
Semi-Differential Invariants for Tactile Recognition of Algebraic

Curves

Rinat Ibrayev and Yan-Bin Jia

Department of Computer Science

Iowa State University

Ames, IA 50011-1040, U. S. A.

rinat,jia@cs.iastate.edu

Abstract

This paper studies the recognition of low-degree polynomial curves based on minimal tac-
tile data. Euclidean differential and semi-differential invariants have been derived for quadratic
curves and special cubic curves that are found in applications. These invariants, independent of
translation and rotation, are evaluated over the differential geometry at up to three points on a
curve. Their values are independent of the evaluation points. Recognition of the curve reduces to
invariant verification with its canonical parametric form determined along the way. In addition,
the contact locations are found on the curve, thereby localizing it relative to the touch sensor.
Simulation results support the method despite numerical errors. Preliminary experiments have
also been carried out with the introduction of a method for reliable curvature estimation. The
presented work distinguishes itself from traditional model-based recognition in its ability to si-
multaneously recognize and localize a shape from one of several classes, each consisting of a
continuum of shapes, by the use of local data.

KEY WORDS—touch sensing, differential invariant, semi-differential invariant, curvature, sig-
nature curve, shape parameter, resultant

1 Introduction

Human can feel a shape through touch. Essentially, the action is performed to detect some geometric
features on the shape which are then subconsciously synthesized in the brain. Typical geometric
features include, for instance, smoothness, saliences, concavities, etc.

Supported by touch sensing, the robot can also obtain shape information without the help of
a vision system. Such shape inference is important, for example, when camera occlusion becomes
inevitable or when motion is involved. Since tactile data are local (and one-dimensional for point
contact), seemingly they convey a very limited amount of geometric information. But how much
shape knowledge can the robot really acquire then?

Figure 1 illustrates a hand with two tactile fingers touching an object. Suppose through local
movements the fingers are able to estimate information such as the curvatures at several points
of contact. And suppose the shape is known to be from a finite number of families of parametric
curves. Can we recognize the shape as well as determine the finger placement?

1

shape invariants

global shape
finger placement

tactile data

Figure 1: A robotic hand touching an object to recognize its shape.

This problem draws several distinctions from traditional model-based recognition. First, every
model here is not a real shape but rather a continuum of shapes parametrized in the same form.
Second, we would like to keep the sensor data to the minimum. This is because a touch sensor,
unlike a vision system, does not yield global shape data. Third, we hope to determine where the
tactile data were obtained on the shape.

The characteristics of our problem naturally suggest an approach based on differential and semi-
differential invariants. Such invariants of a shape are independent of its position and orientation,
the computation of which is often a burden. In this paper, we are interested in invariants that are
also independent of point locations on a shape at which they are evaluated. Given the local nature
of touch sensing, such shape descriptors need to be computable from measurements at just a few
points. Our investigation will be focused on quadratic and cubic spline curves.

Section 2 goes over some geometric background and overviews our approach to invariant design.
Sections 3 and 4 derive Euclidean semi-differential invariants for quadratic curves and three classes
of cubic curves. Section 5 presents some simulation results to verify the derived invariants and
demonstrates how they are used in recognition. Some experiments with real tactile data are then
presented in Section 6. Finally, Section 7 summarizes all results and points to some future work.

1.1 Related Work

There are two primary recognition strategies in model-based vision. The first one hinges on the
recovery of viewing parameters (thus the pose). Kriegman and Ponce (1990) constructed implicit
shape equations from image contours and then solved for viewing parameters through data fitting.
The second approach is to develop descriptors that are invariant to Euclidean, affine, or projective
transformation, or to camera-dependent parameters (Mundy and Zisserman 1992, Weiss 1993).

Algebraic invariants are expressions of the coefficients of polynomial equations describing curved
shapes. The foundation was due to Cayley, Sylvester, Young, and among others, Hilbert (1993),
who offered a procedure that constructs all independent algebraic invariants for a given curve or
surface. In real applications, polynomials are fit to image data and their coefficients are extracted
for invariant evaluation. Forsyth et al. (1991) and Keren (1994) presented efficient methods for
finding algebraic invariants and demonstrated on recognition of real objects. Civi, Christopher, and
Ercil (2003) also conducted object recognition experiments with algebraic invariants of Euclidean,
affine, and projective groups.

One drawback of algebraic invariants is the requirement of global shape data. This is almost
impossible to provide by a touch sensor, or by a vision system in case of serious occlusion.

Differential invariants depend on local data and deal with situations like occlusion well. Up till

2

now, vision- and invariant-based recognition has mainly focused on differential invariants that are
independent of various transformation groups but not of point locations on a shape. Calabi, Olver,
and Shakiban (1998) introduced the “signature curve” which is invariant to Euclidean or affine
transformation. Rivlin and Weiss (1995) derived differential invariants for a shape by applying to
its quartic fit the same transformation that turns an osculating curve (a cubic) into the canonical
form.

Semi-differential invariants combine global constraints and local information to ease the corre-
spondence issue faced by non-invariant-based methods and also to relieve the burden on estimating
higher order derivatives for the evaluation of differential invariants. The theoretical foundation for
this type of invariants was presented by Moons et al. (1995). Pajdla and Van Gool (1995) used
simple semi-differential invariants to match curves extracted from range data in the presence of
partial occlusion.

In touch sensing, shape recognition has long built on the notion of “interpretation tree”, which
represents all possible correspondences between geometric features of an object and tactile data.
Grimson and Lozano-Pérez (1984) identified and localized a 3-D polyhedron from a set of models
using tactile measurements of positions and surface normals. Fearing (1990) described how a
cylindrical tactile fingertip could recover the pose of a generalized convex cone from a small amount
of data. Allen and Michelman (1990) fit a superquadric surface to sparse data obtained by a Utah-
MIT hand around an object as its reconstructed shape. Moll and Erdmann (2002) showed how to
simultaneously estimate the shape and motion of an unknown convex object from tactile readings
on multiple manipulating palms under frictionless contact.

A method based on the interpretation tree or least-squares fitting needs to recover the pose.
This may be costly and often unnecessary. Not until very recently did differential invariants start
to find applications with touch sensing. For spheres, cylinders, cones, and tori, Keren et al. (2000)
constructed descriptors in terms of curvatures and torsions and their derivatives (up to the third
order) estimated at points on one or two curves embedded in these surfaces. Their derivation of
differential invariants exploited Taylor expansion in the local frame. Shape parameters were solved
through least-squares optimization.

In this paper, we derive semi-differential invariants that not only recognize several curve classes
but also allow us to recover the algebraic descriptions of any curve from one of these classes based
on curvature and derivative measurements.

2 Curve Invariants

The touch sensor in contact with a 2D object can “feel” its local geometry, which is described by
the curvature. At the contact point denote by φ the tangential angle formed by the tangent of the
boundary curve α(t) = (x(t), y(t)) with the x-axis. The curvature κ is the rate of change of φ with
respect to arc length s, that is,

κ =
dφ

ds
=

x′y′′ − x′′y′

(x′2 + y′2)3/2
. (1)

Curvature is independent of parametrization, rotation, and translation. We are also interested in
the derivative of curvature with respect to arc length:

κs =
dκ

dt

dt

ds
=

κ′(t)

(x′2 + y′2)1/2
. (2)

3

κ

κs

(a) (b)

Figure 2: (a) A cubical parabola y = 0.6x3 + 0.4x; (b) its signature curve { (κ, κs) | −∞ < x < ∞} that
characterizes curvature and its derivative with respect to arc length along the curve. The signature curve is
independent of Euclidean motions in the plane.

Section 6 will look at how to reliably estimate curvature and its derivative from tactile data.
Until then we will just assume that these two quantities are measurable.

The touch sensor obtains data in Euclidean coordinates. The transformation group considered
in this paper is the Euclidean group SE(2) which includes all rotations and translations in the plane.
A differential invariant of a curve is a real-valued function that does not depend on any specified
transformation group or parametrization. More intuitively, the value of a differential invariant
depends on the point location on the curve but not on the curve’s position and orientation. The
following result is well known (Guggenheimer 1977, Calabi et al. 1998):

Theorem 1 Every Euclidean differential invariant of a plane curve is a function of the curvature
κ and its derivatives with respect to arc length.

2.1 Signature Curve

The Euclidean signature curve of a curve α(t) is the set of all points (κ(t), κs(t)) evaluated along
the curve. An example is shown in Figure 2. It turns out that the signature curve of a curve
determines its shape up to rotation and translation, as stated in the following theorem (Calabi et
al. 1998).

Theorem 2 Two smooth curves are equivalent up to an Euclidean transformation if and only if
their signature curves are identical.

