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Abstract

Impact is indispensable in robotic manipulation tasks in which objects and/or manipulators
move at high speeds. Applied research using impact has been hindered by underdeveloped com-
putational foundations for rigid body collision. This paper studies the computation of tangential
impulse as two rigid bodies in the space collide at a point with both tangential compliance and
friction. It extends Stronge’s spring-based planar contact structure (Stronge 2000, pp. 95–96) to
three dimensions by modeling the contact point as a massless particle able to move tangentially
on one body while connected to an infinitesimal region on the other body via three orthogonal
springs. Slip or stick is indicated by whether the particle is still or moving. Impact analysis
is carried out using normal impulse rather than time as the only independent variable, unlike
in previous work on tangential compliance. This is due to the ability of updating the energies
stored in the three springs. Collision is governed by a system of differential equations solvable
numerically. Modularity of the impact model makes it easy to be integrated into a multibody
system, with one copy at each contact, in combination with a simultaneous impact model (Jia
et al. 2011) that governs normal impulses at different contacts.

KEY WORDs—impact, tangential compliance, friction, tangential impulse, energy-based resti-
tution, contact modes, sliding velocity

1 Introduction

Impact occurs over a very short time period when two or more bodies collide. During this period,
a high force is applied and kinetic energy is restored, released (after a partial loss), or transferred
to other bodies. We make use of impulsive forces to accomplish tasks that would otherwise be
very difficult, if not impossible. Example actions include hammering a nail, cracking a boiled egg,
pounding garlic with a mortar and a pestle, beating a drum, hitting a tennis ball, smashing a
volleyball, etc. On other occasions, we would like to reduce impulsive forces that might do harm to
ourselves by extending their duration. Air bags in automobiles are designed for such purpose. So
is much equipment in sports, for instance, baseball and boxing gloves, football helmets, gymnastic
mats, etc.

Impact has applications in manufacturing operations and robotic tasks in which high-speed
motions take place. A bowl feeder (Boothroyd and Redford 1968) vibrates parts to channel them
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through a spiral inclined track. After going through collisions with some gates along the track, the
parts will come out sorted in a small number of fixed orientations. Space robots need to minimize
impulsive reaction forces from collisions with other free-floating objects (Yoshida and Nenchev
1995) or from landing on other planets, either inside spacecraft or by themselves.

Investigations on robot dynamics during impact have been centered around modeling of colli-
sions between the robot and the environment (Zheng and Hemami 1985), design of impact control
schemes for stable contact during such collisions (Volpe and Khosla 1993), and evaluation of the
collision effects on the robot (Walker 1994). Though the first legged machine (Raibert 1986) ap-
peared more than two decades ago, most walking robots today are still confined to labs performing
statically stable gaits to avoid inertial effects. Addressing instability generated by fast walking
and running (Garcia and de Santos 2005) clearly requires better understanding of the foot-ground
collision. A large impulsive force can be generated by a humanoid robot without losing its balance
by minimizing the angular momentum based on impact dynamics (Konno et al. 2011).

A short execution time gives the impulsive force an edge on efficiency over the static and dynamic
forces. Usage of the impulsive force could potentially simplify the robotic mechanism needed to
perform a manipulation task, while avoiding uncertainties accumulated over repeated complex
operations. Despite this advantage and many potential applications, impulsive manipulation has
remained an under-explored area in robotics with very little known work (Higuchi 1985; Izumi
and Kitaka 1993; Partridge and Spong 1999; Hirai et al. 1999; Huang and Mason 2000; Han and
Park 2001; Tagawa et al. 2010). This is primarily attributed to the fact that the foundation for
rigid body impact is not fully developed, nor is any computational model surrounding it. Existing
impact theories often seem either too simple to be realistic or too complex to be applicable in the
presence of friction and tangential compliance. Discrepancies often exist between an introduced
theory and the findings from an experiment intended for its validation.

Robotic manipulation frequently makes use of contact compliance and compliant motions. Im-
plementable via force control of manipulators (Raibert and Craig 1981; Mason 1981; Khatib and
Burdick 1986), compliant motions often reduce uncertainties while increasing dexterity and relia-
bility in task executions. The classical peg-in-hole insertion (Whitney 1982), for instance, has been
extensively studied in the robotics literature as a representative operation in assembly. Compliance
also plays a critical role in improving robot safety (Sentis et al. 2010; Van Damme et al. 2010),
which is the most important concern in human-robot interaction, an area that has seen growing in-
terest with applications, such as robot assisted surgery and robot assistants for the elderly. Viewed
in the path planning domain, compliant motions are on the surface of configuration space obstacles
and may be planned over a graph of topological “contact states” (Tang and Xiao 2008).

Impact with tangential compliance has a large potential application in sports robotics. Skills in
ball sports are essentially about how to strike balls to make them follow desired trajectories while
moving and spinning fast enough to evade the opponents. Tangential compliance between a ball and
a striker is often critical for imparting a desired ball motion. A table tennis player uses a loop drive
with the racket grazing the ball to generate a large amount of topspin. This is a perfect example
of impact with tangential compliance. In pocket billiards (Shamos 1993), compliance between the
cue tip and the cue ball is essential for achieving desired post-shot speed and spinning of the cue
ball. There are two objectives here: to pocket an object ball, and to position the cue ball when it
comes to stop so the next shot can continue comfortably.

In impact, compliance is attributed to restoration of kinetic energy, both normally and tan-
gentially. Unfortunately, the role of tangential compliance had long been ignored with tangential
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dissipation of kinetic energy simply assumed for both contact modes — slip and stick — and at-
tributed to Coulomb friction. Observation shows that a ball hitting the ground at a small incidence
angle may bounce backward with a reversal of its rotation. Clearly, part of the tangential kinetic
energy absorbed at contact is restored after the impact, just like its normal counterpart.

Generally, during an impact between two bodies, the work done by the reaction force is converted
into internal strain energy of which the elastic part can be recovered. Under compliance, not all
the work done by the tangential force is lost to friction — part is returned just like the work done
by the normal force component (treated in the classical impact theory). This could cause reversals
of tangential motions after the impact — an effect that cannot be generated by friction. The effect
of tangential compliance is an integral phenomenon of collision in reality, and is important for us
to understand in the design of manipulation strategies.

Tangential compliance is negligible at contacts between smooth and hard materials such as steel
and glass. It is more prominent with materials like rubber, clay, wood, leather, fabric, or something
consisting of polymer layers. The effect is prominent in ball sports in part due to the material of a
ball and in part due to compressed air inside it. For example, a soccer ball is made of polyurethane,
and a tennis ball is made of rubber and fabric.

This paper will develop a computational model for tangential compliance in three-dimensional

impact that is based on evolution of the normal and tangential strain energies stored at contact. A
companion submission (Jia et al. 2011) to the International Journal of Robotics Research describes
a model for simultaneous impacts, and includes in the end its integration with the impact model
for tangential compliance studied here to solve multibody impact problems. There the integrated
model is demonstrated by simulating a massé billiard shot that matches the experimental data.

Figure 1 shows a scenario of the first five bounces initiated by a ball striking the plane at the
origin (in (a)) with velocity (−1, 0,−5) and angular velocity (0, 2, 0). Because the ball’s velocity
and angular velocity are orthogonal, its center stays in the x-z plane during the bounces. The ball
configurations immediately after the collisions are captured in (b), (d), (f), (h), and (j). In (c), (e),
(g), and (i), the ball rebounds to the highest positions between collisions with the table. Due to
contact compliance, the first impact on the plane shown in (b) has reversed the ball’s velocity in
the x-direction and its angular velocity, both of which will be reversed again by the second impact
in (d). The ball’s kinetic energy decreases due to sliding friction that occurs during each impact.
For each of the next three impacts depicted in (f), (h), and (j), contact compliance is not strong
enough to reverse the ball’s x-velocity, though it does reverse the direction of rotation. Coming
out of the collision in (j), the ball’s velocity has reduced to (−0.088333, 0, 0.155565) and angular
velocity to (0,−0.279167, 0).

In the example, reversals of the ball’s tangential and angular velocity are due to storage and
(then partial) release of the ball’s kinetic energy carried by its contact velocity. The phenomenon is
similar to that of a particle bouncing back after hitting the free end of a horizontal spring with the
other end fixed. Some of the ball’s kinetic energy dissipates under sliding friction at contact during
the collision. The example shows that tangential compliance and friction have different effects on
impact.

Without tangential compliance at the contact, friction would act alone to reduce the initial
tangential velocity to zero (when its ratio to the normal velocity component is not too large, as in
the case shown in Figure 1). In the subsequent sticking mode, the change in the tangential impulse
would be very small (just enough to maintain sticking). The total tangential impulse generated
during impact would not be enough to yield reversals of both velocities of the ball as shown in the
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Figure 1: Five consecutive bounces of a ball.
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1.1 Impact Dynamics and Contact Kinematics
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Figure 2: Impact between two bodies

This paper provides a computational study of the role of tan-
gential compliance during an impact between two bodies B1

and B2 making point contact at p as shown in Figure 2. Let
F be the contact force at p exerted by B2 on B1 during the
impact. The integral of F over time during the impact is the
impulse I exerted by B2. A reverse impulse −I is exerted on
B2 by B1 under Newton’s third law. Since F goes to infinity
as the impact period tends to zero, gravity is ignored. So the
contact plane is drawn horizontal with B1 above B2.

The impulse I is decomposed into a component In along
the contact normal n̂ at p and a tangential component I⊥.
The normal component In accumulates throughout the im-
pact. In solving the impact problem, In can be treated as
the variable whose value will grow monotonically to a point
decided by an impact law.

The tangential impulse I⊥, however, depends on a se-
quence of contact modes that occur during the impact. When the contact is sliding, the differential
change dI⊥ is related to the differential accumulation dIn under Coulomb’s law of friction. It
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opposes the instantaneous slip direction. When the contact is sticking, dI⊥ is in a direction that
counters the tendency of slip.1

Computation of the tangential impulse I⊥ and contact mode analysis during the impact are
the focus of this paper. Contact mode is closely related to the tangential component of the relative
velocity of the two bodies at p, which is governed by contact kinematics. As we will show, it is also
related to the strain energy stored at contact during the impact.

We set up the world frame at p with its xy-plane coinciding with the tangent plane. As
illustrated in Figure 2, for i = 1, 2, denote by V i the velocity of Bi, and by ωi its angular velocity.
For convenience, ωi is often described in terms of a fixed frame Fi instantaneously coincident with
the ith body’s canonical frame at its center of mass. Under this canonical frame, the body’s angular
inertia matrix Qi is diagonalized. Since the body does not move during the infinitesimal impact
period, we can study the change in its angular velocity during the impact with respect to the same
fixed frame Fi. The orientation of Fi relative to the world frame is described by a rotation matrix
Ri with R−1

i = RT
i . In Fi, let ri be the vector from the center of mass of Bi to the contact point p.

We have that

F = m1V̇ 1,

r1 × (R−1
1 F ) = Q1ω̇1 + ω1 ×Q1ω1,

where the dot ‘.’ denotes differentiation with respect to time. Integrate the above equations over
a time period [0, t], where t ≤ τ , the impact duration:

I = m1∆V 1,

r1 × (R−1
1 I) = Q1∆ω1.

In the above, as t→ 0, the integral
∫ t
0 ω1 ×Q1ω1 dt→ 0 since ω1 is bounded.

We set up the impact equations for object B2 in a similar way. Solve for the changes in the
velocity of two objects during the impact:

∆V 1 =
1

m1
I and ∆ω1 = Q−1

1

(

r1 × (R−1
1 I)

)

,

∆V 2 = − 1

m2
I and ∆ω2 = −Q−1

2

(

r2 × (R−1
2 I)

)

.
(1)

Meanwhile, the contact velocity is of B1 relative to B2 at p:

v = V 1 + R1(ω1 × r1)− V 2 −R2(ω2 × r2). (2)

During the impact, it changes by the amount

∆v = ∆V 1 + R1(∆ω1 × r1)−∆V 2 −R2(∆ω2 × r2)

=
1

m1
I + R1

((

Q−1
1

(

r1 × (R−1
1 I)

)

)

× r1

)

− 1

m2
(−I)−R2

((

Q−1
2

(

r2 × (R−1
2 (−I))

)

)

× r2

)

=

(

1

m1
+

1

m2

)

I −
(

R1P1Q
−1
1 P1R

−1
1 + R2P2Q

−1
2 P2R

−1
2

)

I

=

(

1

m1
+

1

m2

)

I − SI, (3)

1Sticking will cause no energy dissipation in our model to be introduced later.
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Figure 3: System of impact with tangential compliance.

where Pi, i = 1, 2, is the antisymmetric matrix such that Piu = ri × u for any vector u, and

S = R1P1Q
−1
1 P1R

−1
1 + R2P2Q

−1
2 P2R

−1
2 . (4)

Thus, ∆v is linear in the impulse with tangential component

∆v⊥ = (1− n̂n̂
T )∆v

=

(

1

m1
+

1

m2

)

I⊥ − (1− n̂n̂
T )SI. (5)

In the above, we abuse the notation slightly to use the number 1 in 1− n̂n̂
T for the 3× 3 identity

matrix, without introducing any ambiguity. The velocity v⊥ will be used in a contact mode analysis
for computation of I⊥.

