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Abstract

Impact happens when two or more bodies collide, generating very large impulsive forces in
a very short period of time during which kinetic energy is first absorbed and then released after
some loss. This paper introduces a state transition diagram to model a frictionless multibody
collision. Each state describes a different topology of the collision characterized by the set of
instantaneously active contacts. A change of state happens when a contact disappears at the end
of restitution, or when a disappeared contact reappears as the relative motion of two bodies goes
from separation into penetration. Within a state, (normal) impulses are coupled differentially
subject to relative stiffnesses at the active contact points and the strain energies stored there.
Such coupling may cause restart of compression from restitution during a single impact. Impulses
grow along a bounded curve with first-order continuity, and converge during the state transitions.

To solve a multibody collision problem with friction and tangential compliance, the above im-
pact model is integrated with a compliant impact model (Jia 2012). The paper compares model
predictions to a physical experiment for the massé shot, which is a difficult trick in billiards,
with a good result.

KEY WORDs—impact, multiple impacts, energy-based restitution, state transition diagram,
stiffness ratio, impulse curve, compliance, billiard shooting

1 Introduction

Impact is a phenomenon that takes place and is made use of in our daily life. It occurs when two
or more bodies collide, establishing a short period of contact. During this period, impact generates
an impulsive contact force with magnitude tens or hundreds of times higher than that of a static
contact force. We apply impulsive forces to accomplish tasks that would be inefficient or difficult
to achieve otherwise. Examples include landing after a jump, putting a cup of coffee on the table,
punching a staple through a thick stack of documents, kicking a soccer ball, shooting a billiard,
a bullet hitting a target, etc. On other occasions we want to extend impact periods to minimize
impulsive forces that could do harm to ourselves. Devices designed for such purpose include air
bags in an automobile, baseball and boxing gloves, football helmets, gymnastic mats, etc.

Impact has applications in many manufacturing and robotic manipulation tasks that involve
high-speed operations. A bowl feeder (Boothroyd and Redford 1968) exerts vibrations to channel
parts along a spiral inclined track designed to sort them in a small number of fixed orientations.
Every part will go through multiple collisions with gates along the track. The earliest work on
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impulsive manipulation can be traced back to Higuchi (1985), who demonstrated linear positioning
of tools using electromagnetic impulsive force. Parts with simple geometry floating on an air table
can be sorted by hitting them with a rotating stick (Hirai et al. 1999). A part can be struck
only once (Han and Park 2001) or tapped repetitively (Huang and Mason 2000) to reach a desired
configuration, by imparting initial velocities calculated through analyses of impacts and the part’s
post-impact sliding motions. For space robots, collisions are inevitable either with other free-floating
objects (Yoshida and Nenchev 1995) or from landing on other planets, either inside spacecraft or
by themselves.

Meanwhile, work has been carried out on making a robot with low degrees of freedom juggle an
object via impact. A common objective here is to turn the object’s original free flying motion into a
vertical periodic one. Rizzi and Koditschek (1992) implemented a robotic paddle that was capable
of batting a ping-pong ball into a steady periodic motion via controlled impacts. Zavalo-Rio and
Brogliato (1999) studied the feedback control of a one degree-of-freedom juggling robot by treating
it as a mechanical system under some unilateral constraint. Their control design was later extended
by Brogliato and Zavalo-Rio (2000) to a class of complementary-slackness juggling systems through
integration of such constraint with an impact law. Lynch and Black (2001) used the idea of force
recurrence to demonstrate that a planar juggler, under controls found via nonlinear optimization,
could converge an initial free flight trajectory of a puck to a vertical limit cycle.

Despite accomplishments in the design of a practical walking machine (Raibert 1986), most
existing walking robots are still lab prototypes that perform statically stable gaits at low and
constant speeds to avoid inertial effects. Understanding the foot-ground collision can be important
for resolving instability due to large inertial forces generated by fast walking and running (Garcia
and de Santos 2005). Research efforts on robot dynamics with impact include modeling of collisions
between a robot and its environment (Zheng and Hemami 1985), design of control schemes for stable
contact during such collisions (Volpe and Khosla 1993), evaluation of collision effects on a robot
(Walker 1994), and generation of a large impulsive force by a humanoid robot without losing balance
(Konno et al. 2011).

Impact also has a large potential application in sports robotics. An air hockey-playing robot
(Partridge and Spong 1999) applies impact to control the trajectory of a puck sliding on an air
table with low friction. Skills in ball sports are essentially about understanding how to strike
balls to make them follow desired trajectories while moving and spinning fast enough to evade the
opponents. A banana kick in soccer, performed by striking the bottom left or right side of the ball,
results in a curved trajectory in the air along which the ball could travel past an array of defenders,
the goalie, or a post into a net. This is a perfect example of impact with tangential compliance.
In pocket billiards (Shamos 1993), a shot often results in two concurrent impacts: one between the
cue stick and the cue ball and the other between the ball and the table. Tangential compliance
between the cue tip and the cue ball is critical for generating desired velocity and spinning of the
cue ball with two objectives: to pocket an object ball via collision, and to make the cue ball go to
a location where the next shot can continue comfortably.

Multiple impacts occur when several bodies collide at more than one contact, or more common in
reality, when one body hits another body that is at rest and in contact with several other motionless
bodies. Multiple impacts are unavoidable in the simulation of dynamical systems that involve rigid
body collisions. They are also common in sports actions such as a billiard shot mentioned earlier
(and also a break shot) and a bowling throw to knock down pins.