The above result has led to the development of shape recognition methods (Pauwels et al. 1995,
Rivlin and Weiss 1995, Calabi et al. 1998) based on matching signature curves. Construction of
the signature curve, nevertheless, requires global shape information, which the touch sensor does
not provide. Our aim is to make use of the local geometry at a small number of points (and thus
much less data) and still be able to perform the recognition task.

2.2 Semi-Differential Invariants as Curve Descriptors

Suppose the curve α(t) = (x(t), y(t)) is known to be from a certain family. Often we can derive a
canonical parametric form of the family through proper rotation, translation, and reparametriza-

4

tion.1 The canonical form describes the curve in a coordinate system determined by its geometry.
It should have minimum number of indeterminacies (other than t) that parametrize the family.
These independent indeterminacies are referred to as shape parameters and denoted by a1, . . . , an.
For instance, the class of all ellipses are parametrized with the semimajor axis a and the semiminor
axis b.

Since the parameter t, which specifies the location of contact on the shape (with the touch
sensor), is not measurable, we try to eliminate it from the expressions (1) and (2) of curvature and
derivative. If this is feasible, then the result is an equation for the signature curve:

f [a1, . . . , an](κ, κs) = 0. (3)

The closed form of a signature curve can always be derived for an algebraic curve, which is defined
by some equation p(x, y) = 0 with p a polynomial in x and y. Appendix C gives a derivation based
on computing Sylvester resultants described in Appendix A.

The simplest case is when the function f can be split into two parts and rewritten as

I(κ, κs) = g(a1, . . . , an).

Then I is an expression whose value depends on the shape of the curve not on any specific point at
which it is evaluated. It is thus an invariant for the curve, or a curve invariant. That the expression
assumes the same value at different points is a necessary condition for an unknown curve to be
from the family. The family of parabolas will be given as such an example in Section 3.1.

When a curve family has n shape parameters, we need n independent differential invariants
to uniquely identify a curve from that family. If only one point on the curve is considered, this
requires up to the nth derivative of the curvature (and thus (n + 2)-nd derivative of the curve).
Numerical computation of high order derivatives is very unreliable and sensitive to noise. The
solution is to trade the order of derivative for extra points. So, we consider the curvatures and
derivatives at n points and derive Euclidean semi-differential invariants. They are functions of the
2n curvatures and derivatives but assume values depending on a1, . . . , an only. For some curves,
such as ellipses and hyperbolas (Sections. 3.2–3.3), semi-differential invariants can be found through
algebraic manipulation.

However, derivation of semi-differential curve invariants appears to be very difficult, if not
impossible, for many curves. It is more likely that we have to solve for the shape parameters
a1, . . . , an using curvature and derivative estimates at m ≥ n points. Viewed differently, the semi-
differential invariants now have values equal to the shape parameters but their evaluation can only
be done through solution or optimization.

In the rest of the section, we focus on curves parameterized by polynomials. From (1) and (2)
we derive two polynomial equations in t:

κ2
(

x′2 + y′2
)3

− (x′y′′ − x′′y′)2 = 0, (4)

κs

κ2

(

x′y′′ − x′′y′
)2 − (x′y′′′ − x′′′y′)

(

x′2 + y′2
)

+ 3(x′x′′ + y′y′′)(x′y′′ − x′′y′) = 0. (5)

Here, κ and κs can be measured using a method described in Section 6.1. They are thus not treated
as indeterminacies. Suppose the polynomials x(t) and y(t) have degrees dx and dy, respectively.

1See Appendix B for an example of such derivation for cubic spline segments.

5

Equations (4) and (5) then have degrees 6max{dx, dy}− 6 and dx + dy + 2max{dx, dy}− 6, respec-
tively, in terms of t. We can eliminate t from these two equations by computing their resultant
as described in Appendix A. This will yield a polynomial equation in terms of the coefficients
a1, . . . , an of the original curve. The equation, which defines the signature curve, can have degree
as high as dx + dy + 8max{dx, dy} − 12 in the n coefficients.

Once dx or dy exceeds 3, it becomes very difficult to rewrite the terms into some involving κ
and κs and the others involving the shape parameters ais only. Most likely, we will have to solve for
these n shape parameters. The solution requires at least n points, each of which yields a polynomial
equation. Since every such polynomial equation has degree at least 16 when dx > 3 or dy > 3, the
task may become computationally too expensive, if not impossible.

2.3 Semi-Signature Curve

We can lower the degree of the resultant polynomial in a1, . . . , an by considering the slope λ = y′/x′.
This is rewritten as a polynomial equation:

λx′ = y′. (6)

Assume that x′ 6= 0 at every point measured by the touch sensor. Equations (1) and (5) are
rewritten as

κx′2(1 + λ2)3/2 − (y′′ − x′′λ) = 0, (7)

κs/κ
2 + 3λ

1 + λ2
(y′′ − x′′λ)2 + 3x′′(y′′ − x′′λ) − (y′′′ − x′′′λ)x′ = 0. (8)

With the slope λ treated as a separate variable, we compute the resultants of (6) with (7) and (8),
respectively, to eliminate t and obtain

f1[a1, . . . , an](λ, κ, κs) = 0 and f2[a1, . . . , an](λ, κ, κs) = 0.

The two functions f1 and f2 have degrees not exceeding 3max{dx, dy} − 3 and 3max{dx, dy} − 5,
respectively, in a1, . . . , an.

The slope λ depends on the orientation of the curve in its canonical parametrization but not on
the position. For this reason, we refer to the point set {(λ, κ, κs)} as the semi-signature curve of
α(t). An example is shown in Figure 3. Its projection onto the κ-κs plane is the signature curve.
The semi-signature curve is dependent on the chosen canonical parametrization.

What is the reason for using the slope λ defined in the canonical form? Though not able to
measure λ directly, the touch sensor can measure the tangent rotation from one point to another.
In Jia (2005), a jaw joined to a robot by a 2-axis force/torque sensor is aligned with the tangent
direction at its contact with the object. Thus the tangent can be directly read from the robot’s
controller. In this paper, a joystick sensor is used in the experiments for more accurate contact
measurement. Measurement of the tangent direction is carried out by local fitting (in the world
coordinate system), as will be presented in Section 6.1.

The slope λ1 at the first point and the slope λi at the ith point are related as

λi =
λ1 + tan ∆θ1i

1 − λ1 tan ∆θ1i
, θ1i tangent rotation. (9)

Since all ∆θ1i’s are measurable, as explained above, only one new variable λ1 has been introduced.

6

κ

κs

λ

Figure 3: The semi-signature curve of the cubical parabola y = 0.6x3 + 0.4x drawn in Figure 2(a). It
represents the point set {(λ, κ, κs) | −∞ < x < ∞}, where λ, κ, and κs are respectively the slope, curvature,
and its derivative with respect to arc length.

Now, we may employ similar methods to derive expressions in terms of λ, κ, κs but whose values
depend on the shape parameters only. These “pseudo-invariants” together with (9) are solved for
the slopes first, and then the shape parameters. The details will be described in Section 4 on cubical
and semicubical parabolas and cubic spline curves.

3 Quadratics

A quadratic curve has the general form2:

c20x
2 + 2c11xy + c02y

2 + 2c10x + 2c01y + c00 = 0. (10)

It is well known that, through proper rotation and translation, the above equation can be trans-
formed into one of the following canonical forms:

x2

a2
+

y2

b2
= 1, if c20c02 − c2

11 > 0; (ellipse)

x2

a2
− y2

b2
= 1, if c20c02 − c2

11 < 0; (hyperbola)

y2 = 4ax, if c20c02 − c2
11 = 0. (parabola)

These three types together are referred to as the conics.
To recognize a conic we may first identify its type and then recover the shape parameters a

and/or b. To save some effort, we will start with some parametrization and derive expressions that
are independent of the parametrization. These expressions build on local geometry at one or two
points, namely, on their curvatures and derivatives with respect to arc length. But the values of
the expressions are independent of specific points.

2The determinant

∆ = det

(

c20 c11 c10

c11 c02 c01

c10 c01 c00

)

6= 0

but ∆/(c20 + c02) < 0 when c20c02 − c2
11 > 0.

