starts at sb where θ(sb) < 0 and never passes
s∗. So θ′(s∗) < 0 must hold in the non-degenerate case.17 It then follows from (16) that f ′(s∗) < 1.
The march converges at linear rate to s∗.

When θ(sa) > 0 and θ(sb) > 0, the march starts at sa and ta and moves toward sb and tb. The
result on convergence still holds. Combining the above analysis and Lemma 7, we have established
the correctness of the marching procedure.

Theorem 8 The following statements hold after the execution of line 2 in the subroutine March:

1. If no antipodal points exist on S and T , the march terminates at sa and ta in the case
θ(sa) < 0 and θ(sb) < 0 or at sb and tb in the case θ(sa) > 0 and θ(sb) > 0.

2. Otherwise, the march converges at linear rate to a pair of antipodal points s∗ and t∗ closest
to the two starting endpoints. Furthermore, θ′(s∗) < 0 must hold. The antipodal points are
of Type A.

Given the linear convergence rate, the two sequences {si} and {ti} must have length O(ω) to
achieve the precision of 2−ω on the estimated s∗ and t∗. The step from si to si+1 and then to
ti+1 involves two calls to the primitive point-with-normal, which takes O(ω) steps. So the march
takes O(ω2) numerical steps to obtain the pair of antipodal points. If no antipodal points exist,
the march will reach the other pair of endpoints. The lengths of the sequences {si} and {ti} in this
case is independent of ω and can be treated as constant.

17That θ′(s∗) = 0 is the degenerate case, in which case the two antipodal points are of at least the second order.
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4.2.2 A Convex Segment and A Concave Segment

We need only consider the case that S is convex and T is concave as the other case is symmetrical.
First, we determine if one of the rays extending the normals N(ta) and N(tb) intersects S. Under
conditions (i)–(v) in Sections 2 and 3.1, testing if the ray extending N(ta) at the point ta, or
simply called the ray of N(ta), intersects S can be done by checking whether the cross products
(α(sa)−α(ta))×N(ta) and (α(sb)−α(ta))×N(ta) have different signs.

Lemma 9 Suppose S is convex and T is concave. Also suppose that the two antipodal angles θ(sa)
and θ(sb) have the same sign. No antipodal points exist on S and T if neither the ray of N(ta) nor
the ray of N(tb) intersects S.

Proof Without loss of generality, we assume that N(sa) points vertically upward, as shown in
Figure 19. Under condition (v), S and T must lie on the same sides of the two tangent lines La

sa

t b

t a

t a

L a

sa sb

L b

(    )N

(    )N

S

T

(    )N sa

t a

t b

sb
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(    )N t b

bL

L a

S
T

(a) (b)

Figure 19: No antipodal points when neither the ray of N(ta) nor the ray of N(tb) intersects the segment S.

and Lb of S at sa and sb, respectively.
Suppose neither of the rays of N(ta) and N(tb) intersects S. Because N(ta) does not intersect

S, ta is either to the right of S or to its left. If ta is to the right, condition (v) requires that the
segment T do not cross the line containing N(ta) into its left. So T lies entirely to the right of the
segment S, as shown in Figure 19(a). But all normals on S point to the left. Thus no antipodal
points exist.

If ta is to the left of S, then θ(sa) > 0. Because θ(sb) has the same sign, θ(sb) > 0. Then S and
T must lie on different sides of the line containing N(tb) as shown in Figure 19(b). Apparently,
they cannot have antipodal points either.

When either the ray of N(ta) or the ray of N(tb) intersects S, we carry out the following march.
Start at s0 = sa and t0 = ta if the ray of N(ta) intersects S as illustrated in Figure 20, or at s0 = sb

and t0 = tb if the ray of N(tb) intersects S. In each round, si+1 is generated as the intersection of
the ray of N(ti) and S and ti+1 is generated as its opposite point.

28



sas  = 0

t b

sb

i +1

*t

s*

t b

sb

*t

Os

s*

s*

*t

sa

it i +1t

si
s

Ot

1/κ(   )

1/κ(   )

t   a

t   at   = 0
-

S

T

(a) (b)

Figure 20: (a) Marching toward two antipodal points s∗ and t∗ when the ray of N(ta) intersects S: the
normal at ti+1 is opposite to that at si+1, where the ray of N(ti) intersects S. (b) The osculating circle at
t∗ is contained entirely within the osculating circle at s∗.

Lemma 10 Suppose S is convex and T is concave and the two antipodal angles at the endpoints
sa and sb of S have the same sign. Also suppose the ray of N(ta) intersects S. In the march,
si < si+1 and no antipodal points exist in (si, si+1] and (ti, ti+1] for all i ≥ 0.