Figure 3 integrates impulse into the system dynamics. The entire system is modeled in the
impulse space, not the time space. Computation of the tangential impulse I⊥ will rely on the use
of several virtual contact springs to model strain energies stored and released at the contacts.

1.2 Paper Outline

Computation of tangential impulse is the key to solving an impact problem with friction and
tangential compliance, even one as simple as Figure 1. For normal impulse, the use of an energetic
coefficient of restitution (Stronge 1990) is the only existing law of restitution consistent with the
law of energy conservation. For tangential impulse, an energy-based formulation is necessary to
maintain such consistency. There is no reason to believe that the normal and tangential components
of an impact would synchronize on compression and restitution. Even further, unlike the impact’s
normal component, its tangential component may switch between compression and restitution
many times. In this paper, we will extend the structure of the linear model given by Stronge (2000,
pp. 95–96) for planar impact with tangential compliance to develop a theory for 3-dimensional
impact that is based on normal impulse only and consistent with both laws of Coulomb friction
and energy conservation. Early development of the theory was described in Jia (2010).

Section 2 reviews the basic theory on single impact with frictionless contact, formulating the
derivative of contact strain energy with respect to impulse, which will be used frequently in the
subsequent development.

Sections 3 and 7 present the technical contributions of the paper. Section 3 introduces a compli-
ant impact model and describes the contact strain energies. Section 4 performs a detailed contact
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mode analysis. Section 5 summarizes a system of differential equations that governs the dynamics
and contact kinematics with normal impulse as the only independent variable, and presents an
event-driven algorithm. The degenerate case of planar impacts is treated in Section 6. Section 7
shows that the post-impact velocities scale with the pre-impact velocities, which is an important
property for any impact model to possess.

Two examples of a ball and a pencil striking a table, separately, are presented in Section 8
with plots of impulse and velocity curves and discussions over the effects of friction, tangential
compliance, and the coefficient of restitution. Section 9 concludes with a summary and some future
work.

1.3 Impact Overview

Under Newton’s third law, all collisions conserve momentum. An elastic collision also conserves
kinetic energy, while a plastic collision does not. Molecular collisions are elastic because there
is no loss of energy. Collisions in our daily life (and virtually all in robotic tasks), however, are
plastic. Solution of an impact problem requires determining the post-impact velocities from the
impact configuration and pre-impact velocities. The problem is under-constrained by momentum
conservation alone, hence some extra law over impact needs to be imposed. Three commonly used
ones, Newton’s law, Poisson’s hypothesis, and energy-based restitution, respectively specify the
ratios between the speeds after and before the impact, between the impulse growths during two
different impact phases (restitution and compression), and between the strain energies released and
stored during these two phases.

1.3.1 Newton’s Law

Newton’s law of impact (Mason 2001, p. 212) asserts that the speed of an object after an impact
is a constant fraction of that before the impact. The ratio, referred to as the kinematic coefficient
of restitution, lies in the range [0, 1]. The law was applied very early on in the study of multiple
impacts by Maclaurin (1742), and in particular in the study of elastic collision in a system of spheres
by Bernoulli (1969). More recently, Ivanov (1995) examined four approaches to solving multiple
impact problems with no friction based on Newton’s law: independent restitutions at contacts,
sequencing into successive impacts, a method of deformation, and a statistical method. The first
two generate either unrealistic results or no unique solution. The third method is highly sensitive
to initial conditions, while the fourth one has to consider all possible sequences of pairwise collisions
(thus increasing the complexity significantly).

It is well known that Newton’s law of impact could result in energy increase (Wang et al. 1992;
Wang and Mason 1992). Also, for multiple impacts, it implies that still objects should remain still,
which is clearly incorrect since energy often gets transferred to these objects. Consider a simple
version of Newton’s cradle (Brogliato 1999) where three balls are aligned horizontally with the
leftmost ball having an initial velocity to start the collisions. All three balls may get velocities after
the process (Liu et al. 2009). As another counterexample, when we drop a ping pong onto another
one sitting on the table, the still ball will bounce up as well. Newton’s law is generally inadequate
for modeling multiple impacts and impacts with contact friction and tangential compliance.
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1.3.2 Poisson’s Hypothesis

Impact occurs in a very short time period with very high interaction force. Impulse, which inte-
grates force over time and equals the change in momentum, is nevertheless finite. Therefore it is
more convenient to conduct impact analysis in the impulse space rather than in the time space.
Poisson’s hypothesis (Routh 1905) states that an impact between two bodies begins with a compres-
sion phase until their approaching velocity decreases to zero, and follows with a restitution phase
until the two bodies fully separate. The hypothesis also asserts that the impulse accumulated dur-
ing restitution is a fraction, called the kinetic coefficient of restitution, of that accumulated during
compression. His hypothesis, coupled with Coulomb’s law of friction, has been widely applied in
analysis of frictional impact. Such analysis requires correct detection of impact phases (compression
and restitution) as well as contact modes (sliding and sticking).

Planar impact. When the sliding direction stays constant (with possible reversals), tan-
gential impulse can be determined from normal impulse based on Coulomb’s law via case-based
reasoning. In the case of a planar impact, the total impulse stays in the same plane and grows
along a polyline. Routh (1905) developed a graphical method that constructs the trajectory of
impulse accumulation based on Poisson’s hypothesis. It was applied in some subsequent studies of
two-dimensional rigid-body collisions with friction. Wang and Mason (1992) classified impact and
contact modes, deriving an analytical form of impulse for each case, and showed that Poisson’s hy-
pothesis should be used instead of Newton’s law. Han and Gilmore (1989) considered impact with
multiple contacts under a purely algebraic law. Ahmed et al. (1999) and Lankarani (2000) extended
Routh’s method to impact analysis for multibody mechanical systems with a similar classification
that recognizes all modes of impact, providing expressions for normal and tangential impulses for
all impact types.

Three-dimensional impact. To an impact in three dimensions, however, Routh’s method
hardly applies since the impulse grows along a space curve. The sliding direction generally varies
during the impact. Darboux (1880) was the first to describe impact dynamics in terms of normal
impulse in the form of a differential equation. Closed-form solution to the differential equation does
not exist for many three-dimensional impact problems, which thus need to be solved via numerical
integration. Darboux’s result was later rediscovered by Keller (1986) who also used the governing
differential equation to show that the direction of sliding varies during an impact. The work outlined
a hypothesis-and-test method for contact mode checking and tangential impulse evaluation.

The above method of contact mode analysis was extended by Bhatt and Koechling (1994) who
computed the flow pattern of the tangential velocity during an impact as well as the line of stick-
ing, by setting up a differential equation of this velocity in terms of (scaled) normal impulse. The
solution tangential velocity as a vector varies along a trajectory called a flow. It depends on in-
ertial properties of bodies, the coefficient of friction, and the initial slip velocity. These flows are
non-intersecting and together are referred to as the hodograph (Stronge 2000, pp. 74–78). Sliding
contact is declared if the tangential relative velocity is non-zero, and sticking contact otherwise.
When stick transits to slip, the slipping direction can be solved from the velocity equation. Ap-
plying the same contact mode analysis, Mirtich and Canny (1995) sequenced impacts among a
collection of objects for storage in a priority queue, and demonstrated impulse-based interactive
simulation. Batlle (1996) studied how the geometry of the hodograph is affected by the coefficient
of friction.
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Linear complementarity methods Glocker and Pfeiffer (1995) introduced an impact model
for two-dimensional contacts under Coulomb friction and Poisson’s hypothesis that is based on a
linear complementarity (LCP) formulation. Complementarity arises in the normal direction from
non-negativeness of impulse and contact velocity when either compression or restitution ends,
and in the tangential direction with a polyhedral approximation of the Coulomb friction cone.
Assuming that the impacts at all contacts end compression and restitution simultaneously, the
method finds impulses at the ends of compression and restitution via numerical integration of
dynamics with two LCP formulations, one for each impact phase. The computation employs
Lemke’s algorithm (Anitescu et al. 1996) for LCP problems that pivots like the simplex algorithm
in linear programming. A similar formulation of multi-rigid-body impact problems with friction was
carried out by Stewart and Trinkle (1996) with a time stepping (integration) scheme that extends
to a nonlinear complementarity (NCP) formulation. Proved to be energy dissipative, their method
was modified by Anitescu and Portra (1997) in order to guarantee a solution (though multiple ones
may exist). In graphics, Baraff (1993) employed Lemke’s algorithm to compute impulsive forces as
unbounded rays, though not always following Newton’s law of dynamics. A survey of LCP-based
methods for frictionless collision problem can be found in Glocker (2001).

The LCP formulation of impact has several drawbacks. It does not correspond to fundamental
physical properties (Chatterjee and Ruina 1998). Lemke’s algorithm only generates the impulse
values after compression and restitution but does not describe how the impulse accumulates, which
is important for contact mode analysis during the impact. Often the LCP solution is not unique, so
ambiguities exist. Further, the normal impulse may sometimes be too small to prevent penetration
and has to be enlarged considerably without physical justification, yielding an unrealistic solution
(Glocker and Pfeiffer 1995). Finally, over multiple impacts, the assumption that all impacts syn-
chronize in compression and restitution is unrealistic.

Like Newton’s impact law, Poisson’s hypothesis may predict an increase in the kinetic energy
(Wang et al. 1992; Stewart and Trinkle 1996). The hypothesis is applied to each of multiple impacts
in an isolated way, whereas in simultaneous collisions compression and restitution of the impact
at one contact also depends on those happening at other contacts. Analysis of impact based on
the hypothesis has been a subject of controversy in order to be consistent with Coulomb’s law of
friction and the law of energy conservation.

Newton’s impact law and Poisson’s hypothesis yield the same solution to a direct impact, an
impact with frictionless contact, or a frictional impact with sliding contact only (Wang and Mason
1992). They are also equivalent for multi-contact impacts, first treated by Moreau (1988), if all
contacts are frictionless and have the same coefficient of restitution (Glocker 2001).

1.3.3 Energy-Based Restitution

The energy-based model, initially proposed by Boulanger (1939) and later analyzed in depth by
Stronge (1990), defines an energetic coefficient of restitution as the square root of the portion of
the strain energy absorbed during compression to be released during restitution. This coefficient
measures energy dissipation directly, and therefore is consistent with the law of energy conservation,
unlike the previous two impact laws. Under Stronge’s energy-based hypothesis, Wang et al. (1992)
integrated rigid body dynamics with contact stress models for simulation of processes with multiple
frictional contacts. Other efforts applying energy-based restitution were on multiple frictionless
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impacts (Liu et al. 2008; Jia et al. 2008; Liu et al. 2009), and frictional impact with or without
tangential compliance (Zhao et al. 2009; Jia 2010).

Stronge’s hypothesis is the only one of the three aforementioned impact laws (on speed, impulse,
and energy, respectively) that ensures non-negative energy loss from sources other than friction. The
kinetic coefficient of friction under Poisson’s hypothesis, for instance, is not consistent with energy
conservation when the direction of frictional contact slip varies during collision. It is otherwise
equivalent to the coefficient of energetic restitution for single impact unless the colliding bodies are
rough and the impact configuration is eccentric (Stronge 2000, p. 28).

Energy-based restitution is effective at modeling simultaneous impacts where compression and
restitution of the impact at one contact also depends on those happening at other contacts. Under
Poisson’s hypothesis, which applies to each impact in an isolated way, there may not be enough
energy stored at the contact to provide the amount of impulse growth during restitution required
by the hypothesis (Jia et al. 2008).