7

3.1 Parabola

Parabolas are identified with curves parametrized by quadratic polynomials:

x = a2t
2 + a1t + a0, (11)

y = b2t
2 + b1t + b0, a2b1 − a1b2 6= 0. (12)

To verify the statement, we first observe that every parabola y2 = 4ax has a parameterization in
the form below:

x = at2,

y = 2at. (13)

Conversely, given a curve parametrized as (11) and (12), we can treat each equation as a polynomial
equation in t with x and y as constant terms. The resultant of the two equations is in the
form of (10), where the coefficients c20, 2c11, and c02 are b2

2, −2a2b2, and a2
2 respectively. Since

c20c02 − c2
11 = b2

2a
2
2 − (−a2b2)

2 = 0, we know that the curve is indeed a parabola.
The shape of a curve is independent of any particular parametrization. It makes sense to use

the simplest one. So we use the canonical form (13) with only one shape parameter a.
First, we obtain the curvature and its derivative with respect to arc length:

κ = − 1

2a(t2 + 1)3/2
; (14)

κs =
κ′

v(t)
=

3t

4a2(t2 + 1)3
. (15)

Equation (14) yields an expression for t2:

t2 =
1

(2aκ)2/3
− 1. (16)

Meanwhile, take the squares of both sides of (15):

κs
2 =

9t2

16a4 (t2 + 1)6
. (17)

Substitution of (16) into (17) eliminates t2 and yields an equation describing the signature curve
of the parabola:

κ2/3

(

κ2
s

9κ4
+ 1

)

=
1

(2a)2/3
. (18)

Define Ip as the expression on the left hand side of (18):

Ip(κ, κs) ≡ κ2/3

(

κ2
s

9κ4
+ 1

)

. (19)

This expression has value 1/(2a)2/3 which is independent of the point location t. It is an invariant
that has a one-to-one correspondence to the shape of the parabola.

Figure 4 illustrates three parabolas distinguished by Ip. Since κ and κs are measurable, from (18)
we can determine the shape parameter a and thus the parabola up to rotation and translation.

8

y

x0.5

0.5

a =

a =

0.8

a = 0.6

0.4
0.4a =

0.6a =

0.8a = κ

κ s

0.5

0.5

Ip

a = 0.8 a = 0.4

a = 0.6

0.5 1

(a) (b) (c)

Figure 4: (a) Three parabolas of the form y2 = 4ax; (b) their signature curves {(κ, κs) | −∞ < y < ∞};
(c) corresponding values of the invariant Ip defined in (19). The invariant is evaluated using an arbitrary
point from each parabola.

3.2 Ellipse

Let us start with the canonical parametrization:

x = a cos(t),

y = b sin(t), a, b > 0.

The curvature and its derivative with respect to arc length are

κ =
ab

(

a2 sin2(t) + b2 cos2(t)
)3/2

, (20)

κs = −3ab
(

a2 − b2
)

sin(t) cos(t)
(

a2 sin2(t) + b2 cos2(t)
)3 . (21)

Again, we first derive an equation for the signature curve, and then move on to find some invariants.
Substitute the identity cos2(t) = 1 − sin2(t) into (20) and obtain

sin2(t) =

(

ab
κ

)2/3
− b2

a2 − b2
. (22)

Next, square both sides of (21):

κs
2 =

9a2b2
(

a2 − b2
)2

sin2(t)
(

1 − sin2(t)
)

(

(a2 − b2) sin2(t) + b2
)6 . (23)

Substitute (22) into (23) to eliminate sin2(t). A few more steps of manipulation result in an equation
describing the signature curve of the ellipse:

Ip(κ, κs) +
1

(abκ)2/3
− a2 + b2

(ab)4/3
= 0, (24)

9

where Ip is the expression of κ and κs defined in (19).
Since there are two unknown quantities a and b, at least two points on the ellipse are required.

Let κi and κsi, i = 1, 2, be the curvature and its derivative at the ith point. Then we end up with
two equations in the form of (24), for i = 1, 2, respectively. Subtracting one of them from the other
yields the following:

Ip(κ1, κs1) +
1

(abκ1)2/3
− Ip(κ2, κs2) −

1

(abκ2)2/3
= 0.

Next, we rearrange the two sides of the above equation (assuming κ1 6= κ2):

(κ1κ2)
2/3

κ
2/3
1 − κ

2/3
2

(

Ip(κ1, κs1) − Ip(κ2, κs2)
)

=
1

(ab)2/3
. (25)

Now, denote by Ic1 the left hand side of equation (25). We have

Ic1(κ1, κ2, κs1, κs2) ≡ (κ1κ2)
2/3

κ
2/3
1 − κ

2/3
2

(

Ip(κ1, κs1) − Ip(κ2, κs2)
)

(26)

=
(κ1κ2)

2/3

κ
2/3
1 − κ

2/3
2

(

κ
2/3
1

(

κ2
s1

9κ4
1

+ 1

)

− κ
2/3
2

(

κ2
s2

9κ4
2

+ 1

))

, by (19).

The expression Ic1 is a semi-differential invariant, since it involves the geometry at more than one
point. Its value 1/(ab)2/3 is independent of the two points used.

Note that Ic1 ·π2/3 = (π
ab)

2/3 is the constant affine curvature (Guggenheimer 1977, pp. 147-152)
of the ellipse. The affine curvature of a plane curve involves up to the fourth order derivative at one
point. Interestingly, the semi-differential invariant Ic1 involves two points on the curve but only up
to the third order derivative.

The invariant Ic1 alone cannot distinguish ellipses with the same area ab. So we need a second
invariant. Substitute Ic1(κ1, κ2, κs1, κs2) for 1/(ab)2/3 into the second term in equation (24) for the
first point:

Ip(κ1, κs1) +
Ic1(κ1, κ2, κs1, κs2)

κ
2/3
1

=
a2 + b2

(ab)4/3
. (27)

The right hand side of the above equation depends on shape parameters a and b only. Now, denote
its left hand side by Ic2 and substitute (26) in:

Ic2(κ1, κ2, κs1, κs2) ≡ Ip(κ1, κs1) +
κ

2/3
2

κ
2/3
1 − κ

2/3
2

(

Ip(κ1, κs1) − Ip(κ2, κs2)
)

=
1

κ
2/3
1 − κ

2/3
2

(

κ
2/3
1 Ip(κ1, κs1) − κ

2/3
2 Ip(κ2, κs2)

)

=
1

κ
2/3
1 − κ

2/3
2

(

κ
4/3
1

(

κ2
s1

9κ4
1

+ 1

)

− κ
4/3
2

(

κ2
s2

9κ4
2

+ 1

))

. (28)

From (27), Ic2(κ1, κ2, κs1, κs2) always assumes the value (a2+b2)/(ab)4/3. It is our second invariant.
A one-to-one correspondence exists between the tuples (Ic1, Ic2) and (a, b). Figure 5 compares

two ellipses and a circle distinguished by the invariants Ic1 and Ic2.

10

b =
a =

b =
a =

b =
a =

1.2
0.8

1.7
1.3

1.1
1.10.5

y

0.5
x

a =
b =

a =
b =

1.7
1.3

κ

κ s

1.2
0.8

1.5

0.5

c1I

c2I

0.5

0.5

0.8
1.1

1.7
a = , b =

a = , b =

a = , b = 1.2
1.1

1.3

(a) (b) (c)

Figure 5: (a) Three ellipses of the form x2/a2 + y2/b2 = 1; (b) their signature curves (the one for the circle
with a = b = 1.1 degenerates into a point (1/1.1, 0)); (c) corresponding values of the invariant pair (Ic1, Ic2),
where the two invariants are defined in (26) and (28), respectively. These invariants can be evaluated using
two points arbitrarily chosen from an ellipse.

Having evaluated the invariants at two points, we can recover the shape parameters a and b.
From the equations Ic1 = 1

(ab)2/3 and Ic2 = a2+b2

(ab)4/3 , we first obtain

ab =
1

I
3/2
c1

,

a2 + b2 =
Ic2

I2
c1

.

Then we solve for a and b (assuming a ≥ b) from the above two equations:

a =

√

(a2 + b2) +
√

(a2 + b2)2 − 4(ab)2

2

=

√

√

√

√

Ic2 +
√

I2
c2 − 4Ic1

2I2
c1

, (29)

b =

√

√

√

√

Ic2 −
√

I2
c2 − 4Ic1

2I2
c1

. (30)

3.3 Hyperbola

A hyperbola has the canonical parametric form

x = a cosh(t) = a
et + e−t

2
,

y = b sinh(t) = b
et − e−t

2
, a, b > 0.

The curvature and its derivative with respect to arc length are respectively

κ = − ab

(a2 sinh2(t) + b2 cosh2(t))3/2
, (31)

11

κs =
3ab(a2 + b2) sinh(t) cosh(t)

(a2 sinh2(t) + b2 cosh2(t))3
. (32)

Using equations (31), (32), and cosh2(t) = sinh2(t)+1, we eliminate cosh(t) and sinh(t) and obtain
the signature curve equation:

Ip(κ, κs) −
1

(abκ)2/3
− a2 − b2

(ab)4/3
= 0. (33)

Two points on the hyperbola yields two copies of equation (33), from which we can derive two
invariants:

Ic1(κ1, κ2, κs1, κs2) = − 1

(ab)2/3
,

Ic2(κ1, κ2, κs1, κs2) =
a2 − b2

(ab)4/3
.