Proof The conditions imply that θ(sa) < 0. We use induction to prove that, for all i ≥ 0,
θ(si) < 0 and every point s ∈ (si, si+1] and its opposite point t ∈ (ti, ti+1] cannot be antipodal.
Obviously, s0 = sa and t0 = ta are not antipodal. Suppose si and ti are not antipodal. Since S is
convex and 0 < Φ(sa, sb) ≤ π, we have that N(u)×N(v) > 0 for any u, v ∈ (sa, sb) with u < v. If
si+1 exists on S, then si+1 > si holds due to that θ(si) < 0 and that si+1 is the intersection of the
ray of N(ti) with S. Therefore for all s ∈ (si, si+1]

N(s)×N(si) < 0 and N(s)×
(

α(ti)−α(si+1)
)

< 0, (17)

since α(ti)−α(si+1) is in the direction of the normal N(si). Meanwhile, the point α(s) lies to the
left of the line through α(ti) and α(si+1) while α(t) lies to its right; hence

(

α(ti)−α(si+1)
)

×
(

α(t)−α(s)
)

< 0. (18)

Conditions (17) and (18) plus condition (v) imply that N(s) × (α(t) − α(s)) < 0. Hence s and
t cannot be antipodal for all s ∈ (si, si+1]. In particular, si+1 and ti+1 are not antipodal and
θ(si+1) < 0.

Following Lemma 10, the sequence {si} defined by

(

α(ti)−α(si+1)
)

×N(si) = 0 (19)
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is strictly increasing. And no antipodal points exist on (sa, si] for all i > 0. If there exists at least
one antipodal point on S, the sequence {si} will converge to the closest such point s∗ from sa.

Next, we study the local convergence rate of the sequence. Equation (19) defines an iteration
function g where si+1 = g(si). Differentiate this equation with respect to si:

(

T (ti)
dt

ds
(si)− T (si+1)g

′(si)

)

×N(si) +
(

α(ti)−α(si+1)
)

×
(

−κ(si)T (si)
)

= 0.

The above equation reduces to

−
dt

ds
(si)− g

′(si)T (si+1)×N(si) + κ(si)
∥

∥

∥α(ti)−α(si+1)
∥

∥

∥ = 0,

from which we obtain

g′(si) =
κ(si)‖α(ti)−α(g(si))‖ −

κ(si)
κ(ti)

T
(

g(si)
)

×N(si)
,

g′(s∗) = κ(s∗)
∥

∥

∥α(t∗)−α(s∗)
∥

∥

∥−
κ(s∗)

κ(t∗)
.

Because κ(s∗) > 0 and κ(t∗) < 0, g′(s∗) > 0. Because θ(si) < 0 and si+1 > si, for i = 0, 1, . . .,
θ′(s∗) > 0; in other words,

−κ(s∗) +
1

‖r(s∗)‖

(

κ(s∗)

κ(t∗)
+ 1

)

> 0. (20)

in the non-degenerate case. This implies that g′(s∗) < 1. So we have that 0 < g′(s∗) < 1.
Geometrically, the osculating circle at s∗ contains the osculating circle at t∗ in its interior, as
shown in Figure 20(b).

Similar analysis can be performed for the case where the ray of N(tb) intersects S.

Theorem 11 Suppose S convex and T concave. No antipodal points exist on S and T if neither
the ray of N(ta) nor the ray of N(tb) intersects S. Otherwise, the following statements hold after
the execution of line 3 in the subroutine March:

1. If no antipodal points exist on S and T , then the march described above will terminate at the
other endpoints of S and T .

2. Otherwise, the march will converge at linear rate to a pair of antipodal points s∗ and t∗ closest
to the two starting endpoints. Furthermore, θ′(s∗) > 0. The antipodal points are of Type C.

The linear convergence rate of the sequence {si} defined by (19) implies that the length of the
sequence must be O(ω) to attain ω binary bits of precision on the estimated s∗. Each iteration
step from si and ti to si+1 and ti+1 involves a call each to the primitives point-on-ray and
point-with-normal. Such a step requires O(ω) numerical steps. Therefore the number of low-
level iteration steps in obtaining s∗ and t∗ is O(ω2).
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4.3 Correctness and Running Time

Combining the results from Sections 4.1 and 4.2, the subroutines Bisect and March, we now
establish the correctness of the procedure Antipodal-Points.

Theorem 12 The procedure Antipodal-Points finds all pairs of antipodal points on any two curve
segments satisfying conditions (i)–(v) if the constant ǫ is chosen small enough in the subroutines
Bisect and March.

Proof Consider a pair of such segments S and T defined over (sa, sb) and (ta, tb), respectively.
It suffices to show that the subroutines Bisect and March find all pairs of antipodal points under
the conditions θ(sa) · θ(sb) < 0 and θ(sa) · θ(sb) > 0, respectively. We use induction on the number
k of pairs of antipodal points.