Liu et al. (2008) described a framework for frictionless multiple impacts in a multi-body system,
where energetic coefficients of restitution were applied to individual impacts. Impulses were related
to each other differentially, and numerical integration was always carried out over the impulse at the
contact currently with the maximum potential energy. This framework is referred to as the “LZB
multiple impact model”. Their sequel paper (Liu et al. 2009) presented a numerical algorithm
and included simulation results for several benchmark problems including Newton’s cradle, the
Bernoulli problem, etc. The same group (Zhao et al. 2008) applied the LZB model to study
energy dissipation and transfer during multiple frictionless impacts, obtaining numerical results for
a column of particles (a granular chain) that were in good agreement with experimental results by
Falcon et al. (1998). Recently, Nguyen and Brogliato (2012) used the same model to investigate
wave propagation that happens to the impact dynamics of multiple granular chains, reproducing
the main features of the phenomenon that had been observed experimentally by Nakagawa et al.
(2003).

Around the same time, Jia et al. (2008) independently proposed a simultaneous impact model
that observed the same differential relationship between impulses at various contacts. Their model
formulated the physical process with a state transition diagram, where each state represented a
different combination of contacts that were instantaneously active. Every collision instance yielded
a sequence of states with proven termination/convergence. Aside from simulation, a ping pong
experiment was presented to validate the state transition model.

1.4 Impact with Tangential Compliance

None of the frictional impact models mentioned in Section 1.3.2 under Poisson’s hypothesis, in-
cluding those applying LCP, handle tangential compliance. They assume that all the work done
by the tangential reaction force is lost to friction and thus completely unrecoverable. However, in
many collisions, tangential compliance is not negligible and sometimes plays a prominent role. Un-
der compliance, part of the tangential work is converted into elastic internal energy to be released
later, while the remaining part dissipates under friction.

We cannot always exclude tangential impulse from the velocity equations due to its non-
negligible effect on the impact outcome. Newton’s impact law was augmented with an empirical
formula for tangential impulse in terms of normal impulse and the approaching and separating ve-
locities (Smith1991), or with a tangential coefficient of restitution that specifies the ratio between
tangential and normal contact velocities before and after an impact (Bilbao et al. 1989; Brach 1989).
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These approaches did not exactly follow Coulomb’s law of friction. Johansson (2001) used a time
stepping method for numerical integration that discretized dynamic and kinematic equations with
Coulomb friction constraints. This method unrealistically assumed equal tangential and normal
coefficients of restitution at all contacts, and presented no contact mode analysis.

Mindlin (1949) studied two spheres pressed together under a normal force while subjected to
a tangential force, obtaining a condition for slip consistent with Coulomb’s friction law. He found
that stick would occur over a central circular region with microslips in a surrounding ring-shaped
region. Applying the Hertz contact theory, Maw et al. (1976) investigated tangential compliance
during the impact of an elastic sphere on a half-space, by dividing the contact area into a set of
concentric annuli as sticking and slipping regions with the application of the elasticity theory.

Stronge (1994; 2000) developed a lumped parameter representation2 of tangential compliance,
and applied a time-dependent analysis to track the changes in the tangential velocity during a
collision. His model could predict slip or stick at the contact under Coulomb’s law. Based on this
work, Stronge et al. (2001) presented a temporal analysis of impact between two compliant bodies,
and revealed that the effect of tangential compliance could be as large as that of friction when the
angle of incidence is not large enough for gross slip to happen during impact. Such analysis made
use of simple harmonic motions of the colliding bodies in both normal and tangential directions. It
had to non-dimensionalize very small time and very large force by scaling to put them in normal
ranges. Because it dealt with less important information for impact such as time, displacement,
and force, the approach was not quite revealing or stable for simulation by numerical integration.

Stronge (2000) claimed that the frictional energy loss depended on the sliding speed3, correcting
his earlier statement (Stronge 1994) that it depended on the tangential relative velocity4. But it
was not until the recent work by Hien (2010) that the formulation of frictional dissipation was
completed. In our paper, such dissipation will be accounted for, as the tangential component of
the contact strain energy is stored and released by two tangential springs.

In their study of planar frictional impacts, particularly the problem of a dimer bouncing on
a vibrated plate, Zhao et al. (2009) used energetic coefficients of friction to model the normal
impulses at various contacts that are related to each other differentially. When a contact sticks,
a “correlation coefficient of friction” was used to relate the derivative of the tangential impulse
to that of the normal impulse. This coefficient depends on the geometry and masses of the two
objects in contact but is irrelevant to the work done by the tangential force that could be partially
released due to compliance. Thus an inconsistency arises in the treatments of normal and tangential
impulses. Also, there is no reason that the differential ratio between the tangential and normal
impulses must be a constant.

2 Single Impact with Frictionless Contact

In this section, we give a very brief review of single impact with frictionless contact. Consider the
classical problem of a particle of mass m with downward velocity v0 < 0 striking a horizontal table.
The contact force F is non-negative in the duration τ of the impact, with F = 0 attained only at
the beginning and end of the interaction. Since the force is physically continuous, it is integrable
over [0, t], 0 ≤ t ≤ τ , generating the impulse I =

∫ t
0F dt. Conversely, the impulse is differentiable

2Such representation was earlier used by Mills and Nguyen (1992) over normal compliance.
3of a fictional massless particle attached to one body via virtual springs while moving on the other body
4obtained from contact kinematics
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during the impact with İ = F . Since F > 0 in the middle of the physical process, we infer that
there exists a one-to-one correspondence between t and I.

During the impact, gravity of the particle can be ignored since it is significantly less than the
impulsive force F . Newton’s second law states that F = mv̇, where v is the particle’s velocity.
Integration of the equivalent equation mv̇ = İ yields the particle’s velocity during the impact:

v = v0 +
I

m
. (6)

Namely, the total impulse is equal to the particle’s change in momentum. Since the rebound
velocity of the particle is no more than −v0, the total impulse is finite. Ideally, the impact happens
in infinitesimal time. As τ → 0, F →∞ in order to keep the integral I finite.

m

v0

v
x

Figure 4: Particle impact-
ing a table.

The impact is best analyzed in the impulse space. For better mod-
eling, we attach a virtual spring with stiffness k at the contact point
between the particle and the table, as shown in Figure 4. Let x mea-
sure the change in the virtual spring’s length from its rest length, so its
value is negative when the spring is compressed. We obtain the contact
force F = −kx, and the potential energy E = 1

2kx2, which is zero only
when the impact begins and finishes. Meanwhile, the ball’s velocity is

v = ẋ. (7)

The impact can be divided into two stages (Mason 2001, p. 212): compression and restitution.
During compression, the particle’s kinetic energy is transformed into the potential energy E of the
spring. When compression ends, the energy reaches its maximum value Emax. At this moment, the
particle’s velocity becomes zero, which by (6) gives the impulse I = −mv0 exerted up to this point.
During restitution, the elastic portion of the stored energy, of the amount e2Emax, is released. Here
e, 0 ≤ e ≤ 1, is referred to as the energetic coefficient of restitution.5 The remaining portion
(1− e2)Emax is simply dissipated due to some irreversible internal deformation. The energy release
keeps the impulse growing by an additional amount of −emv0, ending the impact with the particle
velocity −ev0.

We adopt the explanation by Stronge (2000, p. 1998) for the energy loss: When compression
ends the spring stiffness suddenly increases by a factor of 1/e2. This is a bi-stiffness model.6 7

Such an increase may be attributed to the hardening of the material due to some irreversible
deformation.8 Then, continuity of F implies that simultaneously the change in length of the spring
reduces to a fraction e2 of its previous value.

5When friction exists at the contact and the direction of contact slip varies during a collision, Poisson’s kinetic
coefficient of restitution is not consistent with energy conservation (Stronge 2000, p. 47).

6A different bi-stiffness model (Zhao et al. 2008; Nguyen and Brogliato 2012) subtracts from the change in length
the part due to plastic deformation, which equals 1−e2 times the maximum change in length at the end of compression.

7Another alternative, introduced by Goldsmith (1960), is a mono-stiffness model that maintains the stiffness at
the impact phase switch but rather ends restitution when the energy reduces to E = (1 − e2)Emax. This approach
has been experimentally validated to show cycles of compression and restitution. It was used by both Liu et al.
(2008) and Jia et al. (2008). Here, our choice of stiffness increase after compression not only reflects the hardening of
material but also makes it more mathematically convenient to model the situation when compression switches back
to restitution, a phenomenon also remarked in Liu et al. (2008).

8Here we assume that in reality material deformation happens in a much shorter time period than impact.
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We obtain the time derivative of impulse in terms of energy:

İ = F = −kx

=
√

2kE. (8)

The derivative is well-defined at the impact phase transition where F is continuous. Under equa-
tion (8), differentiation with respect to time can be converted to differentiation with respect to
impulse merely via division of

√
2kE.

Given the one-to-one correspondence between I and t, E can be described as a function of I,
despite that the loss of energy after compression is directly due to deformation, not I. The function
E has zero values at the start and the end of the impact, and the only discontinuity at the end of
compression. It is differentiable during each impact phase:

dE

dI
=

Ė

İ
=

d(1
2kx2)/dt

−kx
= −ẋ

= −v by (7) (9)

= −
(

v0 +
I

m

)

, by (6). (10)

The third equation above holds because the stiffness k does not change its value during compression
or restitution. Since I is continuous, at the impact phase switch, the left and right derivatives of
E, also given by (10), are equal.

Integration of equation (10) yields a quadratic relationship between E and I. The strain energy
reaches its maximum 1

2mv2
0 when compression ends at ẋ = 0, that is, when I = −mv0. Restitution

begins after a loss of a fraction 1− e2 of the maximum energy. The energy-impulse relation during
the impact is given as

E =







−v0I − I2

2m , if I ≤ −mv0;

−v0I − I2

2m + 1
2(e2 − 1)mv2

0 , if I > −mv0.
(11)

−mv0

E

1

2
mv2

0

1

2
e2mv2

0

I

−mv0(1 + e)

Figure 5: Energy evolution during im-
pact.

Figure 5 plots E parametrized with I over [0,−mv0(1 +
e)]. The curve consists of two halves of the same parabola
above the I-axis, with the right half translated downward
by 1

2(1 − e2)mv2
0 , the amount of energy loss. The energy

derivative with respect to the impulse exists as (10) if I 6=
−mv0. The curve is discontinuous at I = −mv0.

3 Tangential Impulse

Since gravitational forces are negligible compared to the very
large impulsive force at the contact of two colliding bodies,
we re-orient the system configuration (cf. Figure 2) to keep
the contact tangent plane horizontal. At the point of contact we set up a frame defined by the unit
normal vector n̂ and two orthogonal tangent vectors û and ŵ such that û× ŵ = n̂.

The direction û is chosen as follows. If the tangential component v0⊥ of the initial contact
velocity v0 is non-zero, that is, if v0× n̂ 6= 0, û opposes the direction of v0⊥. Otherwise, it opposes
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the tangential component of Sn̂, where S is given in (4), if n̂ is not an eigenvector of S. If v0×n̂ = 0
and n̂ is an eigenvector of S, û is arbitrarily chosen in the tangent plane. More formally, we have

û =



























− v0⊥
‖v0⊥‖

, if v0 × n̂ 6= 0;

− (1− n̂n̂
T )Sn̂

‖(1− n̂n̂
T )Sn̂‖

, if v0 × n̂ = 0 but n̂ is not an eigenvector of S;

any unit vector orthogonal to n̂, otherwise.

(12)

As we will see in Section 6, if the impact degenerates into a planar one, û under the above choice
defines a plane with n̂ in which the impulse grows.

Note that v0n = v0 · n̂ < 0 must hold for the collision to happen. This condition is assumed
true in the rest of the paper.

All vectors will be projected along the three directions û, ŵ, and n̂. In particular, the contact
force F exerted on the upper body, the impulse I, as well as the contact velocity v are decomposed:

F = Fuû + Fwŵ + Fnn̂,

I = Iuû + Iwŵ + Inn̂, (13)

v = vuû + vwŵ + vnn̂.

The initial contact velocity v0 = v0uû + v0wŵ + v0nn̂ has no component along ŵ, i.e., v0w = 0,
given the definition of û in (12).