These two invariants are in the same forms (26) and (28) as for an ellipse but their values are in
different expressions of a and b. In particular, Ic1 is always negative for the hyperbola.

The invariants Ic1 and Ic2 completely determine the hyperbola. Similar to the case of the
ellipse, we first solve for a2 − b2 and ab from Ic1 and Ic2. Then the shape parameters are obtained
(assuming a ≥ b):

a =

√

√

√

√

√

I2
c2 − 4Ic1 + Ic2

2I2
c1

, (34)

b =

√

√

√

√

√

I2
c2 − 4Ic1 − Ic2

2I2
c1

. (35)

3.4 Invariants for Conics

The expressions Ic1 and Ic2 are also semi-differential invariants for a parabola. To see this, note
that, at two points on a parabola, Ip(κ1, κs1) = Ip(κ2, κs2). From the definitions (26) and (28), we
see that Ic1 = 0 and Ic2 = Ip = 1/(2a)2/3.

Thus Ic1 and Ic2 are invariants for all conics. They describe the correlations between the local
geometry at any two points on a conic. The sign of the invariant Ic1 discriminates one type of conic
from another. When the invariant is positive the curve is an ellipse, when it is negative the curve is
a hyperbola, and when it is zero the curve is a parabola. For a given curve, if the values of Ic1 and
Ic2 do not stay constant for different point tuples, we can conclude that the curve is not quadratic.

4 Cubics

There is no classification of all cubic curves. So it seems very difficult to construct invariants that
recognize all of them. However, we are interested in cubic splines, whose continuity in curvature
enables them to model general curved shapes in graphics and geometric modeling. Every segment
of a cubic spline has the parametric form as follows:

x = a3t
3 + a2t

2 + a1t + a0,

y = b3t
3 + b2t

2 + b1t + b0, a3 6= 0 or b3 6= 0.

12

A canonical form can always be obtained through a sequence of translations, rotations, and
reparametrizations described in Appendix B. This form represents either a cubical parabola:

x = t,

y = at3 + ct, a 6= 0, (36)

or a semi-cubical parabola:

x = t2,

y = at3 + bt2, a > 0, (37)

or a general spline segment:

x = t2,

y = at3 + bt2 + ct, a > 0 and c 6= 0. (38)

In the below, we examine these three subclasses one by one.

4.1 Cubical Parabola

From parametrization (36), the curvature and its derivative with respect to arc length are given as

κ =
6at

(

1 + (3at2 + c)2
)3/2

,

κs =
6a
(

1 +
(

3at2 + c
)2
)

− 108a2t2
(

3at2 + c
)

(

1 + (3at2 + c)2
)3 .

Figures 2 and 3 plot a cubical parabola together with its signature and semi-signature curves.
Unfortunately, it is not obvious how to eliminate the parameter t from the above expressions

for the curvature κ and its derivative κs. So we employ the method in Section 2.3 and utilize the
slope

λ =
y′

x′ = 3at2 + c.

First, we rewrite the curvature (squared) and its derivative in terms of the slope:

κ2 =
12a(λ − c)

(1 + λ2)3
,

κs =
6a(1 + λ2) − 36aλ(λ − c)

(1 + λ2)3
.

Note that we can easily obtain a and c from the above once λ, κ, and κs are known:

a =

(

κs + 3λκ2
) (

1 + λ2
)2

6
≡ Icp1(λ, κ, κs), (39)

c = λ − κ2
(

1 + λ2
)

2 (κs + 3λκ2)
≡ Icp2(λ, κ, κs). (40)

13

The expressions Icp1 and Icp2 map any point on the semi-signature curve to the shape parameters
a and c, respectively. They are invariants of the curve provided that the slope λ in the canonical
parametrization can be determined.

How to obtain the slope λ? We look at two points. Measure the tangent rotation ∆θ12 from
point 1 to point 2. This is done through fitting in Section 6.1. Write δ12 = tan (∆θ12). Since the
value of c remains the same, we have

Icp2(λ1, κ1, κs1) = Icp2(λ2, κ2, κs2),

namely,

λ1 −
κ2

1

(

1 + λ2
1

)

2
(

κs1 + 3λ1κ
2
1

) = λ2 −
κ2

2

(

1 + λ2
2

)

2
(

κs2 + 3λ2κ
2
2

) . (41)

The slopes λ1 and λ2 are related to each other through δ12 according to equation (9) with i = 2.
Substitution of the equation into (41) results in a quartic polynomial:

d4λ
4
1 + d3λ

3
1 + d2λ

2
1 + d1λ1 + d0 = 0, (42)

where the coefficients are

d0 = κs1

(

κ2
2

(

5δ2
12 − 1

)

+ 2κs2δ12

)

+ κ2
1

(

3κ2
2δ12 + κs2

)

,

d1 = 2δ12

(

κs1

(

3κ2
2 − κs2δ12

)

+ 2κ2
1

(

3κ2
2δ12 + κs2

))

,

d2 = κs1

(

κ2
2

(

5δ2
12 − 1

)

+ 2κs2δ12

)

+ κ2
1

(

18κ2
2δ12 − κs2

(

5δ2
12 − 1

))

,

d3 = 2δ12

(

κs1

(

3κ2
2 − κs2δ12

)

+ 2κ2
1

(

3κ2
2δ12 + κs2

))

,

d4 = 5κ2
1δ12

(

3κ2
2 − κs2δ12

)

.

The polynomial equation (42) can be solved for λ1 (and hence λ2).
The values of κ1, κs1, κ2, κs2 can all be estimated by a method to be presented in Section 6.1.

Having solved for λ1 and λ2, we calculate the shape parameters a and c of the curve according
to (39) and (40).

The invariants Icp1 and Icp2 of the cubical parabola are different from the invariants for quadratic
curves, their evaluation requires the solution of the slope (λ1) at one point. To verify the invariants,
we may use, say, two pair of points. Solve for the slopes from (42) and then evaluate (39) and (40)
for a and c. Compare whether their values stay the same.

4.2 Semi-Cubical Parabola

First, we reparametrize the curve (37) with the slope λ = y′/x′ = 3at/2+b and derive the curvature
and its derivative:

κ =
9a2

8(λ − b)(1 + λ2)3/2
,

κs = −
81a4

(

1 + λ2 + 3λ(λ − b)
)

64(λ − b)3(1 + λ2)3
.

14

From the above two equations we determine the two shape parameters in terms of λ, κ, and κs:

a2 = −8κ3(1 + λ2)5/2

9(κs + 3λκ2)
≡ Iscp1(λ, κ, κs), (43)

b = λ +
κ2(1 + λ2)

κs + 3λκ2
≡ Iscp2(λ, κ, κs). (44)

The invariants for this class of curves are Iscp1 and Iscp2.
Using two points, we can set up an equation:

Iscp2(λ1, κ1, κs1) = Iscp2(λ2, κ2, κs2).

Eliminate λ2 using the above equation and (9) with i = 2. We again obtain a quartic polynomial
in λ1:

e4λ
4
1 + e3λ

3
1 + e2λ

2
1 + e1λ1 + e0 = 0,

where the coefficients are

e0 = κ2
1

(

κs2 + 3κ2
2δ12

)

− κs1

(

κs2δ12 + κ2
2

(

1 + 4δ2
12

))

,

e1 = δ12

(

κs1

(

κs2δ12 − 3κ2
2

)

− 5κ2
1

(

κs2 + 3κ2
2δ12

))

,

e2 = κ2
1

(

κs2

(

1 + 4δ2
12

)

− 9κ2
2δ12

)

− κs1

(

κs2δ12 + κ2
2

(

1 + 4δ2
12

))

,

e3 = δ12

(

κs1

(

κs2δ12 − 3κ2
2

)

− 5κ2
1

(

κs2 + 3κ2
2δ12

))

,

e4 = 4κ2
1δ12

(

κs2δ12 − 3κ2
2

)

.

Solving the above quartic polynomial gives us λ1, and consequently, the values of shape parameters
a and b, respectively.

Similar to the case of cubical parabolas, verification of the invariants Iscp1 and Iscp2 for semi-
cubical parabolas requires the solution of the slope in the canonical parametrization (37).

4.3 General Cubic Spline Segment

It is time now to turn to a general cubic spline segment described by (38). The slope is given by

λ =
3a

2
t + b +

c

2t
.

Different from its two subclasses the cubical parabola and the semicubical parabola, we cannot
replace t completely with the slope λ in the expressions of the curvature and its derivative:

κ =
3at2 − c

4|t3|(1 + λ2)3/2
,

κs =
κ2
(

1 + λ2
)

(3(λ − b) − 6at)

(λ − b)2 − 3ac
− 3κ2λ.