The base case k = 1 follows from the correctness of bisection and marching in finding one pair
of antipodal points when exists. This has been established in Sections 4.1, 4.2.1, and 4.2.2.

A call to the subroutine Bisect always finds a pair of antipodal points, say, s∗ and t∗, which
splits S and T into two pairs of segments. Assume that ǫ is small enough such that the interval
(s∗−ǫ, s∗+ǫ) contains no antipodal point other than s∗. The subroutine shortens the two segments
on S to be over (sa, s

∗ − ǫ) and (s∗ + ǫ, sb), respectively. The two segments on T are shortened
correspondingly such that the resulting two new pairs of segments satisfy conditions (i)–(v). Nu-
merical bisection ensures that the antipodal angles θ(sa) and θ(s∗ − ǫ) have the same sign, and so
do the antipodal angles θ(s∗+ ǫ) and θ(sb). Each new pair contains at most k−1 pairs of antipodal
points. By induction, the two recursive calls to the subroutine March on lines 4–5 will find the
remaining antipodal points.

A call to the subroutine March finds the first pair of antipodal points s∗ and t∗, if exists, in the
direction of marching. No antipodal point exists on the interval (sa, s

∗) or (s∗, sb), which has been
marched over. Shorten the unmarched interval of S to (s∗+ǫ, sb) or (sa, s

∗−ǫ), and the unmarched
interval of T correspondingly. The antipodal angle changes sign at s∗ but not over the interval
discarded as a result of marching and shortening. Also θ(sa) and θ(sb) have the same sign. So we
infer that the antipodal angles at the endpoints of the shortened interval must have different signs.
By induction, the recursive call to the subroutine Bisect on line 7 or 8 will find the remaining
k − 1 pairs of antipodal points.

Now let us conduct a time analysis of the procedure Antipodal-Points. Suppose there exist k
pairs of antipodal points on the segments S and T . Again suppose ω (binary) bits of precision is
required. The subroutines Bisect and March each takes time O(ω2), excluding the recursive calls
within themselves. The total number of recursive calls is Θ(k). In case of no antipodal points,
only the subroutine March is invoked once. Therefore the running time of Antipodal-Points is
O((k + 1)ω2).

5 Curve Preprocessing

In this section, we describe how to generate pairs of segments on α that satisfy conditions (i)–(v)
in Sections 2 and 3.1. The preprocessing consists of four consecutive steps overviewed below and
illustrated in Figure 21.

1. Compute all points of simple inflection on α and split the curve at these points. A point s
is simple inflection if the curvature κ(s) = 0 but κ′(s) 6= 0. In Figure 21(a), there are four
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Figure 21: Four preprocessing steps. The two segments over (sa, sb) and (ta, tb) form one of the pairs that
satisfy conditions (i)–(v) and will be searched for antipodal points by the algorithm in Section 4.

simple inflections z1, z2, z3, and z4. They divide α into four segments, each of which satisfies
κ > 0 everywhere or κ < 0 everywhere in its interior.

2. Split every segment with total curvature beyond [−π, π]. In Figure 21(b), the segments over
[z2, z3] and [z4, z1] are split at the points w1 and w2, respectively.

3. Enumerate all pairs of the resulting segments. For each pair shorten one or both segments if
necessary until their endpoints have opposite normals. Consider the pair defined on [z1, z2]
and [z3, z4] in Figure 21(c), for example. The segment on [z1, z2] is replaced with the segment
[u1, u2] where N(u1) = −N(z3) and N(u2) = −N(z4). After this operation, every pair will
satisfy conditions (i)–(iii) in Section 2.

4. For each segment pair, determine if any of its endpoints with opposite normals are antipodal.
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If yes, report the antipodal points and shorten the two segments slightly. This has established
condition (iv) in Section 3. But condition (v) is not necessarily satisfied. We need to extract
the sections on the two segments determined by the incident points of their common tangents.
For example, in Figure 21(d), condition (v) is violated at u1 and z3 and at u2 and z4. The
two common tangents are incident on sa, sb, ta, and tb. Only the two sections (sa, sb) and
(ta, tb) from the segment pair satisfy condition (v).

Preprocessing steps 1, 2, and 4 will be detailed in Sections 5.1, 5.2, and 5.3, respectively.

5.1 Points of Simple Inflection

Intuitively, a point of simple inflection is where the closed curve α changes from convex to concave
or from concave to convex. In general, a point s with κ(s) = κ′(s) = · · · = κ(k−1)(s) = 0 and
κ(k)(s) 6= 0 is an inflection point of order k. A second order inflection will not alter the convexity
or concavity of its neighborhood and thus can be neglected for our purpose. Inflections of order
higher than two are very rare and are also neglected in this paper.