3.1 Virtual Contact Springs

To model tangential compliance, Stronge (2000, 95–96) proposed a planar contact structure and
presented a temporal analysis of impact based on time and force which are less important infor-
mation to impact than impulse and velocity. We extend Stronge’s structure to three dimensions
and perform an impulse-based analysis. As shown in Figure 6, the infinitesimal contact area on the
upper body does not directly touch the lower body. It is instead connected to a massless particle
p via three springs that are respectively parallel to (and aligned with) n̂, û, and ŵ. The particle
moves in the contact tangent plane during the impact. The three springs are respectively referred
to as the n-, u-, and w-springs.

The tangential u-spring and w-spring have the same stiffness k⊥, which remains constant
throughout the impact. The normal spring has original stiffness k0, which will increase to k0/e

2 at
the end of compression according to Stronge’s explanation of energy loss as described in Section 2.
The stiffness ratio η2

0 = k0/k⊥ is often considered a constant which depends on Young’s moduli
and Poisson’s ratios of the materials in contact.9 In the analysis, we will be using the ratio

η2 = k/k⊥, (14)

where η = η0 during compression and η = η0/e during restitution.

9For normal indentation by a rigid circular punch on an elastic half space, Johnson (1985, pp. 361–366) showed
that η2

0 = 2−ν

2(1−ν)
, where ν is Poisson’s ratio of the half space. For most materials, Poisson’s ratio values ranges

between 0 and 0.5.

14



enlarged

contact tangent plane

u

n̂

û

n

ŵ

p
w

p

Figure 6: Contact structure.

With a slight abuse of notation, we denote by n, u, w the changes in length of the n-, u-,
and w-springs connected to the particle p, and En, Eu, Ew the strain energies these springs store,
respectively. The contact force components and the strain energies are given below:

Fn = −kn ≥ 0, Fu = −k⊥u, Fw = −k⊥w; (15)

En =
1

2
kn2, Eu =

1

2
k⊥u2, Ew =

1

2
k⊥w2. (16)

3.2 Impulse Derivatives

Our idea is to describe the impact in terms of the normal impulse In. Let a prime ‘′’ always refer
to differentiation with respect to In, which has a one-to-one correspondence with time.

Combining the first equations from (15) and (16), the change rate of the normal impulse In

over time can be described in terms of the strain energy En:

İn =
dIn

dt
= Fn =

√

2kEn. (17)

The derivative is well-defined at the impact phase transition where Fn stays continuous despite
sudden change in stiffness from kn to kn/e2

n. Since ṅ = vn, In and En assume the same relationship
as in the case of a single impact described in Section 2 with (9) now replaced by

E′
n =

dEn

dIn
=

Ėn

İn

=
knṅ

−kn
= −ṅ = −vn. (18)

Since vn depends on the two object’s velocities, we cannot integrate the equation directly to get a
closed form for En like the one given in (11).

Similar to (17), we obtain the change rates of the two tangential impulses in terms of the strain
energies stored in the u- and w-springs:

İu = Fu = −α
√

2k⊥Eu, (19)

İw = Fw = −β
√

2k⊥Ew, (20)
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where α and β are the sign variables that respectively tell whether the two springs are being
extended or compressed, namely,

α =

{

1 if u ≥ 0,
−1 if u < 0;

and β =

{

1 if w ≥ 0,
−1 if w < 0.

(21)

The three equations in (16) yield

n = −
√

2En

k
, u = α

√

2Eu

k⊥
, and w = β

√

2Ew

k⊥
. (22)

Note that n ≤ 0 throughout the impact.
Equation (17) is important because it allows us to convert any derivative with respect to time

into one with respect to the normal impulse In simply by a division over
√

2kEn. Thus, computation
can proceed without the time variable. To illustrate, we write the derivatives of the two tangential
impulses with respect to In as follows:

I ′u =
İu

İn

= −α

√

2k⊥Eu

2kEn
= −α

η

√

Eu

En
, (23)

I ′w = −β

η

√

Ew

En
. (24)

As we will see later, the normal and tangential stiffnesses will always appear together as a ratio.
As In accumulates, Iu and Iw vary according to (23) and (24). This update of tangential impulses

via strain energy ratios is similar to the method used by Liu et al. (2008), Jia et al. (2008), and
Zhao et al. (2009) on updating normal impulses at different contacts relative to a primary normal
impulse in a system of multiple impacts. The impulse I = Iuû + Iwŵ + Inn̂ varies along a curved
trajectory parametrized by In. This trajectory is referred to as the impulse curve.

3.3 Compressions and Extensions of Tangential Springs

To evaluate the derivatives (23) and (24) of the tangential impulses, we need to keep track of
whether each tangential spring is being compressed (e.g., u < 0) or elongated (e.g., u > 0), in order
to determine the values of the sign variables α and β defined in (21).

The changes in length of the two springs are

u =

∫ t

0
u̇ dt =

∫ In

0

u̇√
2kEn

dIn, (25)

w =

∫ In

0

ẇ√
2kEn

dIn. (26)

We cannot determine u and w unless k is known. However, because all we need are their signs to
evaluate α and β, it suffices if their values after some scaling can be tracked.

Suppose that compression ends with the normal impulse value In = Ic and restitution ends with
In = Ir. We introduce two integrals:

Gu =







∫ In

0
u̇√
En

dIn, if In ∈ [0, Ic],
∫ Ic

0
u̇√
En

dIn +
∫ In

Ic

e u̇√
En

dIn, if In ∈ (Ic, Ir];
(27)
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Gw =







∫ In

0
ẇ√
En

dIn if In ∈ [0, Ic],
∫ Ic

0
ẇ√
En

dIn +
∫ In

Ic

e ẇ√
En

dIn, if In ∈ (Ic, Ir];
(28)

Each of Gu and Gw is a sum of subintegrals computed over a sequence of contact modes during
the impact. The increments of Gu and Gw within a contact mode are computed by integrating

u̇/
√

En and ẇ/
√

En, respectively, over [I
(0)
n , In], where I

(0)
n is the value of the normal impulse when

the contact mode started. If compression ends during the contact mode, the integrands need to be
scaled by the coefficient of restitution e for the values of In during restitution.

Comparing (27) and (28) respectively with (25) and (26) and noting that k = k0 during com-
pression and k = k0/e

2 during restitution, we have

Gu =
√

2k0u and Gw =
√

2k0w. (29)

Now, we need only keep track of Gu and Gw for the signs of u and w.
The second usage of Gu and Gw is for updating the tangential strain energies as follows:

Eu =
1

2
k⊥u2 =

G2
u

4η2
0

, (30)

Ew =
G2

w

4η2
0

. (31)

The rates u̇ and ẇ of change in the lengths of the u- and w-springs turn out to be independent
of the stiffness k0 of the normal spring, as we will derive below for both contact modes: stick and
slip.

4 Contact Mode Analysis

The contact structure in Figure 6 provides a convenient way of analyzing contact modes during
the impact in terms of the strain energies stored in the springs, and obtaining the rates u̇ and ẇ
of the changes in length of the tangential springs (which are in turn used for updating the strain
energies).

4.1 Sliding Velocity

u̇vs

p

ẇ
û

ŵ

v⊥

Figure 7: Sliding velocity of contact
particle.

The contact velocity is v = v0+∆v, where v0 is its initial value
and ∆v is given in (3). Denote its tangential component at the
contact as v⊥. Then the particle p is moving in the contact
tangent plane at the velocity

vs = v⊥ − u̇û− ẇŵ. (32)

See Figure 7. When vs = 0, i.e., v⊥ = u̇û + ẇŵ, the contact
sticks. In this case, the relative motion of the upper body to the
lower body in the contact plane is completely absorbed by the
two tangential springs so that the particle exhibits no motion.
When vs 6= 0, the contact is sliding with velocity vs, which is

accordingly referred to as the sliding velocity.
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In the case of slip, under Coulomb’s law, the tangential contact force F⊥ = −µFnv̂s, where
v̂s = v/‖v‖ is the sliding direction. Meanwhile, the force exerts on the upper body via the u- and
w-springs: F⊥ = −k⊥(uû + wŵ). Equate the two forms of F⊥:

k⊥(uû + wŵ) = µFnv̂s. (33)

Switch the two sides of (32), and substitute (33) for v̂s in:

v⊥ − u̇û− ẇŵ = ‖vs‖v̂s =
k⊥
µFn
‖vs‖(uû + wŵ). (34)

Equation (34) also holds for the sticking contact where it reduces to v⊥ = u̇û + ẇŵ since vs = 0.
Take dot products of û and ŵ separately with both sides of (34):

v⊥ · û− u̇ =
k⊥
µFn
‖vs‖u,

v⊥ · ŵ − ẇ =
k⊥
µFn
‖vs‖w.

To eliminate the right hand sides above, we first multiply both equations with w and u, respectively,
and then subtract one from another. This yields

wu̇− uẇ = (v⊥ · û)w − (v⊥ · ŵ)u

= (v · û)w − (v · ŵ)u

= vuw − vwu. (35)

The above equation also holds for both contact modes just like (34) does.

4.2 Energy Dissipation

During the impact, the total energy (kinetic and strain) dissipates due to irreversible internal
deformation in the normal direction and contact friction in the tangential direction. The first type
of dissipation is characterized by the energetic coefficient of restitution e with a loss of 1− e2 times
the energy component carried by the initial normal contact velocity.

The second type of dissipation happens to the energy component due to the initial tangential
contact velocity. Let E⊥ ≥ 0 be the amount of energy dissipated during slip. We have

Ė⊥ = −F⊥ · vs

= µİn‖vs‖ since F⊥ = −µFnv̂s when vs 6= 0

= µİn‖v⊥ − u̇û− ẇŵ‖.
The rate of dissipation with respect to the normal impulse is

E′
⊥ = µ · ‖v⊥ − u̇û− ẇŵ‖. (36)

When the contact sticks, vs = 0 and hence E′
⊥ = 0. Kinetic energy gets converted into strain energy

or vice versa with no loss. When the contact slips, E′
⊥ > 0 since the sliding velocity opposes F⊥.

Such handling of energy dissipation is somewhat similar to existing works such as Lun and Bent
(1994), where a sticking-sliding collision model was used to describe binary collisions of spheres
undergoing a shear flow. In Sections 4.3 and 4.4, we will derive closed forms for u̇ and ẇ and see
that they depend on the contact velocity v and the strain energies Eu, Ew, En stored in the three
virtual springs.
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4.3 Stick

When the contact sticks, vs = 0, which by (32) implies

v⊥ = u̇û + ẇŵ. (37)

Take dot products of the above equation with û and ŵ, respectively:

u̇ = v⊥ · û = vu, (38)

ẇ = vw. (39)

Now, let us take a look at the motion of the upper body B1 relative to the lower body B2 in
the contact tangent plane when the contact sticks. Differentiate (37):

d

dt
(v⊥) =

d

dt
(∆v⊥) = üû + ẅŵ. (40)

Under (5) and by the use of (16), the left hand side of the above equation is

d

dt
(∆v⊥) =

(

1

m1
+

1

m2

)

İ⊥ − (1− n̂n̂
T )Sİ

=

(

1

m1
+

1

m2

)

(Fuû + Fwŵ)− (1− n̂n̂
T )S(Fuû + Fwŵ + Fnn̂)

= −
(

1

m1
+

1

m2

)

k⊥(uû + wŵ) + (1− n̂n̂
T )S(k⊥uû + k⊥wŵ + knn̂),

where S is given in (4). Comparing the last equation above with (40), we obtain the relative
tangential motion of B1 to B2 in the case of sticking contact:

üû + ẅŵ = −
(

1

m1
+

1

m2

)

k⊥(uû + wŵ) + (1− n̂n̂
T )S(k⊥uû + k⊥wŵ + knn̂). (41)

This motion is decoupled when the inertia matrix S is diagonal. In such a case, let λ1, λ2, λ3 be the
entries on the diagonal of S. Then B1 undergoes harmonic motions relative to B2 in the tangent
plane:10

ü +

(

1

m1
+

1

m2
− λ1

)

k⊥u = 0, (42)

ẅ +

(

1

m1
+

1

m2
− λ2

)

k⊥w = 0. (43)

Section 8.1 will offer an example of a ball striking a table.