So we resort to solving equations (6)–(8), which are simplified to the following:

3at2 + 2(b − λ)t + c = 0, (45)

Lt2 − 3at − (b − λ) = 0, (46)

6at + M
(

(b − λ)2 − 3ac
)

+ 3(b − λ) = 0, (47)

15

where

L =

{

2(1 + λ2)3/2κ, if t ≥ 0;

−2(1 + λ2)3/2κ, if t < 0,

M =
κs + 3κ2λ

(1 + λ2)κ2
.

First, we substitute (45) into (47) to eliminate c:

9a2Mt2 + 6a
(

1 + M(b − λ)
)

t + M(b − λ)2 + 3(b − λ) = 0. (48)

Next, the resultant of equations (46) and (48) is computed to eliminate t:

81Ma4 + 18L
(

1 + 3M(b − λ)
)

a2 + L2(b − λ)
(

M(b − λ) + 3
)2

= 0. (49)

Since M can get very large when κ is small, we divide the left hand side of (49) by 81Ma4 and
denote the resulting expression as the function g(a, b, λ).

With curvatures and derivatives estimated at l ≥ 3 points, the shape parameters a, b, and the
slope λ1 at the first point can be estimated through a least-squares optimization:

min
a,b,λ1

l
∑

i=1

g(a, b, λi)
2, (50)

where every slope λi depends on λ1 according to (9) and can be calculated from λ1 and the
measurable rotation angle of the tangent from the first point to the ith point.

To determine the third parameter c, we multiply both sides of equation (45) by L while both
sides of equation (46) by 3a. Subtract the second resulting equation from the first one. Then we
have

(

2(b − λ)L + 9a2
)

t + cL + 3a(b − λ) = 0.

Next, multiply the above equation by 6a and subtract the product of equation (47) with 2(b −
λ)L + 9a2. After a few more steps of manipulation, we obtain

c =

(

(

2(b − λ)L + 9a2
)(

M(b − λ) + 3
)

− 18a2

)

(b − λ)

3a
(

2L + 2M(b − λ)L + 9a2M
) .

5 Invariant-Based Recognition

Satisfaction of the invariants of a curve family is the necessary condition for a given curve to be
from that family. An invariant satisfied by one particular family but not by other families can be
used for recognizing the family. Although in general such condition appears to be too strong, it is
easier to meet if only a finite number of curve families are under consideration. In this section, we
use simulations to verify the invariants derived in Sections 3 and 4. Then we look at how to apply
them for recognizing curves and localizing them (through the recovery of point locations at which
curvatures were estimated). These locations would correspond to the contacts made by a touch
sensor.

16

5.1 Verification of Invariants

In the simulation, we approximate the arc length between two points on the curve, close to each
other, by their Euclidean distance. The curvature and its derivative are estimated using finite
difference quotients from arc length s and tangential angle φ:

κ ≈ φ(s + ∆s) − φ(s − ∆s)

2∆s
and κs ≈ φ(s + ∆s) − 2φ(s) + φ(s − ∆s)

(∆s)2
. (51)

The rotation of the tangent from one point to another uses the exact value since it can be measured
quite accurately in an experiment. Given the errors of finite differences, it is not very meaningful
to introduce simulated noise, which may either reduce or magnify such errors.

The first group of simulations was conducted to verify the invariants of the three conics, cubical
parabolas, and semi-cubical parabolas. One curve from each class was selected. And each invariant
was evaluated 100 times using points randomly selected from the corresponding curve. The results
are summarized in Table 1. Estimation errors of κ and κs accounted for the discrepancies between

inv. Ip Ic1 (26) Ic2 (28) Icp1 Icp2 Iscp1 Iscp2

(18) ellipse hyperbola ellipse hyperbola (39) (40) (43) (44)
real 0.2198 0.1857 −0.2678 1.2055 0.3222 6.9963 2.6127 1.8851 6.5107
min 0.2168 0.1801 −0.2729 1.1749 0.2937 6.7687 1.7312 1.9912 6.3945
max 0.2230 0.1863 −0.2655 1.2083 0.3615 7.0289 3.1684 2.0871 6.5834
mean 0.2198 0.1852 −0.2675 1.2035 0.3210 6.9355 2.5022 2.0223 6.5154

Table 1: Invariant verification on five curves: a parabola, an ellipse, a hyperbola, a cubical parabola,
and a semi-cubical parabola. The invariants are labeled with their defining equations. On each curve, the
corresponding invariant(s) is evaluated 100 times using randomly generated points.

the actual values of the invariants and their estimates.
In the second group of simulations shown in Table 2, curvature and derivative data from every

curve were used to evaluate invariants for curve classes to which it did not belong. A total of 100
evaluations were performed on each curve. The results demonstrate that an invariant for one curve

class differs from another.

\ data conic cubical semi-cub. cubic
inv.\ (ellipse) parabola parabola spline

−6.38(min) −22.84 −45.24
Ic1 −0.04(max) 28.37 −4.94

−0.73(mean) 3.37 −16.50
1.22(stdev) 6.76 10.86

−11.97 8.54 11.66
Icp2 −15.46 19.03 1721.04

−0.04 13.76 55.52
2.53 3.07 217.34

−265.80 7.80 −150.68
Iscp2 5.83 65.22 1715.73

−3.22 29.17 38.97
26.75 17.19 182.24

Table 2: Evaluating three invariants on data obtained from curves for which these invariants are not defined.
Every entry represents the statistics on 100 evaluations of a “wrong” invariant using random data points.

17

Once the class of a curve is recognized, its shape parameters can be estimated using the values of

the corresponding invariants. For a parabola, we simply have that a = 1/(2I
3/2
p). For an ellipse, its

two shape parameters are given in (29) and (30). For a hyperbola, they are given in (34) and (35).
For the three cubics, the shape parameters are simply the values of the corresponding invariants3.

Table 3 reveals how much the recovered shape parameters ā, b̄, c̄ differ from the real ones a, b, c.
A total of 100 curves for each class (only 25 curves for the cubic spline class) were randomly
generated under uniform distributions of its shape parameters within some prescribed ranges. We

use a relative error form
√

((a − ā)/a)2 +
(

(b − b̄)/b
)2

+ ((c − c̄)/c)2. From the table we see that
on the average the relative errors are around 1% except for cubic splines.

ellip. hyper. par. cub. semi-cub. cubic
par. par. spline

min 0.02% 0.10% 0.01% 0.02% 0.04% 1.57%
max 7.99% 9.71% 3.35% 7.49% 8.09% 10.22%
mean 0.40% 1.15% 0.36% 0.83% 1.23% 5.68%

Table 3: Relative errors on shape parameter estimation immediately after the invariant-based recognition.
The statistics are summarized over 100 randomly generated curves from each of the first five classes and 25
cubic splines.

5.2 Recognition Tree

Figure 6 illustrates a general recognition strategy for quadratic and cubic spline curves in the form
of a decision tree. Given a curve, we estimate the values of curvature κ and its derivative κs at
as few as three points. Then we test the invariants down the tree to identify the curve type or to
determine that it is unclassified. Afterward, we calculate the shape parameters of the curve from
the invariants (and thus completely determine the curve). Finally, the locations of the data points
on the curve are recovered.

For example, consider the ellipse in Figure 7(a). The values of curvature and its derivative
are estimated at t1 = 0.36, t2 = 1.86, and t3 = 4.23. Invariant Ic1 yields values 0.3447, 0.3446,
and 0.3449 at the three resulting pairs of points. So the curve is quadratic. Since these values
are greater than zero, we infer that the curve is an ellipse. This is confirmed by different values
0.8971 and 0.4030 of Ip at the first two points. The recovered shape parameters from Ic1 and Ic2

(according to (29) and (30)) are a≈2.8609 and b≈1.7275.
For the cubical parabola in Figure 7(b), a test on the invariant Ic1 has failed. So we know that

the curve is not quadratic. Hypothesizing cubical parabola, we solve for λ1 using (42). Subsequent
tests on the invariant Icp1 (for shape parameter a) yield values 3.2244, 3.2536, and 3.1872, and
on the invariant Icp2 (for b) yield values −2.3237, −2.3237, and −2.3972. The recognition of the
semi-cubical parabola in Figure 7(c) is similar.

The last curve is a segment from a closed cubic spline shown in Figure 7(d). We begin with
three points t1, t2, and t3. Tests on Ic1, Icp1, and Iscp1 have all failed. Hypothesizing that the
curve is a cubic spline segment, we estimate the shape parameters: a = 2.77468, b = −1.30929,
c = −2.3081. To verify the hypothesis, we use a fourth data point t4 and re-estimate a, b, c using
t1, t2, and t4. The new estimates are a = 2.78605, b = −1.3196, c = −2.30318. Since the two sets
of estimates agree quite well, the curve segment is recognized as a cubic spline segment.