Locating inflection points amounts to finding the zeros of the nonlinear function κ(s). A global
strategy such as the one combining linear search and backtracking with Newton’s method would be
complicated to program and yet cannot guarantee to find all zeros. Since the curve domain [0,D] is
one-dimensional, we here employ a straightforward strategy that almost always finds all inflection
points on α. Divide the curve domain, say [0,D], into m subintervals. Every subinterval whose
endpoints have curvatures of different signs contains at least one point of simple inflection. We can
then find one such inflection using bisection. This method will find all points of simple inflection
provided that no two of them are closer than D

m
apart. We need to choose m large enough so as

not to miss an inflection point but not too large to make the computation inexpensive.
When discretizing the domain into m subintervals, we can also compute the total curvatures

of the resulting m segments using the closed form (27) in Appendix C.18 This information is then
used for evaluating the total curvatures of segments partitioned by inflection points.

5.2 Opposing Normals

We enumerate all possible pairs of segments due to inflections and after splitting. How to preprocess
one pair defined on, say [sc, sd] and [tc, td], so that their new endpoints will be opposite to each
other? Let Cs be the cone containing all the inward normals of the curve α defined on [sc, sd] and
Ct be the cone containing all the inward normals defined on [tc, td]. Let the cone C̄t consist of all
the outward normals on [tc, td]. Next, intersect the two cones Cs and C̄t. The points whose inward
normals (or outward normals) are the edges of the intersection cone bound exactly the portions of
the segments that satisfy condition (ii). The remaining portions are discarded. If the cones Cs and
C̄t do not intersect, the pair of segments will not contain any antipodal points.

Figure 22 illustrates the operation. In this example, the normals N(sc) and −N(tc) define the
intersection cone. Using the procedure point-with-normal, we find se and te such that N(te) =
−N(sc) and N(se) = −N(tc). Clearly, antipodal points, if exist, can only appear on the curve
segments over [sc, se] and [te, tc].

18Here we assume that m is large enough such that none of the m segments has total curvature greater than (or
less than) 2π.
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Figure 22: Intersecting the two cones of curve normals over [sc, sd] and [tc, td], respectively. Antipodal
points may only appear on the two sections over [sc, se] and [te, tc].

Relabel the endpoints of the extracted sections as sc, tc, sd, and td such that sc < sd, N(sc) =
−N(tc), and N(sd) = −N(td). We detect if sc and tc are antipodal or sd and td are antipodal.
If so, simply remove from each segment a very small portion containing the antipodal point and
update the endpoints accordingly to maintain condition (ii). Let us refer to the segment over the
updated open subdomain (sc, sd) as S and the segment over the updated open subdomain (tc, td)
as T .

5.3 Extracting Opposite Segments

By now S and T satisfy conditions (i)–(iv). Condition (v) states that N(s) ·r(s) > 0 for all s on S.
This is not necessarily satisfied. To further process the segments, we observe that the dot product
N(s) · r(s) changes its sign where

N(s) · r(s) = 0;

that is, when the line passing through s and its opposite point t is a common tangent of S and T .
The algorithm in Section 2.4 then finds all common tangents of S and T .

In Section 2.1 we showed that at most two common tangents exist on the segments. If no
common tangent exists on S and T , the dot product N(s) · r(s) does not change its sign. We need
only evaluate it at one point, say, the endpoint sc. If the value is positive, then condition (v) is
satisfied by S and T . Otherwise, the pair cannot contain any antipodal points and is not considered
further.

Suppose that S and T have at least one common tangent. How do we extract the sections of S
and T that satisfy condition (v) in general? In the case of one common tangent, denote by sa and
ta the points of tangency on S and T , respectively. In the case of two common tangents, denote
by sb and tb the second pair of tangency points such that sa < sb. The antipodal angle θ(sa) at sa

is either π
2 when N(sa) × r(sa) > 0 or −π

2 when N(sa) × r(sa) < 0. Equation (10) simplifies to
θ′(sa) = −κ(sa). There are four possibilities:

1. θ(sa) = π
2 and θ′(sa) < 0. In this case, (sa, sb) and (ta, tb), or (sa, sd) and (ta, td) if only one

common tangent exists, satisfies (v).
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2. θ(sa) = π
2 and θ′(sa) > 0. In this case, (sc, sa) and (tc, ta) satisfy condition (v). When the

second common tangent exists, (sb, sd) and (tb, td) also satisfy condition (v).

3. θ(sa) = −π
2 and θ′(sa) < 0. Same as Case 2.

4. θ(sa) = −π
2 and θ′(sa) > 0. Same as Case 1.