4.4 Slip

Under slip, the tangential contact force F⊥ exerted on the u- and w-springs is due to sliding friction.
It has two equivalent forms given in (33). We here determine the rates u̇ and ẇ change in the spring
lengths for the purpose of updating the integrals Gu and Gw defined in (27) and (28), and Eu and

10As pointed out by Stronge (2000), the particle always undergoes a harmonic motion in the sticking mode of a
2-dimensional impact.
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Ew subsequently according to (30) and (31). Equation (35) relates u̇ and ẇ linearly in terms of u,
w, and the contact velocity v. To solve for u̇ and ẇ, we need to set up a second equation. First,
eliminate the normal contact force from (33) via substitution of (17):

k⊥(uû + wŵ) = µ ·
√

2kEnv̂s. (44)

Take the dot products of both sides of this equation with themselves:

u2 + w2 = 2µ2 k

k2
⊥

En. (45)

Combined with the last two equations in (16), the above equation relates the elastic energies stored
in the three springs during slip:

Eu + Ew = µ2 k

k⊥
En = µ2η2En. (46)

Namely, the strain energy built up due to tangential compliance is a factor of that due to normal
compliance: this factor depends on the ratio of the normal stiffness to the tangential stiffness, as
well as the coefficient of contact friction.

Moving on, we differentiate (45) with respect to time:

uu̇ + wẇ = µ2 k

k2
⊥

Ėn. (47)

Equations (35) and (47) are in u̇ and ẇ. The determinant of their coefficient matrix is u2 + w2. So
a unique solution exists unless u = w = 0. Multiply (35) with w and (47) with u, and add them
up to eliminate the terms involving ẇ:

(u2 + w2)u̇ = µ2 k

k2
⊥

Ėnu + vuw2 − vwuw.

This yields

u̇ =

µ2 · k

k2
⊥
· Ėnu + vuw2 − vwuw

u2 + w2

=

µ2 · k

k2
⊥
· E′

n · İnu + vuw2 − vwuw

u2 + w2

=

µ2 · k

k2
⊥
· E′

n ·
√

2kEn · α
√

2Eu

k⊥
+ vu

2Ew

k⊥
− vwαβ · 2

k⊥
·
√

EuEw

2µ2 · k

k2
⊥
· En

by (17), (22), and (45)

=

−αµ2

√

k

k⊥
· vn

√
EnEu +

k⊥
k

vuEw − αβ
k⊥
k

vw

√
EuEw

µ2En
by (18).
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With a substitution of (14) into the last equation above, we derive the rate of change in length of
the u-spring:

u̇ =
−αµ2η3vn

√
EnEu + vuEw − αβvw

√
EuEw

µ2η2En
, (48)

Similarly, we obtain

ẇ =
−βµ2η3vn

√
EnEw + vwEu − αβvu

√
EuEw

µ2η2En
. (49)

With u̇ and ẇ, the contact sliding velocity vs follows from (32).
Clearly, the rates u̇ and ẇ of changes in length of the two tangential springs are continuous

within a contact mode. Continuity is maintained at a transition from slip to stick because the
transition condition (37) holds during stick. However, discontinuity may happen at a transition
from stick to slip. Even though the left derivatives u̇− = vu and ẇ− = vw satisfy (46), there is no
guarantee that (47) derived from differentiating (46) will hold. As a result, the right derivatives
u̇+ and ẇ+ as solution to (35) and (47) may be different from the left derivatives. An example of
this discontinuity will be given later in Figure 12(b) about a ball-table collision.

4.5 Contact Mode Detection and Transition

Under Coulomb’s law of friction, the contact between the two impacting bodies sticks if
√

F 2
u + F 2

w <
µFn, namely,

√

İ2
u + İ2

w < µİn. (50)

By equations (17), (19), and (20), comparing
√

F 2
u + F 2

w with µFn is equivalent to comparing
Eu + Ew and µ2η2En. Thus, the contact sticks if

Eu + Ew < µ2η2En. (51)

When
√

F 2
u + F 2

w = µFn, i.e.,
Eu + Ew = µ2η2En, (52)

the contact sticks if the sliding velocity vs vanishes, and slips otherwise. By (32), vanishing of vs

happens when
v⊥ = u̇û + ẇŵ, (53)

where u̇ and ẇ are given in (48) and (49), respectively, in terms of the strain energies.
If (51) holds, or (52) and (53) both hold, the contact sticks. Otherwise, it slips.
The strain energies Eu and Ew do not change their values at the contact mode switch. At the

end of compression, the value of µ2η2En does not change because η2 = k/k⊥ increases from η2
0 to

η2
0/e

2 while En reduces to a factor of e2 of its value under the impact law.

4.6 Initial Contact Mode

We first hypothesize that the impact starts with the sticking contact, and derive a condition on the
initial contact velocity v0 equivalent to that stated by Coulomb’s law. If the condition is satisfied
(and thus consistent with the hypothesis), initial stick occurs. Otherwise, initial slip occurs. Under
Coulomb’s law, stick happens at the beginning if

lim
∆t→0

‖İuû + İwŵ‖
İn

< µ, (54)
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and slip happens otherwise.
We here look at an infinitesimal amount of time ∆t after the impact begins. The value of İu,

i.e., the force Fu on the u-spring, is

İu = −k⊥u = −k⊥

∫ ∆t

0
u̇ dt

= −k⊥

∫ ∆t

0
vu dt, by (38).

Similarly, we obtain

İw = −k⊥

∫ ∆t

0
vw dt,

İn = −k0

∫ ∆t

0
vn dt.

Recall the initial velocity v0 = v0uû + v0wŵ + v0nn̂ with v0w = 0. With İu, İw, and İn, the limit
in (54) can be determined:

lim
∆t→0

‖İuû + İwŵ‖
İn

= lim
∆t→0

‖
∫∆t
0 (vuû + vwŵ) dt‖
−
∫∆t
0 vn dt

· k⊥
k0

= lim
∆t→0

∫∆t
0

√

v2
u + v2

w dt

−
∫∆t
0 vn dt

· 1

η2
0

=

√

v2
0u + v2

0w

−v0n
· 1

η2
0

by L’Hospital’s rule

=
v0u

v0nη2
0

.

The second equation above follows from that v does not vary its direction over [0,∆t] as ∆t→ 0.
The last one follows from the choice of û. Note that v2

0u = (v0 · v0)
2− v2

0n. Substitution of the last
equation above into (54) yields conditions for initial slip and stick, as stated below.

Proposition 1 The impact starts with a sticking contact if

‖v0‖ < −
√

1 + µ2η4
0 · (v0 · n̂), (55)

or a sliding contact if

‖v0‖ ≥ −
√

1 + µ2η4
0 · (v0 · n̂). (56)

Appendix A will derive the initial values of the ratios of the strain energies Eu and Ew stored
in the tangential springs to that stored in the normal spring, as follows:

lim
In→0

Eu

En
=











(

v0u

η0v0n

)2

, if stick,

µ2η2
0 , if slip;

(57)

lim
In→0

Ew

En
= 0. (58)
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The energy ratios for initial slip are plugged into (48) and (49) to determine the corresponding
initial change rates u̇ and ẇ of the lengths of the two tangential springs. The rates u̇ and ẇ in the
case of initial stick easily follow from (38) and (39) and that the tangential contact velocity initially
opposes û. Combine the expressions for the two contact modes:

u̇(0) =

{

v0u, if stick,
µη2

0v0n, if slip;
(59)

ẇ(0) = 0. (60)

The ratios (57) and (58) are also plugged into (23) and (24) to obtain the initial impulse derivatives
(with α = −1 and η = η0):

I ′u(0) =







v0u

η2
0v0n

, if stick,

µ, if slip;
(61)

I ′w(0) = 0. (62)

5 Impact System of Differential Equations

It is time to summarize the system of equations that governs two-body impact with tangential
compliance. The impact outcome (1) is determined by the impulse I exerted by the lower body B2

on the upper body B1. The contact velocity follows from (3) and (13):

v = vuû + vwŵ + vnn̂ = v0 +

(

1

m1
+

1

m2

)

I − SI, (63)

where v0 is the initial contact velocity (2) determined from the objects’ pre-impact velocities, and
S is the 3× 3 matrix given in (4).

The impulse is I = Inn̂ + Iuû + Iwŵ, where the normal impulse In is an independent variable
for the impact, and the tangential impulses Iu and Iw are functions whose derivatives with respect
to In are, from (23) and (24),

I ′u = −α

η

√

Eu

En
and I ′w = −β

η

√

Ew

En
. (64)

Here α and β, defined in (21), are two-value variables indicating whether the two tangential springs
extend or compress, respectively. The strain energy stored in the normal spring varies at the rate
given by (18):

E′
n = −v · n̂ = −vn. (65)

It loses a factor 1 − e2 of its value at the end of compression. The strain energies stored in the
tangential springs are copied over from (30) and (31) as

Eu =
G2

u

4η2
0

, and Ew =
G2

w

4η2
0

, (66)
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where the two integrals Gu and Gw respectively record changes u and w in the lengths of the u-
and w-springs up to a constant factor. Their derivatives with respect to In are



















G′
u =

u̇√
En

and G′
w =

ẇ√
En

, if compression,

G′
u = e

u̇√
En

and G′
w = e

ẇ√
En

if restitution,

(67)

where the rates u̇ and ẇ depend on the contact mode, and after merging (38) with (48) and (39)
with (49), are

u̇ =











vu, if stick,

−αµ2η3vn
√

EnEu + vuEw − αβvw
√

EuEw

µ2η2En
, if slip;

(68)

ẇ =











vw, if stick,

−βµ2η3vn

√
EnEw + vwEu − αβvu

√
EuEw

µ2η2En
, if slip.

(69)

To put the above equations into the standard form of a system of ordinary differential equations,
we first substitute (63) for v into (65). Then substitute (63) for v and (66) for Eu and Ew into (68)
and (69). Next, substitute the resulting expressions for u̇ and ẇ in (67), respectively. In the obtained
expressions for G′

u and G′
w, and in the expressions (64) for I ′u and I ′w, replace the occurrences of Eu

and Ew with their expressions (66). Having eliminated the occurrences of Eu, Ew, vu, vw, and vn,
we end up with a system of five differential equations involving one variable In and five functions
Iu, Iw, Gu, Gw, and En:

I ′u = f1(En, Gu),

I ′w = f2(En, Gw),

G′
u = f3(In, Iu, Iw, En, Gu, Gw), (70)

G′
w = f4(In, Iu, Iw, En, Gu, Gw),

E′
n = f5(In, Iu, Iw).

In the above, fi, 1 ≤ i ≤ 5 are the functions that result from the aforementioned substitution steps.
The computation is energy-based because Gu and Gw essentially represent Eu and Ew.

Figure 8 is a flow chart for the impact system that expands the diagram in Figure 3. The
system finishes at the end of restitution of the normal impact. As In accumulates independently,
the normal impact ends compression when ṅ = 0, suffering a loss of the strain energy En by a
factor of 1 − e2, and then releases the remaining amount of En during restitution. In the loop,
the motions of the two objects are updated using the total impulse I. The contact velocity v is
updated accordingly, so is the energy En stored in the normal spring. Meanwhile, the contact mode
is determined using v, Eu, Ew, and En. Increments are added to the integrals Gu and Gw to track
the changes in length of the two tangential springs. From Gu and Gw, Eu and Ew are computed.
Afterward, the derivatives of the tangential impulses Iu and Iw with respect to the normal impulse
In are obtained, and integrated. The three impulses Iu, Iw, and Iw are assembled into I to close
the loop.
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Figure 8: Diagram for impulse computation.

In the right hand sides of equations (63)–(69), only En among the five functions appears in the
denominators. Thus, in the system (70) derived from them, only En appears in the denominators
in the functions fi, 1 ≤ i ≤ 5. During the impact, En > 0. That u̇, ẇ, G′

u, and G′
w are piecewise

continuous functions does not affect their integrability. So fi, 1 ≤ i ≤ 5, in (70) are piecewise
continuous in Iu, Iw, Gu, Gw and En. These functions depend on the stiffness ratio determined by
η according to (14) not on the values of the normal and tangential stiffnesses. Their integrals, i.e.,
the values of Iu, Iw, Gu, Gw, En are unique as long as En 6= 0. In the below we establish that the
solution uniquely exists at the beginning of the impact. Then the impact model generates a unique
outcome.