3except in the case of a semi-cubical parabola, where the shape parameter a is the square root of the invariant
Iscp1.

18

a, c

Parabola
Cubical

I c1Sign of

Hyperbola

a, b a, b

Ellipse

>0 <0

Parabola

a
Semi−Cubical

Parabola

a, b

I p

I c2I c1,

I cp1, I cp2

I scp1, I scp2

(all other
curves)

Unclassified

t

yes no

noyes

no

no

yes

yes

?

?
?

?

segment?
spline

a, b, c

yes
no

Figure 6: Recognition tree for quadratic and special cubic curves. It is a decision tree where every query
node involves the evaluation of differential or semi-differential invariants.

t 3

t1

2t

t

t 1

3t

2

t2

t1

t 3

t
t t t432

1

(a) (b) (c) (d)

Figure 7: Recognition of four shapes based on local geometry. Three data points are used in (a)-(c) each
and four are used in (d). (a) An ellipse with a = 2.8605 and b = 1.7263; (b) a cubical parabola with
a = 3.2543 and c = −2.3215; (c) a semi-cubical parabola with a = 2.5683 and b = 1.4102; and (d) one of
five cubic spline segments with a = 2.76866, b = −1.26705, and c = −2.32763.

19

shape

Cobra 600

joystick

Adept

(a) (b)

Figure 8: (a) Sensing a shape with a joystick sensor; (b) the sensor blowup.

5.3 Locating Contact

Having recognized the shape, the next step is to locate the points whose curvatures and derivatives
are used in evaluating the invariants. Such a location is determined by the parameter value t.
In the real situation, curvature is estimated from tactile data obtained with a touch sensor. So t
locates the contact between the sensor and the curved shape. Since the tangent at the contact is
measurable by the sensor, t also determines the relative pose of the shape to the sensor.

Finding the value of t is easy for the quadratic and cubic curves discussed in Sections 3 and 4.
Here we simply give its expressions in terms of shape parameters, curvature and its derivative, and
slope:

t =



































































κs
3κ2 , if parabola;

sin−1

(√

(ab
κ)

2/3−b2

a2−b2

)

, if ellipse;

sinh−1

(√

(ab
κ)

2/3−b2

a2+b2

)

, if hyperbola;

±
√

λ−b
3a , if cubical parabola;

2(λ−b)
3a , if semi-cubical parabola;

−M((b−λ)2−3ac)+3(b−λ)

6a , if cubic spline.

In the case of a cubical parabola, the sign is determined based on the relative configuration of the
two data points.

6 Experiments

In our experiments, tactile data were generated by a joystick sensor mounted on an Adept Cobra
600 robot4, as shown in Figure 8. The joystick sensor is from Interlink Inc. and has a force range
of 20-170g. The sensor’s x- and y-axes were aligned with the robot’s world coordinate frame so

4The robot has four DOFs though only the three positional DOFs were needed.

20

that force and position measurements had the same reference. The Adept robot has error ranges of
±0.02mm in the x and y directions and ±0.01mm in the z direction. A contact between the sensor
and an object was detected when the sensor’s force output exceeded certain threshold. The position
of this contact was read from the robot controller. A calibration table was set up to compensate
positional errors due to the joystick bending. The sensor was able to detect its contact with a shape
within an error range of ±0.1mm under calibration.

6.1 Slope and Curvature Estimation

The key for the applicability of our invariant-based approach lies in obtaining reliable estimates of
curvature κ and its derivative κs from real tactile data. In the simulation, finite differences were
used. But they are not expected to be robust in the presence of noise.

We first tested some existing numerical methods based on the Taylor expansion and finite
differences. Curvature was estimated by approximating the osculating circle with the circle that
passes through three adjacent points and then taking the inverse of its radius. This method was
introduced in Calabi et al. (1998). The derivative of curvature was approximated by an involved
difference quotient using the estimated curvature values (Boutin 2000). These two methods yield
smaller numerical errors than the forms (51) used in our simulation earlier.

Some results of the above estimation are illustrated in Figure 9. From part (b) of the figure

x(cm)

y(cm)

1

1

(1/cm)κ

0.01

0.03

2κ s(1/cm)

(a) (b)

Figure 9: Estimating κ and derivative κs from tactile data using the numerical methods from Calabi et
al. (1998) and Boutin (2000): (a) an ellipse and 16 sample points; (b) estimates (κ̂, κ̂s) at these points plotted
against the signature curve.

we see that the estimates of κ and κs were not good because most points (κ, κs) do not lie close
to the signature curve for the ellipse. Since κ and κs are the second and third order derivatives of
the curve, respectively, they are very sensitive to small measurement errors. This is why the two
methods relying on Taylor expansions have failed on real data.

Differential filters (Meer and Weiss 1992) compute the derivatives of an image through convo-
lution. The origin lies in fitting with higher order polynomials. Here we introduce a method that
conducts two rounds of local fitting. The first round is performed to estimate the slope and the
curvature, and the second round to estimate the derivative of the curvature with respect to arc
length.

21

We fit a quadratic curve5

y = a2x
2 + a1x + a0

over a sequence (x1, y1), (x2, y2), . . . , (xn, yn) of data points, generated by the joystick sensor on the
shape boundary. The slope at the median point p1 = (x⌊n/2⌋, y⌊n/2⌋) is approximated by 2a2x + a1

in the world frame. The tangential angle θ1 is determined accordingly.
The curvature at the point p1 in the sequence is estimated through differentiating the curve fit:

κ1 =
2a2

(

1 +
(

2a2x⌊n/2⌋ + a1

)2
)3/2

.

Choose p1 as the starting point so its arc length s1 = 0. Next, we shift the sequence by l
points (l ≪ n so that p1 remains in the new sequence), and fit a new quadratic curve over
(xl+1, yl+1), (xl+2, yl+2), . . . , (xn+l, yn+l). Similarly, estimate the tangential angle θ2 and curva-
ture κ2 at the median point p2 of the new sequence. The tangent rotation ∆θ12 = θ2 − θ1 from
p1 to p2 is independent of the shape orientation. It relates the slopes at p1 and p2 according to
(9) so that only one of them needs to be determined. This relation is used in the least-squares
optimization (50) which finds the shape parameters for a cubic spline segment.

Next, Simpson’s method (Press et al. 2002, p. 136) is called upon to evaluate the integral

∫ x⌊n/2⌋+l

x⌊n/2⌋

√

1 + (2a2x + a1)
2 dx,

which approximates the arc length between p1 and p2.
Now, we have two pairs (0, κ̂1) and (ŝ2, κ̂2) of arc length and curvature estimates. Repeating this

process m times generates a sequence of pairs (0, κ̂1), (ŝ2, κ̂2), . . . , (ŝm, κ̂m). By fitting a quadratic
curve over this sequence we obtain curvature as a function of arc length locally:

κ = b2s
2 + b1s + b0.

Differentiating the above function gives us curvature derivative estimates at 0, ŝ2, . . . , ŝm. Finally,
we end up with m estimated pairs of κ and κs values: (κ̂1, κ̂s1

), (κ̂2, κ̂s2
), . . . , (κ̂m, κ̂sm). A total of

n + (m − 1)l data points are used. In the experiments, we choose n = 75 and l = 4.
The curvature estimation strategy was applied on an elliptic part and a closed cubic spline part,

shown in Figure 10(a) and (c), respectively. The model for the elliptic part is described by the
equation x2/2.52 + y2/1.752 = 1. The model for the closed cubic spline part was the same as the
curve in Figure 7(d). It had five segments.

Estimates (κ̂, κ̂s) at 20 points on the elliptic part were plotted against the signature curve for
the part model, as shown in Figure 10(b). The estimates for one group of 10 points lie almost on
the signature curve, while those for another group lie very close to the signature curve.

In Figure 10(c), eight sample point were taken out of one segment of the cubic spline part.
Figure 10(d) shows the curvature and derivative estimates (κ̂, κ̂s) at these points. We observed good
matches between the estimates and the signature curve for the corresponding segment in the shape
model. Estimates obtained from two other segments also matched their corresponding signature
curves well. But those from the two corner segments of the part produced poor matches. This was

5A quadratic curve is chosen because it has the same degree as the osculating circle but performs better at
approximating a short curve segment.

22

x(cm)

y(cm)

1

1
(1/cm)2κ

κ (1/cm)

s

0.03

0.01

(a) (b)

x (cm)

y (cm)

1

1

0.03

κ (1/cm)s 2

κ(1/cm)

0.01

(c) (d)

Figure 10: Estimating κ and derivative κs from tactile data generated by a joystick sensor: (a) an elliptic
part and 20 estimation points; (b) estimates (κ̂, κ̂s) at these points plotted against the signature curve for the
model curve of the part. (c) a closed cubic spline part with 8 estimation points from one of its segments; (d)
estimates (κ̂, κ̂s) at these points and the signature curve for the corresponding segment in the part model.
The estimates on curvature and its derivative are quite accurate as they lie very close to the signature curves.