An example is shown in Figure 23. The two points of tangency sa and sb (ta and tb, respectively)

sa
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s

a

b +
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t

tc
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c
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b

Figure 23: Extracting two concave segments over (sa, sb) and (ta, tb) which satisfy conditions (i)–(iv). The
antipodal angle θ is zero at the points of tangency sa and sb and alternates its sign (as labelled) on the three
segments over (sc, sa), (sa, sb), and (sb, sd).

divide S (T , respectively) into three sections. Here θ(sa) = −π
2 and θ′(sa) > 0. The dot product

N(s) · r(s) is positive over (sa, sb) but negative over (sc, sa) and (sb, sd), Clearly, antipodal points
could only appear on the two sections over (sa, sb) and (ta, tb), respectively.

6 Time Complexity

Let n be the number of inflection points and m the number of pairs of antipodal points on the
curve α. Suppose ω bits are required for the precision.

A monotone segment between two points of simple inflection generally does not take the shape
of a spiral with total curvature many times of 2π. So we assume that Θ(n) segments with total
curvature in [−π, π] are generated by the dissection. There are O(n2) pairs of segments satisfying
conditions (i)–(v) introduced in Sections 2 and 3.1. The dominating cost of generating each pair
after the dissection lies in the common tangent construction, which is O(ω logω) as analyzed in
Section 2.3. The cost of preprocessing is also affected by the computation of inflection points, which
can be approximated as O(nω) provided that the curve domain is discretized into Θ(n) subintervals.
Empirically we have found that the computation is still dominated by common tangent construction.
So it is reasonable to approximate the total cost of preprocessing as O(n2ω logω).

There are a total of O(n2 +m) calls to the procedures Bisect and March in Section 4. As given
in Section 4.3, every such call requires O(ω2) low-level numerical steps. Therefore the time spent
on finding all antipodal points is O((n2 +m)ω2), which remains to be the running time even when
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preprocessing is taken into account. In practice, the number ω of digits required for the precision
is a constant. Then the running time becomes O(n2 +m). The bound is tight for some curves such
as those in the family defined by (8), where m = Θ(n2) can be reached.

7 Arbitrary-Speed Curves

Until now we have assumed that the curve α is unit-speed. In fact, all the described numerical
procedures are still applicable when α is arbitrary-speed. The convergence results in Sections 2.3,
4.2.1, and 4.2.2, for finding common tangents and antipodal points are clearly independent of
parameterization. Now let us show that the local convergence rates will carry over as well.

Suppose α(s) is not unit-speed. Let σ be the modified version of any of the previously described
iteration functions h, f, g given in Sections 2.3, 4.2.1, and 4.2.2, respectively, such that si+1 = σ(si).
There exists a unit-speed reparameterization α̃(s̃) of α such that ‖α̃(s̃)‖ = 1 [27, p. 51]. From
α(s) = α̃(s̃(s)) we obtain the derivative

α
′(s) = α̃

′(s̃) s̃′(s).

Since ‖α̃′‖ = 1, the derivative of the new parameter is

s̃′(s) = ‖α′(s)‖.

Denote by σ̃ the corresponding iteration function for the unit-speed parameterization that we
have studied before. So σ̃ is one of f, g, and h. It follows that

s̃(si+1) = s̃i+1

= σ̃(s̃i)

= σ̃(s̃(si)).

Differentiating the above equation yields

s̃′(si+1)σ
′(si) = σ̃′

(

s̃(si)
)

s̃′(si). (21)

The iteration functions under the two parameterizations are thus related by

σ′(si) = σ̃′
(

s̃(si)
)

s̃′(si)
/

s̃′(si+1)

= σ̃′
(

s̃(si)
)

‖α′(si)‖
/

‖α′(si+1)‖.

At an antipodal point s∗ the above equation simplifies to

σ′(s∗) = σ̃′(s̃∗)
‖α′(s∗)‖

‖α′(s∗)‖

= σ̃′(s̃∗).

In the case σ′(s∗) = 0, where σ corresponds to the iteration function h in Section 2.3, we differen-
tiate (21) and derive that

σ′′(s∗) = σ̃′′(s̃∗) · ‖α′(s∗)‖.

Therefore for arbitrary-speed curves, the convergence rates of all three iterative procedures
are the same as for the unit-speed curves. In other words, these rates are independent of the
parameterization.
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(a) (b)

(c) (d)

Figure 24: Antipodal points on four different shapes: (a) a convex cubic spline; (b) an elliptic lemniscate;
(c) a limaçon; and (d) a non-convex cubic spline.

8 Experiments

We have implemented the algorithm for computing antipodal points in MS Visual C++ for arbitrary-
speed curves. Appendix A offers details on the implementation of the primitives point-with-normal,
point-on-ray, and point-of-tangency.