The initial values are

Iu(0) = Iw(0) = 0, Gu(0) = Gw(0) = 0, and En(0) = 0. (71)

From (65), we have that
E′

n(0) = −v0n. (72)

The initial values of the derivatives I ′u and I ′w are given in (61) and (62). Appendix B establishes
that for In small enough,

Gu =











2v0u√−v0n

√

In + O(I3/2
n ), if initial stick,

−2µη2
0

√
−v0nIn + o(

√
In), if initial slip;

(73)

Gw = O(I3/2
n ). (74)

In the above, the big-O and small-o notation are used such that O(I
3/2
n ) < cI

3/2
n for some constant

c and all small enough values of In, and limIn→0 o(
√

In)/
√

In = 0. We see that the initial changes
in Iu, Iw, Gu, Gw, and En are determined.

The system (70) does not have a closed-form solution in general. We need to carry out numerical
integration over In with a small step size, say, δ. The pseudo-code is given in Algorithm 1, which
outputs the total impulse I, and computes the post-impact velocities of the two bodies.
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Algorithm 1 Impact with Tangential Compliance

1: initialization
2: ∆In ← δ
3: while not end of restitution do

4: evaluate u̇ and ẇ according to (68) and (69) given the present contact mode
5: evaluate G′

u and G′
w according to (67) given the present impact phase

6: Gu ← Gu + G′
u∆In

7: Gw ← Gw + G′
w∆In

8: update Eu and Ew according to (66)
9: En ← En − vn∆In by (18)

10: evaluate I ′u and I ′w according to (64)
11: I ← I + (I ′uû + I ′wŵ + n̂) ·∆In

12: update v according to (63)
13: if contact sticks and Eu + Ew = µ2η2En then

14: switch to slip
15: end if

16: if contact slips and v⊥ = u̇û + ẇŵ then

17: switch to stick
18: end if

19: if compression and vn = 0 then

20: compression ends
21: end if

22: if restitution and En = 0 then

23: restitution ends
24: end if

25: end while

26: update V i and ωi, i = 1, 2 using I according to (1)

Line 1 initializes function values given in (71) for integration. The initial contact mode is de-
termined according to Proposition 1. To avoid numerical instability, we start numerical integration
at In = δ.

In the first integration step, En, Iu, Iw are approximated using their first order Taylor series
about 0 with the derivatives given in (72), (61), (62). The value of Gu(δ) is approximated using (73)
by ignoring the big-O term. We also let Gw(δ) = 0 since it can be ignored in comparison with
Gu(δ).

Lines 3–25 is the main loop that simulates the physical impact process, incrementally updating
the contact strain energy components, the impulse, and the contact velocity. These lines also keep
track of contact modes and impact phases. The algorithm fills in the details missing from the
diagram in Figure 8.

6 Planar Impact

In (5), (1 − n̂n̂
T )SI, the projection of SI onto the contact plane, is rarely collinear with I⊥ (see

Figure 9(a)). Hence the tangential velocity v⊥ often changes along a direction different than the
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Figure 9: (a) Generally non-coplanar contact velocity v, impulse I, and contact normal n̂ during the
impact; and (b) normal plane Πun spanned by n̂ and the initial contact velocity v0.

tangential impulse I⊥ does, As a result, the impulse I generally grows along a space curve. Only
for objects with special geometry in certain impact configurations will SI be a linear combination
of the normal n̂ and I. Recall the definition (12) of the unit tangent vector û, and denote by Πun

the normal plane spanned by û and n̂, as shown in Figure 9(b).

Theorem 2 A planar impact occurs in one of the following two situations:

i) When v0 × n̂ 6= 0 or n̂ is not an eigenvector of the matrix S defined in (4), the impulse I

lies in the plane Πun throughout the impact if Sû ∈ Πun and Sn̂ ∈ Πun.

ii) When v0 × n̂ = 0 and n̂ is an eigenvector of S, I is along n̂; that is, the impact is a direct
impact.

Proof We prove i) first. Consider that either v0 × n̂ 6= 0 or n̂ is not an eigenvector of S.
Suppose Sû, Sn̂ ∈ Πun. Then Sx ∈ Πun for any x ∈ Πun because S is a linear map. Note that
v0n = v0 · n̂ < 0 for the impact to happen. Below we establish three invariants related to the ŵ

direction during the impact:

vw = 0, Gw = 0, and Iw = 0. (75)

They are clearly true at the start. So we just need to show that, whenever (75) holds, the derivatives
of these functions vanish, i.e,

v′w = 0, G′
w = 0, and I ′w = 0. (76)

Then vw, Gw, and Iw must be identically zero during the impact.
We first prove that (76) is true at the start of the collision. Under Coulomb’s law, the frictional

force must be opposite to v0⊥. That I ′w(0) = 0 is by (62). We differentiate (74) with respect to In

and obtain G′
w = O(

√
In). Thus, G′

w(0) = 0.
To show zero initial value of v′w, we differentiate (63) and then take the dot product with ŵ:

v′w = v
′ · ŵ =

(

1

m1
+

1

m2

)

I ′w − (SI
′) · ŵ (77)
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Since I ′w = 0, I
′ lies in the plane Πun initially. Therefore, SI

′ ∈ Πun under the condition that
Sx ∈ Πun for any x ∈ Πun. This implies (SI

′) · ŵ = 0. So we have v′w(0) = 0.
Next, we show that the invariants in (76) hold if those in (75) do during the collision where

In > 0 and thus En > 0. First, Gw = 0 directly implies Ew = 0 by (66). Substitutions of Ew = 0
and vw = 0 into (69) yield ẇ = 0 in both possible contact modes. Then G′

w = 0 follows from (67).
Meanwhile, I ′w = 0 follows from (64). Finally, v′w = 0 follows from (77), I ′w = 0, and that I

′ and
SI

′ = S(n̂ + I ′uû) lie in the plane Πun.
Next, let us prove ii). Suppose v0 × n̂ = 0 and n̂ is an eigenvector of S. The contact sticks

initially. Let λ be the corresponding eigenvalue. Namely, Sn̂ = λn̂. Equation (63) becomes

v = v0 +

(

1

m1
+

1

m2
− λ

)

I.

Differentiate the above:

v
′ =

(

1

m1
+

1

m2
− λ

)

I
′. (78)

Since v0 is collinear with n̂, v0u = v0w = 0. Thus, I ′u(0) = I ′w(0) = 0 by (61) and (62), and
I
′(0) = n̂. Equation (78) implies that v and I are collinear with n̂ during the impact.

Does I ∈ Πun imply Sû, Sŵ ∈ Πun? From (3), we see that I lies in Πun if and only if SI does.
Meanwhile, SI ∈ Πun as I grows if Sû, Sn̂ ∈ Πun. The latter condition is almost always true given
I ∈ Πun. This is because as long as I does not grow along a line, two of its intermediate values will
span Πun. So we see that the condition Sû, Sn̂ ∈ Πun in part i) of Theorem 2 is often necessary as
well.

7 Input/Output Scalability

One important property of an impact model with linear stiffness is the scalability of its output
with its input. More specifically, if the velocities of the two bodies before a collision scale by a
factor s, their velocities after the collision should scale by the same factor. Let us refer to the
original collision instance, with velocities (V 1,ω1) and (V 2,ω2), as A, while the instance with
scaled velocities (sV 1, sω1) and (sV 2, sω2) as B. All terms related to impact A are denoted by
the same symbols as before.

Theorem 3 A one-to-one correspondence exists between a moment during impact A determined
by the normal impulse value In and a moment during impact B determined by the normal impulse
value sIn such that the following hold in B at the moment:

i) The velocities of the two colliding bodies are sV i and sωi, i = 1, 2.

ii) The strain energies of the three virtual springs are s2En, s2Eu, s2Ew.

iii) The rates of changes in length of the two tangential springs are su̇ and sẇ.

iv) Their changes in length are sGu/
√

2k0 and sGw/
√

2k0.

v) The impulse derivatives have the same values I ′u and I ′w as in A.
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Proof Suppose in instance A, the terms I, v, ω, En, Eu, Ew, Gu, and Gw constitute the solution
to the system (70). We substitute the scaled terms sI, sv, sω, s2En, s2Eu, s2Ew, sGu, and sGw

respectively for occurrences of these terms in the system. Note that E′
n = vn is scaled as E′

n = svn.
It is not hard to verify that the resulting system of equations still hold. For instance, in (68), its
left hand side is replaced by su̇. Its right hand side, in the case of sticking contact, becomes svu;
and in the case of slipping contact, becomes

−αµ2η3(svn)
√

s4EnEu + (svu)s2Ew − αβ(svw)
√

s4EuEw

µ2η2s2En

= s · −αµ2η3vn

√
EnEu + vuEw − αβvw

√
EuEw

µ2η2En
.

Hence, the right hand side is also scaled by s in either contact mode. Equation (68) still holds.
The theorem then follows from the uniqueness of the solution to the system of differential

equations.

8 Examples

This section applies the impact model with tangential compliance to two collisions with a table —
one of a ball and the other of a pencil. The two instances are representative in that they yield
planar and space impulse curves, respectively.

8.1 Ball-Table Collision

before after

z V 0

x

ω0

V

ω

Figure 10: Ball striking a table.

Cross (2010) investigated frictional impact of a ball on a
cart, modeling tangential compliance by allowing the cart,
attached to a vertical wall via a spring at one end, to trans-
late horizontally. His analysis was performed in time space
in a way similar to Stronge’s [65] with simulation results
showing a range of spins of the rebounding ball.

Here we treat a ball-table impact in impulse space using
the introduced compliance model. As shown in Figure 10, a
ball with initial velocity V 0 and angular velocity ω0 strikes
a still table. Let r be the ball’s radius and m its mass. So

its angular inertia is 2
5mr2. Denote by I the impulse exerted by the table on the ball during the

collision. We place the origin at the contact point, and choose the x-axis to oppose v0⊥, or, if
v0⊥ = 0, to be an arbitrary tangent vector. The x-y-z frame is identified with the n-u-w contact
frame for tangential impulse in Section 3. Let x̂ and ẑ be the unit vectors in the directions of the x
and z-axes, respectively. The vector r = (0, 0,−r)T locates the contact point relative to the ball’s
center.

Dynamics yield the following velocity equations:

V = V 0 +
I

m
and ω = ω0 −

5

2mr
ẑ × I, (79)

where the normal component Iz of the impulse I is the only variable for the impact system.
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We substitute (79) into the contact velocity v = V + rẑ × ω, and, after several steps, obtain

v = v0 + ∆v, (80)

where v0 = V 0 + rẑ × ω0 is the initial contact velocity, and

∆v =
1

m
I − SI (81)

with

S = − 5

2m







1 0 0
0 1 0
0 0 0






. (82)

Since Sx̂, Sẑ ∈ Πxz, by Theorem 2 the impulse curve I stays in the plane Πxz determined by n̂

and v0, and is along n̂ if v0 × n̂ = 0. The impact problem is a planar one.
In all simulations in this section, we consider r = 1, and set the coefficient of friction, the

coefficient of restitution, and compliance11 as follows:

µ = 0.4, e = 0.5, and η0 =
√

17/14. (83)

8.1.1 Impulse Curve
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slip

end    of 

reverse
slip

compression

4.0
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2.01.0
Ix

Iz

Figure 11: Impulse.

From (80) and (81) the tangential contact velocity is linear in the tangen-
tial impulse:

v⊥ = v0⊥ +
7

2m
I⊥. (84)

Consider V 0 = (V0x, V0y, V0z) = (−1, 0,−5)T and ω0 = (0, 2, 0)T ,
which yield tangential contact velocity v0⊥ = (−3, 0, 0)T . We use Al-
gorithm 1 to simulate the collision with the step size δ = 0.00005. After
the collision, the ball bounces backward with a reversal of its rotation:

V = (Vx, 0, Vz)
T = (0.570984, 0, 2.5)T ,

ω = (0, ωy , 0)
T = (0,−1.92746, 0)T .

The scenario is captured in Figure 1(a)–(c). The ball’s total energy has
decreased from 13.4 to 3.65977. Of the energy loss, 1

2 ((−5)2−2.52) = 9.375
was due to irreversible deformation caused by the normal impact and
characterized by the coefficient of restitution. The rest of the loss was
due to contact friction.

Figure 11 plots the impulse curve, on which the ends of compression
and restitution, and two contact mode transitions are marked. The im-
pact starts with a slip, changes from slip to stick at Iz = 0.62485, ends
compression at the value −mV0z = 5, starts a reverse slip at 7.36575, and
ends restitution at −(1 + e)mV0z = 7.5.