23

mainly because, due to machining errors, the part’s two corner sections were more rounded than in
its geometric model. So the model segments have steeper signature curves than the corresponding
segments of the real part. The eight pairs of estimates would have matched the signature curves
for the actual corner sections better.

6.2 Validation of Invariants

The estimates (κ̂, κ̂s) at eighty pairs of points on the ellipse in Figure 10(a) were used for verifying
the two invariants Ic1 and Ic2 for the ellipse. For each pair, the invariants were computed and
the shape parameters a and b were recovered. The results are summarized in Table 4. As seen

Ic1 Ic2 a b

real 0.373836 1.30145 2.5 1.75

min 0.350559 1.26074 2.38636 1.62636

max 0.404903 1.36736 2.67234 1.83549

mean 0.377728 1.31825 2.51127 1.71959

Table 4: Invariant evaluation and shape recovery of the elliptic part in Figure 10(a) from tactile data. The
first row of data includes the part specification along with the values of the two invariants defined in (26)
and (28). The last three rows are summaries over 80 values computed from different pairs of estimates
(κ̂, κ̂s).

from the table, the average, minimum, and maximum estimated values of the invariants and shape
parameters were all close to the exact values.

We also used two groups of three estimates (κ̂, κ̂s) out of the eight from a cubic spline segment
in Figure 10(d). Due to inefficiency in nonlinear optimization, only two tests were performed. The
results are summarized in Table 5. Larger errors in the shape parameter estimation were observed,

a b c

real 1.10734 1.67996 −0.401898

test 1 1.07246 1.57648 −0.39233

test 2 1.06594 1.55496 −0.44884

Table 5: Recovering the cubic spline segment in Figure 10(d) from three of the eight data points. The
segment is of the form (38).

compared to the case of the elliptic part.

7 Discussion

We have introduced an invariant-based method that aims at unifying shape recognition, recovery,
and pose estimation with tactile information. Euclidean differential and semi-differential invariants
have been developed for several classes of low-degree algebraic curves. Evaluated over a few points,
these invariants capture intrinsic shape information about a curve. They allow us to recover the
shape parameters of the curve as well as to obtain the locations of contact where the tactile data
were supposed to be taken.

24

Although only quadratic curves and special cubic curves are treated in the paper, it is straight-
forward to extend the results to objects bounded by segments of these types. Nevertheless, data
points need to be close enough to each other so they come from the same curve segment.

The derivation of a differential invariant consists of two steps. The first step is to eliminate the
location parameter t or Euclidean coordinates to arrive at an equation that describes the signature
curve. This is always achievable if the curve is algebraic. Appendix C shows that the implicit
equation of an algebraic curve can be used along with curvature and its derivative to eliminate the
two Euclidean coordinates x and y and yield a signature curve equation.

The second step takes the signature curve equation and separates terms involving the shape
parameters from those involving curvature and its derivative with respect to arc length. This
step turns out to be difficult if not impossible. If there are more than one shape parameters, at
least an equal number of data points need to be used in deriving semi-differential invariants. This
approach does not resort to higher order derivatives of the curvature (which are numerically unstable
to evaluate). The curve slopes at these points, which are not invariant to rotation but whose
dependencies on each other can be determined through tactile measurements, may be employed to
facilitate invariant derivation.

We would like to investigate more on how to derive independent differential/semi-differential
invariants for a given curve class. Unlike the situation with algebraic invariants, no automatic
procedure of generating differential invariants is known to exist. Our aim is, nevertheless, to
further the understanding on the limit of this invariant-based approach, both computationally and
experimentally.

Extension to curves and surfaces in 3D is necessary for the invariant-based approach to become
practical. For such a curve, invariants will have to involve torsion (and possibly its derivatives).
For a surface, invariants will have to depend on the two principal curvatures and their derivatives.
Invariant derivation is expected to be quite challenging, although curvature estimation is expected
to rely on fitting to a local patch. We plan to conduct experiments on recognition and grasping of
curved surfaces through minimal touch.

A The Resultant of Two Polynomials

The resultant of two univariate polynomials is an expression involving their polynomial coefficients
such that the vanishing of the expression is necessary and sufficient for the two polynomials to have
a common zero. More specifically, suppose we are given two polynomials:

f(x) = anxn + an−1x
n−1 + · · · + a0, an 6= 0,

g(x) = bmxm + bm−1x
m−1 + · · · + b0, bm 6= 0.

Consider the following (m + n) × (m + n) matrix made up of m rows of coefficients ai followed by
n rows of coefficients bj:

A =























an an−1 · · · a0

. . .
...

an an−1 · · · a0

bm bm−1 · · · b0

. . .
...

bm bm−1 · · · b0























. (52)

25

The Sylvester resultant of the polynomials f(x) and g(x) is defined to be R = det(A), which
is homogeneous of degree m in ai and homogeneous of degree n in bj (van der Waerden 1970,
pp. 102–105). The following result holds.

Theorem 3 If the resultant R vanishes, the polynomials f and g have a common non-constant
factor (thus a common nontrivial zero), and conversely.

Suppose a curve is parametrized as (p(t), q(t)), where p(t) and q(t) are polynomials of degrees
n and m in t, respectively. We can implicitize the curve by eliminating the parameter t. This is
done by treating the coordinates x and y as symbolic coefficients and computing the resultant of
two polynomial equations in t:

p(t) − x = 0,

q(t) − y = 0.

The major diagonal of the matrix A in (52) determines that the resultant is a polynomial equation
in x and y. Furthermore, the degree of this polynomial is no greater than the maximum degree of
p and q.

In general, suppose we are given m polynomial equations in n variables x1, x2, . . . , xn:

p1(x1, x2, . . . , xn) = 0,

p2(x1, x2, . . . , xn) = 0,

...

pm(x1, x2, . . . , xn) = 0.

We can first eliminate xn by treating x1, x2, . . . , xn−1 as constant terms. This yields m − 1 poly-
nomials in x1, x2, . . . , xn−1. Repeating the above step to eliminate the remaining variables one by
one, until all variables have been got rid of or only one equation is left. The process generalizes
Gaussian elimination to a system of nonlinear equations.

B Canonical Form of a Cubic Spline Segment

A segment of a cubic spline has the general form:

x = a3t
3 + a2t

2 + a1t + a0,

y = b3t
3 + b2t

2 + b1t + b0, a3 6= 0 or b3 6= 0. (53)

First, we translate the curve by (−a0,−b0) to eliminate the constant terms:

x = a3t
3 + a2t

2 + a1t,

y = b3t
3 + b2t

2 + b1t.

Next, we perform a rotation by θ = arctan
(

a3

b3

)

to remove the cubic term in x, yielding

x = c2t
2 + c1t,

y = d3t
3 + d2t

2 + d1t, (54)

26

where

ci = (ai cos θ − bi sin θ), i = 1, 2;

dj = (aj sin θ + bj cos θ), j = 1, 2, 3.

Under the condition a3 6= 0 or b3 6= 0, it is easy to show that i) d3 6= 0 and ii) cos θ = 0 if and only
if b3 = 0. Two cases arise in further transformations:

(a) a2b3 − a3b2 = 0 It follows that c2 = 0. When a1b3 − a3b1 = 0, c1 vanishes. Subsequently,
x = 0 and the curve degenerates into the y-axis. So we are interested in the non-degenerate
case c1 6= 0, which is implied by a1b3 − a3b1 6= 0. We reparametrize (54) with t = u

c1
− d2

3d3
to

eliminate the quadratic term in y and then translate the curve to eliminate the new constant
terms in both x and y. The result is the simplest form:

x = u,

y = au3 + cu,

where the new coefficients are

a =
d3

c3
1

,

c =
d1

c1
− d2

2

3c1d3
.

The curve is a cubical parabola.

(b) a2b3−a3b2 6= 0 It follows that c2 6= 0. In case of a negative c2, rotate the curve by π to make
the coefficient positive. We first reparametrize (54) using t = u√

c2
− c1

2c2
and then translate

the curve to eliminate the constant terms emerging in x and y. This results in a canonical
form:

x = u2,

y = au3 + bu2 + cu,

where

a =
d3

c
3/2
2

,

b =
d2

c2
− 3c1d3

2c2
2

,

c =
3c2

1d3

4c
5/2
2

− c1d2

c
3/2
2

+
d1√
c2

.

We can always ensure that a > 0. For if a < 0, we just substitute −u for u in the parametriza-
tion and the coefficient of u3 in y will then become −a > 0.

When c vanishes, the curve is a semi-cubical parabola. This happens, for example, if a1 =
b1 = 0 in (53).