Figure 24 displays all antipodal points found on four different shapes: (a) a convex cubic spline;

(b) an elliptic lemniscate described by ρ =
√

62 cos2 φ+ 32 sin2 φ in polar coordinates; (c) a limaçon

ρ = 4 + 5
2 cosφ; and (d) a non-convex cubic spline. The first three examples each took about 10

milliseconds on a DELL Dimension PC with Pentium III 933 MHz CPU. The fourth example took
20 milliseconds. A non-degenerate closed convex curve, like the cubic spline in (a), has two pairs
of antipodal points. We already gave a formal argument of the fact in the introduction. That four
pairs of antipodal points exist on an elliptic leminiscate can be verified. A limaçon has two pairs
of antipodal points at 0 and π and at π

2 and 3π
2 , respectively.

The non-convex cubic spline in (d) has four of the five types of antipodal points classified in
Figure 15. The two pairs of antipodal points labeled 6 and 10 are of Type A. Pair 8 is of Type B.
Pairs 1, 3, 5, 7, and 9 are of Type D. And pairs 2 and 4 are of Type E.
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9 Discussion

We have presented two algorithms that compute geometric substructures related to a simple, closed,
and twice continuously differentiable curve. These structures include common tangents and antipo-
dal points. Inflection points divide the curve into segments that are either convex everywhere or
concave everywhere. Such monotonicity allows the design of various marching strategies with linear
or quadratic convergence rates. To find all antipodal points, two such strategies are interleaved
with bisection recursively based on the local geometry, which is determined from the signs of an-
tipodal angles. The idea of curve dissection followed by the coupling of marching with bisection is
potentially applicable to other computational problems involving curves.

Nonlinear programming may not be very effective at solving geometric problems, especially those
with low dimensions. For instance, a nonlinear programming solution based on equations (7) to find
antipodal points, inherently local, would have to rely heavily on initial guesses. It would be slow
(when multiple guesses are used) and not guarantee to find any antipodal points, not to mention
all of them. Our results demonstrate that computational efficiency and (almost) completeness can
be achieved by exploiting both global and differential geometry.

The common tangent algorithm may be used as a subroutine to support more complex curve
computation. For instance, in the author’s recent work [17] it was employed to design a group of
algorithms that construct the convex hulls of closed plane curves and polygons.

The described work is expected to be implemented with an Adept Cobra 600 robot as part of
the ongoing research on localizing and grasping curved objects [13, 14]. We will need to develop a
quality measure [25] that selects the best pair of antipodal points to place two fingers at.

In the following we would like to discuss in more details numerical issues, completeness, exten-
sions, and analysis surrounding the presented curve computation scheme.

9.1 Completeness and Numerical Issues

The completeness of the presented algorithms is subject to locating all inflection points in the pre-
processing. At present, the curve domain is partitioned into many subintervals on which bisection
is invoked separately with the curvature function. In case multiple inflection points fall within the
same subinterval, bisection will fail to find all of them, if any at all. Let vmax = maxt ‖α

′(t)‖ be the
maximum speed of the curve α. And let d1 be the minimum arc length between any two inflections
on the curve. Discretization and bisection together will find all inflection points provided that each
subinterval has size less than d1

vmax
.

Another place where completeness may be compromised is when a pair of found antipodal points
is stepped over in the search for more pairs. This situation will not happen provided that the step
size is less than d2

vmax
, where d2 is the minimum arc length between two adjacent pairs.

For special curves it may be possible to obtain lower bounds for d1 and d2 and an upper bound
for vmax. For general curves it seems rather unrealistic to estimate the spacing between inflection
points and antipodal points before they are even found.

Locating inflection points may become a bottleneck. The strategy discussed above is inefficient
and could dominate the running times of the given algorithms when the resolution used is too
fine. The difficulty comes down to finding the roots of the one-variable nonlinear equation κ′ = 0.
Existing numerical methods such as bisection, Newton’s, secant, etc. all sacrifice completeness.
Although some bounds and methods for inflections on algebraic curves have been developed, much
investigation is needed for parametric curves.
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9.2 Extensions

The common tangent and antipodal point algorithms can be extended in a straightforward way
to a curve that is piecewise twice continuously differentiable. The curve does not even need to be
simple, that is, it can have self-crossings. Extension of the algorithms to a curved surface in 3D
will likely hinge on how efficiently the surface can be partitioned into patches on which a search or
an objective function assumes similar monotonicity.

Algebraic curves can be parametrized locally. So the iterative marching procedures that form
the core of the two algorithms are expected to have their algebraic counterparts. Such an extension
may be similar to the derivation of the curvature formula for algebraic curves from the one for
parametric curves.