11For a circular punch on a half space (Johnson 1985, pp. 361–366), this value of η0 is derived from Poisson’s ratio
of the ball ν = 0.3 under η2

0 = (2 − ν)/(2 − 2ν).
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During the impact, the tangential contact velocity and spring velocity, both aligned with the
x-axis, are denoted as scalars v⊥ and ẋ, respectively. As shown in Figure 12(a), v⊥ starts at −3 and
ends at 2.49847. The rate ẋ increases from −2.42852 with Iz until it equals v⊥ at −2.12528, when
the contact switches from slip to stick. The contact stays sticking with ẋ = v⊥ until Iz = 7.36575
when a slip reversal happens. Figure 12(b) shows a sudden change of ẋ from 2.59255 to −2.29806 at
the reversal. To see why, note that under slip, ẋ must satisfy (47), which becomes xẋ = (µ2k/k2

⊥)Ėz.
Because the transition happens during restitution, the strain energy Ez stored in the normal spring
is decreasing. So Ėz < 0, and x and ẋ must have opposite signs at the moment. However, in
Figure 12(b) and (c), both ẋ and x were positive before the slip reversal. Hence the sudden change
in ẋ.

stick

compression
end of 

reverse slip

slip √
2k0x

2.0

−2.0 4.0

8.0

6.0

4.0

−2.0 2.0 4.02.0 −2.0 2.0

2.0

8.0

6.06.0

4.0

8.0

2.0

4.0

Iz IzIz

ẋv⊥

(a) (b) (c)

Figure 12: Evolutions of (a) tangential contact velocity, (b) rate of change in length of the x-spring, and
(c) spring length x scaled by

√
2k0. The dashed line in (b) marks a discontinuity as reverse slip happens.

The matrix S in (82) has one eigenvalue −5/2m. During stick the massless particle at the
contact and attached to the x- and y-springs performs a harmonic motion along the x-axis while
y = 0. From (42), this motion is described by12

ẍ +
7

2m
k⊥x = 0.

8.1.2 Consecutive Bounces

Next, we simulate a sequence of consecutive bounces of the ball on the table triggered by an initial
strike. For i ≥ 1, denote by V 2i−2 and ω2i−2 the velocity and angular velocity immediately before
the ith bounce, and by V 2i−1 and ω2i−1 the velocities immediately after the ith bounce. The
ball has velocities V 0 and ω0 before the initial strike. Between the ith and (i + 1)-st impacts the
ball undergoes a free fly motion under gravity. During the fly, the ball’s angular velocity does not
change, neither do the x- and y-components of its velocity. However, the z-component of the ball’s
velocity just before the (i + 1)-st impact is reversed under gravity from that after the ith impact.

12Here m2 = ∞ and λ1 = −5/2.
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i V 2i−1 ω2i−1

1 (0.898164,−1.627, 2.5001) (1.93251, 1.25459, 0)

2 (1.07356,−1.77734, 1.2501) (1.55665, 0.816088, 0)

3 (0.945075,−1.66721, 0.62515) (1.83198, 1.13731, 0)

4 (1.04278,−1.75096, 0.31226) (1.62268, 0.893038, 0)

5 (0.964192,−1.68359, 0.15645) (1.79102, 1.08952, 0)

6 (1.02640,−1.73697, 0.07825) (1.65758, 0.933841, 0)

7 (0.996746,−1.7115, 0.03915) (1.72126, 1.00813, 0)

8 (1.00251,−1.71643, 0.01955) (1.70891, 0.993732, 0)

Table 1: Velocity and angular velocity of a ball immediately after each of eight consecutive bounces. The
ball velocities just before the first bounce are V 0 = (−1, 0,−5)T and ω0 = (6, 6, 0)T .

Denote V k = (Vkx, Vky, Vkz)
T . For k ≥ 0, V k+1 and ωk+1 are generated by the impact model from

V k and ωk if k is even; and V k+1 = (Vkx, Vky,−Vkz)
T and ωk+1 = ωk if k is odd.

Figure 1 in the introduction shows first five bounces initiated by a hit of the ball V 0 =
(−1, 0,−5) and ω0 = (0, 2, 0). Table 1 lists the velocities and angular velocities of the ball right
after eight consecutive bounces initiated by a hit at the same velocity but a different angular ve-
locity ω0 = (6, 6, 0). Observe that the z-component of the ball’s velocity reduces by (roughly) half
after each bounce, as determined by the coefficient of restitution e = 0.5.

Figure 13 shows that the projection of the ball trajectory onto the table is a polyline, with
the first bounce at the origin (upper left corner). A dotted line connects the locations of the first
and the eighth impacts on the table. Though each impact is planar, V 0 does not lie in the plane
spanned by ẑ and the initial contact velocity v0 = (−7, 6,−5)T . This explains why the overall
trajectory is not straight.

8.1.3 Relationships Between Pre- and Post-Impact Velocities

Suppose we keep ω0 = (0, 2, 0)T while changing V 0 = (V0x, 0,−5)T with V0x varying in the range
[−15, 15]. Figure 14(a) plots the post-impact velocities Vx and ωy, as functions of V0x. Both velocity
curves are anti-symmetric about the line V0x = 2 at which the initial tangential contact velocity
v0x = V0x − ω0y is zero. The contact slips throughout the impact when v0x ≤ −5 or v0x ≥ 9 for
which the tangential impulse achieves its extremum Ix = ±5/2, respectively.13 When Ix is at an
extremum, from equation (79) we easily see that Vx varies linearly with V0x and ωy = 2± 25

4 .
The observed extrema of Ix = ±5/2 have an absolute value sightly less than µ = 0.4 times

the maximum normal impulse 7.5. One reason is that under compliance dIu/dIn is equal to
−(α/η)

√

Eu/En according to (64) rather than µ. Another reason is that the ratio η2 between
the normal stiffness and the tangential stiffness scales up by a factor of 1/e2 when compression

13From observation in our simulation not by a formal argument.
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Figure 13: Trajectory of the bouncing ball determined from Table 1 as projected onto the table. Note the
slight deviation from a straight trajectory (dashed).
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Figure 14: (a) Post-impact velocities Vx and ωy influenced by (a) V 0 = (V0x, 0,−5)T with V0x ∈ [−15, 15]
while ω0 = (0, 2, 0)T , and by (b) ω0 = (0, ω0y, 0)T with ω0y ∈ [−10, 10] while V = (−1, 0,−5)T .

ends. Without tangential compliance, we would determine from (84) that pure sliding would hap-
pen when V0x ≤ −8.5 or V0x ≥ 12.5.

Similar patterns exist in the post-impact velocities Vx and ωy if we fix v0x = −1 but vary ωy

from −10 to 10. This is shown in Figure 14(b). The contact slips throughout the impact when
ω0y ≤ −8.0 or ω0y ≥ 6.0, resulting in a constant velocity Vx = −3.5 or 1.5, and a wy segment with
slope 1 that is determined from (79).

8.1.4 Effects of Friction, Tangential Compliance, and Coefficient of Restitution

Now, suppose the ball has pre-impact velocities V 0 = (−1, 0,−5)T and ω0 = (0, 2, 0)T . The
tangential contact velocity has initial value V ⊥ = (−3, 0, 0)T .

Figure 15(a) plots the post-impact velocities Vx and ωy as the coefficient of friction varies from
0 to 1. When µ increases from 0, Vx increases monotonically while ωy decreases monotonically. At
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Figure 15: Post-impact velocities Vx and ωy vary with (a) friction, (b) tangential compliance as represented
by the squared root of the ratio between normal and tangential stiffnesses, and (c) coefficient of restitution.

µ = 0.36, the velocities reach their extrema Vx = 0.575906 and ω = −1.93976, respectively. As µ
continues to increase, Vx decreases while ωy increases. When friction is low (µ ≤ 0.13), the ball
will bounce forward (i.e., to the left) while keeping its original clockwise rotation. As µ increases
from 0.13 but does not exceed 0.16, the ball will still bounce forward but reverse its rotation. As
friction becomes higher (µ > 0.16), the ball will bounce backward and reverse its rotation.

Figure 15(b) plots Vx and ωy as η0 varies from 1 to 3 with a step size of 0.05. Recall that η2
0

is the ratio between the normal stiffness k0 and the tangential stiffness k⊥. The larger the value
of η0, the higher the compliance. As the value of η0 increases, i.e., the ball-table contact becomes
more compliant, and the ball bounces backward. The largest Vx (i.e., backward bounce) occurs
at η0 slightly less than 1.5. Surpassing this value, more compliance yields less rebound. The ball
bounces forward (i.e., along the negative x-axis) when η0 is close to 2.4. On the other hand, more
reversal of the ball rotation after the bounce occurs until η0 reaches a certain value, just before
Vx attains its maximum. As the contact becomes more compliant, rotation reversal decreases and
eventually to zero when η0 is around 2.8. The complex nonlinear relationships between the output
velocities and tangential compliance are evidenced from the occurrences of η in the denominators
in the expressions (64), (66), (68), and (69) for I ′u, I ′w, Eu, Ew, u̇, and ẇ.

Finally, we look at how the post-impact tangential velocity Vx and angular velocity ωy vary
with the coefficient of restitution e.14 Here V 0 = (−1, 0,−5)T and ω0 = (0, 2, 0)T . All physical
constants except e have their values specified in (83). Figure 15(c) plots Vx and ωy over the output
values of 101 impact instances as e increases from 0 (plastic impact) to 1 (elastic impact) with step
size 0.01. In all instances, the contact slips first, then switches to stick until compression ends. It

14The post-impact normal velocity is −ev0n.

35



r

o2

h

zp

op

h1

h2

o1

x

θ

y

z

op
ω0

zp
yp

xp

V 0

(a) (b)

Figure 16: (a) Model of a pencil; (b) striking onto a desk head down at velocities V 0 and ω0.

switches back to slip before the impact ends restitution. As e increases, the magnitudes of Vx and
ωy increase until e = 0.22.

The plastic impact (e = 0) yields V = (0.554553, 0, 0)T and ω = (0,−1.88638, 0)T . The
kinetic energy decreases from 13.4 to 0.5096 with 96.197% of energy loss. The ball slides in the
positive x-direction with a rotation reversal. The elastic impact (e = 1) yields final velocities
V = (−0.089745, 0, 5)T and ω = (0,−0.275637, 0)T . The final kinetic energy is 12.5119, with a
mere loss by 6.628% during the impact. The ball retains a small portion of its previous tangential
motion with a rotation reversal.

8.2 Pencil-Table Collision

Let us move on to another task which many may have tried on a desk — throwing a pencil and
watching it rebound. Most of the time the pencil is thrown with its rubber eraser downward. Here
to simplify modeling, let us consider a strike by the pencil’s pointed end.

As shown in Figure 16(a), we model the pencil as a cylinder with mass m1 and height h1 on
top of a cone with mass m2 and height h2. Both components have the same mass density. The
cylinder’s cross section and the cone’s top face have the same radius r. The center of the cylinder
is at o1, while the vertex of the cone is at o2. The pencil’s center of mass op is located on its axis
of symmetry at distance h from o2, where h = (6h2

1 + 12h1h2 + 3h2
2)/(12h1 + 4h2). A body frame

B : xp-yp-zp is placed at op with the zp-axis aligned with the pencil’s axis of symmetry and pointing
away from the cone’s vertex.

The cylinder has three principal moments r2

4 +
h2
1

12 , r2

4 +
h2
1

12 , and r2 about o1. The cone has

principal moments 3r2

20 +
3h2

2
5 , 3r2

20 +
3h2

2
5 , and 3r2

10 about o2. Composing their moments of inertia
under translations of o1 and o2 from op, we derive the moment of inertia Q of the pencil about op.
It is a diagonal matrix with the first two principal moments as below:

Q11 = Q22 =
m

h1 + h2/3

(

h1

(3r2 + h2
1

12
+ l2

)

+
h2

3

(

3

5

(r2

4
+ h2

2

)

+ h2

))

, (85)

where m = m1 + m2 and l = h1/2 + h2 − h.
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The pencil’s axis always lies in some vertical plane at the moment of the strike. Let this plane
be both the x-z plane of the desk frame at the contact point and the xp-zp plane of the pencil frame
B. See Figure 16(b). Just before the hit, the pencil, tilted at an angle θ, has velocity V 0 relative to
the desk frame and angular velocity ω0 = (ω1, ω2, ω3)

T relative to a (fixed) frame instantaneously
coinciding with the pencil frame. The orientation of the pencil frame relative to the desk frame is
described by a rotation matrix R about the y-axis through π

2 − θ:

R =













sin θ 0 cos θ

0 1 0

− cos θ 0 sin θ













. (86)

The velocities are determined from the impulse I = (Ix, Iy, Iz)
T exerted on the pencil at the contact:

V = V 0 +
I

m
,

−hẑp × (R−1
I) = Q(ω − ω0).