27

C Signature Curve for an Algebraic Curve

An algebraic curve is determined by some polynomial equation

f(x, y) = 0 (55)

in x and y. Any curve parametrized as α(t) = (p(t), q(t)), where p(t) and q(t) are polynomials in
t, is an algebraic curve. We can eliminate t as described in Appendix A.

Let us look at how to derive the signature curve equation for a given algebraic curve f(x, y) = 0.
Denote the gradient by ∇f = (fx, fy), where fx and fy are the partial derivatives of f with respect
to x and y, respectively. In the neighborhood of a non-singular point (where ∇f 6= 0), the algebraic
curve has a local parameterization by α(t) = (x(t), y(t)).

Differentiating the equation

f
(

x(t), y(t)
)

= 0,

according to the chain rule, we obtain

α
′ · (fx, fy) = 0.

Therefore, α
′ is orthogonal to (fx, fy), and we have α

′ = (x′, y′) = µ(fy,−fx), where µ 6= 0 is a
function of t. The Hessian matrix of f(x, y) is

H =

(

fxx fxy

fxy fyy

)

.

On differentiating once more we obtain

α
′′ · (fx, fy) + (x′, y′)H

(

x′

y′

)

= 0.

Therefore we have

x′y′′ − y′x′′ = α
′′ · (−y′, x′)

= µα
′′ · (fx, fy)

= −µ(x′, y′)H

(

x′

y′

)

= −µ3(fy,−fx)H

(

fy

−fx

)

.

Now, substitute the above equation as well as x′ = µfy and y′ = −µfx into equation (4) and then
divide its both sides by µ6:

κ2
(

f2
x + f2

y

)3
−
(

(fy,−fx)H

(

fy

−fx

))2

= 0. (56)

28

Next, we differentiate equation (56), obtaining

2κκ′
(

f2
x + f2

y

)3
+ κ2 · 3

(

f2
x + f2

y

)2
·
(

2fx · (fxxx′ + fxyy
′) + 2fy · (fxyx

′ + fyyy
′)
)

− 2

(

(fy,−fx)H

(

fy

−fx

))

(

2(fxyx
′ + fyyy

′,−fxxx
′ − fxyy

′)H

(

fy

−fx

)

+ (fy,−fx)
dH

dt

(

fy

−fx

))

= 0. (57)

The derivative of the Hessian is linear in both x′ and y′ and thus a multiple of µ:

dH

dt
=

(

fxxxx
′ + fxxyy

′ fxxyx
′ + fxyyy

′

fxxyx
′ + fxyyy

′ fxyyx
′ + fyyyy

′

)

.

Substitute into (57) the derivatives x′, y′, and

κ′ =
dκ

ds

ds

dt
= κs · |µ|

(

f2
x + f2

y

)1/2
,

and then divide both sides by 2µ. Next, we move all but the first term to the right hand side
of the resulting equation. The left hand side becomes ±κκs(f

2
x + f2

y)7/2. Squaring both sides of
the equation gives us a polynomial equation in κ, κs, and up to the third order partial derivative
of f . Eliminate x and y from this new polynomial equation and (55) and (56) using the method
described in Appendix A. The result is an equation describing the signature curve.

Acknowledgment Support for this research has been provided in part by Iowa State Univer-
sity, and in part by the National Science Foundation through a CAREER award IIS-0133681. The
authors would like to thank David Kriegman for pointing to differential invariants for shape recogni-
tion, and Liangchuan Mi (Mi and Jia 2004) for providing the tactile data used in the experiments.
The authors are grateful to the reviewers for their thorough reading of the paper and valuable
feedback. Portions of this paper were presented at the 2004 IEEE International Conference and
Robotics and Automation (ICRA ’04) (Ibrayev and Jia 2004) and at the Sixth International Work-
shop on Algorithmic Foundations of Robotics (WAFR ’04) (Jia and Ibrayev 2004). The authors
would like to thank the corresponding reviewers for their helpful comments.

References

[1] Allen, P. K., and Michelman, P. 1990. Acquisition and interpretation of 3-D sensor data from
touch. IEEE Trans. Robot. and Automation, 6(4):397–404.

[2] Boutin, M. 2000. Numerically invariant signature curves. Intl. J. Comp. Vision, 40(3):235–248.

[3] Calabi, E., Olver, P. J., Shakiban, C., Tannenbaum, A., and Haker, S. 1998. Differential and
numerically invariant signature curves applied to object recognition. Intl. J. Comp. Vision,
26(2):107–135.

[4] Civi, H., Christopher, C., and Ercil, A. 2003. The classical theory of invariants and object
recognition using algebraic curve and surfaces. J. Math. Imaging and Vision, 19:237–253.

29

[5] Fearing, R. S. 1990. Tactile sensing for shape interpretation. In S. T. Venkataraman and
T. Iberall (eds.), Dextrous Robot Hands, pp. 209–238. Springer-Verlag.

[6] Forsyth, D., Mundy, J. L., Zisserman, A., Coelho, C., Heller, A., and Rothwell, C. 1991.
Invariant descriptors for 3-D object recognition and pose. IEEE Trans. Pattern Analysis and
Machine Intell., 13(10).

[7] Grimson, W. E. L., and Lozano-Pérez, T. 1984. Model-based recognition and localization from
sparse range or tactile data. Intl. J. Robot. Res., 3(3):3–35.

[8] Guggenheimer, H. W. 1977. Differential geometry. Dover Publications.

[9] Hilbert, D. 1993. Theory of Algebraic Invariants. Cambridge University Press.

[10] Ibrayev, R., Jia, Y.-B. 2004. Tactile recognition of algebraic shapes using differential invariants.
Proc. IEEE Intl. Conf. Robot. and Automation (ICRA), New Orleans, LA, pp. 1548-1553.

[11] Jia, Y.-B. 2005. Localization of curved parts through continual touch. IEEE Trans. Robotics,
21(4):726-733.

[12] Jia, Y.-B., and Ibrayev, R. 2004. Semi-differential invariants for recognition of algebraic curves.
In Proceedings of the 6th International Workshop on Algorithmic Foundations of Robotics,
Ziest, the Netherlands.

[13] Keren, D. 1994. Using symbolic computation to find algebraic invariants. IEEE Trans. Pattern
Analysis and Machine Intell., 16(11):1143–1149.

[14] Keren, D., Rivlin, E., Shimshoni, I., and Weiss, I. 2000. Recognizing 3D objects using tactile
sensing and curve invariants. J. Math. Imaging and Vision, 12(1):5–23.

[15] Kriegman, D. J., and Ponce, J. 1990. On recognizing and positioning curved 3-D objects from
image contours. IEEE Trans. Pattern Analysis and Machine Intell., 12(12):1127–1137.

[16] Meer, P., and Weiss, I. 1992. Smoothed differentiation filters for images. J. Visual Commu. and
Image Representation, 3(1):58-72.

[17] Mi, L., and Jia, Y.-B. 2004. High precision contour tracking with a joystick sensor. In
Proc. IEEE/RSJ Intl. Conf. Intell. Robots and Systems, pp. 804–809.

[18] Moll, M., and Erdmann, M. A. 2004. Reconstructing the shape and motion of unknown
objects with active tactile sensors. In J.-D. Boissonnat et al. (eds.), Algorithmic Foundations
of Robotics V, pp. 293–309. Springer-Verlag.

[19] Moons, T., Pauwels, E. J., van Gool, L. J., and Oosterlinck, A. 1995. Foundations of semi-
differential invariants. Intl. J. Comp. Vision, 14(1):25–47.

[20] Mundy, J. L., and Zisserman, A. 1992. Introduction — towards a new framework for vision.
In J. L. Mundy and A. Zisserman (eds.), Geometric Invariance in Computer Vision, pp. 1–39.
The MIT Press.

[21] Pajdla, T., and Van Gool, L. 1995. Matching of 3-D curves using semi-differential invariants.
In Proc. IEEE Intl. Conf. Comp. Vision, pp. 390–395.

30

[22] Pauwels, E. J, Moons, T., van Gool, L. J., Kempenaers, P., and Oosterlinck, A. 1995. Recog-
nition of planar shapes under affine distortion. Intl. J. Comp. Vision, 14(1):49–65.

[23] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 2002. Numerical Recipes
in C++, 2nd ed. Cambridge University Press, 2002.

[24] Rivlin, E., and Weiss, I. 1995. Local invariants for recognition. IEEE Trans. Pattern Analysis
and Machine Intell., 17(3):226–238.

[25] van der Waerden, B. L. 1970. Modern Algebra, vol. 1. Frederick Ungar Publishing Co.

[26] Weiss, I. 1993. Geometric invariants and object recognition. Intl. J. Comp. Vision, 10(3):207–
231.

31