9.3 Computational Analysis

Our design technique based on dissection suggests a measure of the “combinatorial size” of a curve
by the number of its inflections. Both algorithms for constructing common tangents and for finding
antipodal points employ specialized numerical primitives (described in Appendix A) to complete a
basic operation such as moving a point on the curve or determining if certain geometric condition
holds. Such a routine call usually completes in tens to hundreds of iteration steps, whereas in
discrete geometry a movement from one vertex or edge to another can be performed in one single
step. Thus it seems reasonable to analyze the asymptotic running time of a curve processing
algorithm in terms of the number of calls to numerical primitives.

A Numerical Primitives

Numerical primitives are employed in the algorithms described in Sections 2 and 4. Each primitive
operates on a monotone segment of α over (a, b) with total curvature Φ(a, b) ∈ [−π, π].

The primitive point-with-normal(a, b,n) finds a point c ∈ (a, b) on the curve α such that the
normal N(c) is in the direction of the vector n. Thus c exists if and only if N(a)×n and N(b)×n

have different signs. If so, we use the Newton-Raphson method to find c as the unique zero of the
function α

′(s) · n. The iteration is given by

sk+1 = sk −
α

′(sk) · n

α′′(sk) · n
.

In case Newton-Raphson fails, bisection guarantees to find c.
The primitive point-of-tangency(a, b, c) finds a point e ∈ (a, b) at which a line through c is

tangent to the curve α. In order to use the procedure, such a point of tangency must uniquely exist.
This is guaranteed when the primitive is called inside the procedure Common-Tangent described
in 2.3. The point of tangency e is the unique root of the function (α(s) − α(c)) × α

′(s) on the
segment over (a, b). We can again employ the Newton-Raphson method with the following iteration:

sk+1 = sk −

(

α(sk)−α(c)
)

×α
′(sk)

(

α(sk)−α(c)
)

×α′′(sk)
.
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When called inside Common-Tangent, the above function always has different signs at a and b. In
case Newton-Raphson fails, bisection is used.19

The primitive point-on-ray(a, b, c) is used by the marching procedure defined by (19) and
illustrated in Figure 20. It determines if the curve segment over (a, b) intersects the ray of normal
at c on α, and finds the intersection if so. We know from Section 4.2.2 that such an intersection
exists if and only if α(a) and α(b) are on different sides of the ray. The intersection, when exits, is
the unique zero of the function (α(s)−α(c))·α′(c) on S. Similarly, we employ the Newton-Raphson
method with iteration

sk+1 = sk −

(

α(sk)−α(c)
)

·α′(c)

α′(sk) ·α′(c)
.

Again, bisection is used as a backup.
Each of the three primitives is dominated by a Newton-Raphson call backed up by bisection.

The Newton-Raphson method has quadratic local convergence rate as compared to bisection’s
linear convergence rate. In the worst case, Newton-Raphson fails and bisection has to be invoked.
Every step of bisection halves the interval, adding one extra binary bit of precision to the solution.
Suppose we require ω binary places of precision. This is guaranteed by bisection in ω + log(b− a)
iterations. The Newton-Raphson method, when converges, requires significantly fewer number of
steps to achieve the same precision. So we may first employ Newton-Raphson for a fraction of
ω + log(b− a) steps, and if it is not converging, resort to bisection next.

Thus O(ω) is the number of numerical iterations carried out by any of the above primitive
operations. For a fixed precision, ω is treated as a constant.

B Curve Tangents from an Exterior Point

Consider a point p and a regular curve α over the domain (a, b), where p does not lie on α. How
many tangent lines of α pass through p? Here we investigate the case where α is monotone and has
total curvature Φ(a, b) ∈ [−π, π]. The tangent count is needed in Section 2.2 for the classification
of common tangent configurations.

Let La and Lb be the limits of tangent lines of α(s) as s approaches a and b, respectively. If
they intersect, let O be the point of intersection. This is shown in Figure 25. When p is on La or
Lb, a tangent line of α passes through p if and only if p does not coincide with O, a, or b.

The lines La and Lb together with α partition the plane into five open regions. Every point in
the region R0 lies on two different tangent lines. Every point in the region R1 or R2 does not lie
on any tangent line to the curve.20 Every point in the region R3 or R4 lies on exactly one tangent
line. Below we describe a method to determine which region contains p.

If α is convex, we let va = N(a) and vb = N(b). Otherwise, we let va = −N(a) and vb = −N(b).
These vectors va and vb indicate the bending directions of α at the points a and b, respectively.
We observe that

p ∈ R0 ∪R2 iff
(

p−α(a)
)

· va > 0 and
(

p−α(b)
)

· vb > 0;

19A byproduct of the on-line convex hull algorithm in [30] is the O(log n)-time construction of the two sup-
porting lines from an external point to a convex polygon. This construction, a discrete version as compared to
point-of-tangency, marches over vertices of the polygon quickly to the point of tangency based on a classification
of the vertices relative to the point.