The second equation above yields the angular velocity:

ω = ω0 −
h

Q22
(−Iy, Ix sin θ − Iz cos θ, 0)T . (87)

where ω0 = (ω1, ω2, ω3)
T is the pencil’s angular velocity before the impact. The contact velocity

during the strike is linear in I:

v = V + R(ω × (0, 0,−h)T )

= V 0 +
I

m
+













sin θ 0 cos θ

0 1 0

− cos θ 0 sin θ





































−hω2

hω1

0
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Ix sin θ − Iz cos θ
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−Ix sin θ cos θ + Iz cos2 θ













. (88)

Specifically, we will simulate the bounce of a pencil whose mass and geometry are specified
below:

m = 1, r = 0.5, h1 = 3, and h2 = 0.5. (89)

The impact and friction parameters are chosen as

µ = 0.8, η0 =

√

17

14
, and e = 0.5. (90)

The pencil tilts at θ = π/3, and strikes the desk with velocities

V 0 = 5(− cos
π

6
, 0,− sin

π

6
)T and ω0 = (−1,−0.5,−0.5)T . (91)

37



end of
compression

I

Ix

Iy

Iz

Iy

Ix

slip
stick

slip end of
compression

1.0

1.0 2.0 4.03.0

(a) (b)

Ix

Iz

2.0

3.0

5.0

1.0

4.0

1.0 2.0 3.0 4.0
Iy

Iz

4.0

3.0

5.0

2.0

1.0

1.0

(c) (d)

Figure 17: (a) Space impulse curve from a pencil hitting a table and its projections (b), (c), and (d) onto
the three coordinate planes. During the collision, the impulse grows to (3.86262, 0.668974, 5.365). The four
dots in each of (b), (c), and (d) respectively represent the impulse values at which the contact switches
from slip to stick, the impact ends compression, the contact switches from stick to slip, and the impact ends
restitution. Values of the geometric and physical parameters are specified in (89)–(91).
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Figure 17 plots the 3-dimensional impulse curve and its projections onto the three impulse planes.
The contact point initially slides at v0 = (−3.50114,−1.91447, 0)T . As the normal impulse Iz

increases, the contact mode switches to stick. Afterward, compression ends. Just before restitution
ends, the contact switches back to slip. The projection of the impulse curve onto the contact plane
(also the Ix-Iy plane), shown in (b), indicates a continuous change in the direction of slip (or the
direction of the tendency of slip when the contact sticks).

The post-impact velocities are

V = (−0.467507, 0.668974, 2.865)T and ω = (0.101238,−1.59079,−0.5)T . (92)

The pencil bounces upward with reduced speed along the negative x-direction. It has gained a new
motion along the positive y-axis. Its spin about the xp-axis has been reversed (with less magnitude)
while its spin about the yp-axis has intensified, all with respect to the pencil’s body frame. The
component of ω along the zp axis, i.e., the axis of symmetry, remains −0.5, due to zero torque
about the axis during the impact. The total kinetic energy of the pencil has reduced from 12.65 to
4.71624.

Figure 18 animates the pencil’s motion from 0.4 second before the impact to 0.4 second after
the event. Quaternions are used to update the pencil’s changing orientation during the free fly
motions before and after the collision. The pencil motion is sampled every 0.1 second and shown
in two views for each sample time instant in (a) with the inward y-axis and (b) with the outward
x-axis. Collision happens in the fifth frames in both (a) and (b). The pencil’s pre-impact motion is
generated via backward integration from V 0 and ω0 based on dynamics. The post-impact motion
is generated via forward simulation using the velocity values (92).

9 Discussion

The introduced model for rigid body impact with tangential compliance uses a normal spring at
the contact to model normal impact and two orthogonal tangential springs to model compliance.
It is based on tracking the strain energies stored in these springs. The following features of the
model are notable:

• Derivatives of impulses, strain energies, and velocities are all taken with respect to normal
impulse.

• To detect contact slip or stick, Coulomb’s friction law has been rephrased in terms of the
strain energies stored in the three virtual springs at the contact point.

• The rates of change in lengths of the tangential springs with respect to time are computable
based on the strain energies, so is the sliding velocity.

• Special integrals Gu, Gw are updated to keep track of the length changes of the two tangential
springs, scaled by a factor related to their (unknown) stiffness.

• The outcome of collision is decided by the ratio between the tangential and normal stiffnesses
rather than their individual values.

These mechanisms together allow us to evaluate tangential impulse, and eventually to simulate the
whole impact system shown in Figure 8 with normal impulse (not time) as the only independent
variable.
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Figure 18: Pencil motion sampled at frame rate 10Hz in two different views: (a) y-axis inward and (a)
x-axis outward. The z-axis is always upward.
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Further remarks are made about some general aspects regarding the model:

• The impulse curve is generally spatial. It could degenerate into a plane curve depending on
the collision configuration as well as the initial contact velocity.

• The post-impact velocities scale with the pre-impact velocities.

• The impact model inputs contact velocity and normal impulse and outputs tangential impulse.

• The computed tangential impulse, combined with the accumulating normal impulse, updates
the velocities of individual bodies and the contact velocity according to dynamics and contact
kinematics. The updated velocity information is fed back to the model to close the loop.

Note that Algorithm 1 for simulation of impact with tangential impulse is event-driven in that it
detects events like contact mode transitions and impact phase change. Such algorithms are known to
have serious drawbacks, especially when there are too many events (i.e., contact mode transitions in
the case of Algorithm 1). Thresholds for event detections and the step size of numerical integration
are sometimes not easy to tune.

The model for tangential impulse is modular in that it can be integrated into a multibody system
with one copy for each contact, in combination with a model governing normal impulses at all
contacts. A companion submission (Jia et al. 2011) investigates a model for simultaneous impacts,
and integrates it with the compliant impact model. The integrated model is demonstrated over
simulating a massé billiard shot, yielding a good match between the billiard trajectory reconstructed
from video and one predicted by the integrated model.

The highly nonlinear nature of impulse accumulation due to contact compliance would present
an obstacle for a linear complementary formulation. Our method is also more accurate since it does
not use polyhedral approximation of the contact friction cone.

The presented work could pave the way for impulse-based robotic manipulation where the ability
to deal with friction and tangential compliance is vital for skillful maneuvers. It also has potential
impact over dynamic simulation of collisions in the field of computer graphics, where most related
work has focused on collision detection. Known work on impulsed-based dynamic simulation, such
as Mirtich and Canny (1995), does not model tangential compliance.

Our future work will look into measuring of relative stiffness, namely, the ratio between the
normal and tangential stiffnesses. This is important for a thorough experimental validation. Sensi-
tivities to choices of other parameters in the model need more understanding. We plan to develop
a graphical interface for simulation of sequential and simultaneous collisions among rigid bodies
with friction and contact compliance. Next, we will apply the impact model to impulsive robotic
manipulation. The graphical interface will be extended for simulating the executions of manipu-
lation strategies to aid their design and implementation. A particularly interesting task would be
to design a robot able to play billiards at the human level. None of the developed systems (Moore
et al. 1995; Long et al. 2004; Ho et al. 2007) execute shots by exploiting the underlying impact
mechanics.
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A Initial Energy Ratios

This appendix derives the initial ratios of the energies Eu and Ew stored in the two tangential
springs to the energy En stored in the normal spring. Because Eu = Ew = En = 0, the ratios
need to be determined via taking their limits as the normal impulse In → 0. We make use of the
following facts:

dEu

dIu
=

Ėu

İu

=
k⊥uu̇

−k⊥u
= −u̇,

dEw

dIw
= −ẇ.

When the contact initially sticks, u̇ = v0u and ẇ = v0w from (38) and (39). We have

lim
In→0

Eu

En
= lim

In→0

E′
u

E′
n

by L’Hospital’s rule

= lim
In→0

(dEu/dIu) · I ′u
−vn

by (18)

= lim
In→0

−u̇ · I ′u
−vn

=
v0u

v0nη0
lim

In→0

√

Eu

En
by (23) with α = −1.

Solve the above equation:

lim
In→0

Eu

En
=

(

v0u

v0nη0

)2

. (93)

The other solution zero is discarded because the initial tangential force exerted on the u-spring is
a non-zero fraction of that exerted on the n-spring, since the particle to which both springs are
attached does not move. Similarly, we obtain the initial ratio

lim
In→0

Ew

En
=

(

v0w

v0nη0

)2

= 0, (94)

since v0w = 0.
When the contact initially slips, the sliding velocity vs is in the direction of −û. There is no

motion in the orthogonal direction ŵ. Hence ẇ = 0. We apply L’Hospital’s rule:

lim
In→0

Ew

Eu
= lim

In→0

Ėw

Ėu

= lim
In→0

wẇ

uu̇

= lim
In→0

ẇ2 + wẅ

(u̇2 + uü)
=

ẇ(0)2

u̇(0)2

= 0.

The above, combined with (46), implies that

lim
In→0

Eu

En
= µ2η2

0 and lim
In→0

Ew

En
= 0. (95)

Take the limits of u̇ and ẇ in (48) and (49) as In → 0 (setting α = −1 due to compression):
u̇(0) = µη2

0v0n and ẇ(0) = 0.
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B Initial Changes in Length of the Tangential Springs

The initial contact mode is decided from v0 = v0uû+ v0wŵ + v0nn̂ according to Proposition 1. We
here look at how Gu =

√
2k0u and Gw =

√
2k0w vary as In increases from 0. Using (65), we get

the Taylor series of En about In = 0:

En = −v0nIn + O(I2
n). (96)

The Taylor series of 1/
√

En, this time about −v0nIn, is

1√
En

=
1

√

−v0nIn + O(I2
n)

=
1√
−v0nIn

+
v0n

2(−v0nIn)3/2
·O(I2

n)

=
1√
−v0nIn

+ O(
√

In). (97)

Meanwhile, using (61) and (62) we apply the Taylor expansion to the impulse about In = 0:

I = (I ′u(0)û + n̂)In + O(I2
n). (98)

Substitute (98) into (63):
v = v0 + O(In),

and in particular,
vu = v0u + O(In). (99)

Suppose the contact sticks initially. From (38) and (39), u̇ = v0u and ẇ = v0w at the start. We
substitute (97) and (99) into the integrals (27) and (28):

Gu(In) =

∫ In

0

vu√
En

dIn

=

∫ In

0
(v0u + O(In)) ·

(

1√
−v0nIn

+ O(
√

In)

)

dIn

=
2v0u√−v0n

√

In + O(I3/2
n ), (100)

Gw(In) =
2v0w√−v0n

√

In + O(I3/2
n )

= O(I3/2
n ). (101)

The last equation above follows from v0w = 0 since ŵ is chosen to be orthogonal to v0⊥.
Consider initial slip at the contact. The limit of the energy ratio Eu/En in (95) implies that

Eu

En
= µ2η2

0 + o(1).

In the above equation, we substitute (66) for Eu and (96) for En. This yields

G2
u = 4µ2η4

0(−v0n)In + o(In).
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Take the negative square root of the right hand side above (since at the start the u-spring is
compressed), and apply the Taylor expansion about

√
−v0nIn. We obtain

Gu(In) = 2µη2
0

√

−v0nIn + o(
√

In). (102)

That ẇ(0) = 0 follows from (60), and û ·v0⊥ < 0 due to slip. There exists a small enough period
after the start such that either vw < ẇ < 0 or 0 < ẇ < vw. This, combined with the definition (28)
of Gw, implies that

∣

∣

∣

∣

∫ In

0

vw√
En

dIn

∣

∣

∣

∣

>

∣

∣

∣

∣

∫ In

0

ω̇√
En

dIn

∣

∣

∣

∣

= |Gw|.

The above inequality, together with
∫ In

0 vw/
√

En dIn = O(I
3/2
n ) established in (101), implies that

Gw(In) = O(I3/2
n ). (103)
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