20In case La ‖ Lb, the region R1 disappears.

40



R 1

a

O
p u

α

T(   )u

R

R

R

R
2

3

4

0

b

v

v

La

L b

a

b

Figure 25: Five regions divided by a curve α over (a, b) and the two tangent lines at a and b. The regions
R1 and R2 include all points not on any tangent line to the curve. The regions R3 and R4 include all points
on one tangent line. The region R0 includes all points on two tangent lines.

p ∈ R1 iff
(

p−α(a)
)

· va < 0 and
(

p−α(b)
)

· vb < 0;

p ∈ R3 iff
(

p−α(a)
)

· va < 0 and
(

p−α(b)
)

· vb > 0;

p ∈ R4 iff
(

p−α(a)
)

· va > 0 and
(

p−α(b)
)

· vb < 0.

When p ∈ R0∪R2, we still need to determine which of the two regions contains p. First, we quickly
check if p ∈ △aOb. If not, then p ∈ R2. If yes, we compute the point u on the curve which is the
root of the function

(

p−α(s)
)

·α′(s). (22)

Newton-Raphson can be used with backup from bisection since the function has different signs at
a and b. Clearly, p ∈ R0 if (p−α(u)) · κ(u)N(u) < 0 and p ∈ R2 if (p−α(u)) · κ(u)N(u) > 0.

The worst case in computation happens when p lies in R0. It involves finding the root of the
function defined in (22) to determine that p lies in the region. For a precision of ω binary digits,
the root finding requires O(ω) iteration steps the same as required by a primitive in Appendix A.
So determining the number of tangent line(s) from a point takes O(ω) steps.

C Tangential Angle and Curvature

Let α(s) be a regular plane curve defined over some interval with no self-crossings. The speed of
the curve ‖α′(s)‖ 6= 0 everywhere.

The tangential angle ψ(s) is formed by the tangent α
′(s) with the x axis, as shown below.

Choose a reference point s0 and introduce the arc length parameter s̃ =
∫ s
s0
‖α′(u)‖ du. Hence

ds̃/ds = ‖α′(s)‖ and ‖dα/ds̃‖ = 1. The curvature κ(s) of α is the rate of change of the tangential
angle ψ(s) with respect to s̃ [36, p. 134], that is,

κ =
dψ

ds̃

=
dψ

ds

/

ds̃

ds
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Figure 26: Tangential angle.

=
ψ′(s)

‖α′(s)‖
. (23)

In another definition [27, p. 57], the curvature measures the turning of the unit tangent vector
T (s) = α

′(s)/‖α′(s)‖ along the unit normal direction N(s) where T (s) × N(s) = 1. The Frenet
formulas are known to hold:

T ′ = κ‖α′‖N ; (24)

N ′ = −κ‖α′‖T.

We can easily derive one of the curvature definitions (23) and (24) from the other. For instance, if
we start with definition (24), then

κ = (T ′ ·N)/‖α′‖ (25)

=

(

dT

ds
·N

)

ds

ds̃

=
dT ·N

ds̃

=
dψ

ds̃
.

Let α(s) = (x(s), y(s)). Then

T = (x′, y′)/‖α′(s)‖ = (x′, y′)
/

√

x′2 + y′2,

N = (−y′, x′)
/

√

x′2 + y′2.

Substituting these terms into (25) yields a formula for evaluating the curvature:

κ =

(

(x′′, y′′)
√

x′2 + y′2
+

d

ds

(

1
√

x′2 + y′2

)

(x′, y′)

)

·
(−y′, x′)
√

x′2 + y′2

/

√

x′2 + y′2

=
x′y′′ − x′′y′

(x′2 + y′2)
3
2

If κ 6= 0, the center of curvature lies along the direction of κN(s) at distance 1
|κ| from the point

α(s). The osculating circle, when κ 6= 0, is the circle at the center of curvature with radius 1
|κ| ,
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which is called the radius of curvature. The osculating circle approximates the curve locally up to
the second order.

The total curvature of α over a closed interval [a, b] measures the rotation of the unit tangent
T (s) as s changes from a to b:

Φ(a, b) =

∫ b

a
κ‖α′(s)‖ ds

= ψ(b)− ψ(a). (26)

If α is closed over [a, b], then Φ(a, b) = 2π (the Fenchel equality [39, p. 60]). If the total curvature
over [a, b] is within (0, 2π], it has a closed form:

Φ(a, b) =







arccos
(

T (a) · T (b)
)

, if T (a)× T (b) ≥ 0;

2π − arccos
(

T (a) · T (b)
)

, otherwise.
(27)

When the tangent makes several full revolutions21 as s increases from a to b, it cannot be determined
just from T (a) and T (b).
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