An impulsive force has very short execution time, and therefore good potential for improving
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task efficiency. Its use could considerably simplify the robotic mechanism performing a manipu-
lation task, while avoiding uncertainties accumulated over repeated complex operations otherwise.
Despite many potential applications of impact, impulsive manipulation has remained an area in
robotics where relatively little work is known1, likely because the foundation for modeling rigid
body impact is not fully developed and existing theories often seem either too simple to be realistic
or too complex to be applicable, especially in the presence of friction and tangential compliance, not
to mention nonlinear viscoelastic effects. Discrepancies often exist between an introduced theory
and the findings from an experiment intended for its validation.

Robotic manipulation is often treated as a multibody system with point contacts. Its state is
described by generalized coordinates q that gather the positions and orientations of the rigid bodies
(including the links of the manipulator) in the system. It is well known that the system dynamics,
combined with the contact kinematics, can be described as

M(q)q̈ + C(q, q̇) + G(q) = F (q, q̇), (1)

where M is the symmetric and positive-definite mass matrix, C gathers all centrifugal and Coriolis
terms, G includes gravity terms, and F represents the generalized force, which includes the applied
forces, torques, as well as the effects of friction and compliance. Such effects typically depend on
the generalized velocity q̇.

Suppose the rigid bodies in the system are simultaneously engaged in a collision. It is reasonable
to consider that the collision has a very small duration τ . We integrate the dynamics equation (1)
over τ . Since the terms C(q, q̇) and G(q) are bounded, their integrals vanish as τ → 0. Also, when
τ → 0, the configuration q of the system remains unchanged. Hence we have

M(q)∆q̇ =

∫ τ

0
F (q, q̇) dt = A(q)In(q, q̇) + B(q)I⊥(q, q̇), (2)

where In gathers all of the impulses due to the normal contact forces between the rigid bodies,
and I⊥ gathers all of the impulses due to their tangential contact forces. Typically, the impact
configuration q can be computed. This means that M(q) is a constant matrix. Also, since the
torques are linear in the contact forces, A and B are constant matrices as well.

Solution of the above multibody collision problem requires determination of the post-collision
velocities of the rigid bodies from their configuration q and pre-collision velocities q̇0. Essentially,
this requires computation of the normal and tangential impulse vectors In and I⊥. We solve the
problem via a decomposition as follows:

i) At each contact, obtain the tangential impulse from the normal impulse using their differential
relationship via an energy-based contact mode analysis.

ii) Analyze the differential relationships among the normal impulses at different contacts so we
can choose one normal impulse at a time as the sole variable for the collision process.

Part i) is a problem of impact with friction and tangential compliance. It is treated in Jia (2012)
via the introduction of a compliant impact model. Part ii) is a problem of multiple impacts to be
investigated in this paper. More specifically, we will study multiple frictionless impacts with the
introduction of a state transition model that tracks impulse accumulations at different contacts.
Near the end of the paper, we will combine the two impact models to solve the multibody impact

1besides the aforementioned work, only Izumi and Kitaka 1993 and Tagawa et al. 2010 to our knowledge
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problem. With this work we hope to enhance the foundation for impulsive manipulation, especially
in a situation where multiple impacts happen at the same time between a robot and the objects it
is manipulating.

Objects engaged in impacts simultaneously may break and re-establish contact multiple times.
In our model, a state represents a distinct subset of the contact points that are active within an
interval of the entire duration.
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Figure 1: State sequence 〈S1, S2, S1, S3, S4〉 and
growth of impulses along a curve that results from
a collision. Virtual springs represent active con-
tacts.

Figure 1 illustrates a collision that results from
a ball with downward velocity striking another ball
that is resting on the table. The initial configura-
tion is drawn next to the origin with the centers
of the two balls vertically aligned. The collision
process is described in terms of accumulations of
the impulses I1 and I2 at the ball-ball and ball-
table contacts, respectively.2 It is decomposed into
a sequence of five states 〈S1, S2, S1, S3, S4〉, which
correspond to five segments of growths of (I1, I2):
[O,B), [B,D), [D,E), [E,G), and G. In the figure,
every state is augmented with a configuration dur-
ing the state, where active contacts are represented
by (virtual) springs.

The collision starts out with the upper ball hit-
ting the lower ball and the lower ball in turn hit-
ting the table. In the first state S1, both impacts
are active. The upper ball’s velocity increases (i.e.,
its downward speed reduces), while the lower ball’s
decreases. Strain energies stored at the two con-
tacts are increasing until at A, where the ball-ball
contact begins to restitute, releasing part of its stored energy while losing the other part to irre-
versible deformation at contact. Restitution ends when the two impulses reach B with the two
balls separating, one going upward and the other downward. The second state S2, with only active
ball-table contact, immediately follows. During S2, the lower ball’s velocity reaches zero at point
C and continues growing afterward. It eventually catches up with the upper ball’s velocity at D,
reestablishing the ball-ball contact. Since both contacts are now active, S2 transitions back to S1

at D. During S1, the ball-table impact finishes at E before the ball-ball impact. The ball-table
contact breaks, and state S3 — with only the ball-ball contact active — starts. The ball-ball impact
ends compression at F . After some loss due to the contact’s plasticity, the remaining strain energy
is converted into the upper ball’s kinetic energy. As restitution ends at G, the terminal state S4 is
reached. Collision ends with both balls going upward and the upper ball at a faster speed.

1.1 Paper Outline

This paper presents a formal treatment of the model for multiple impacts which was proposed
by Jia et al. (2008) with new theoretical developments, and combines the model with a recently

2Values are properly set to physical parameters including the ball masses, the contact stiffnesses, and the coeffi-
cients of restitution of the ball-ball and ball-table impacts.
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developed model (Jia 2010)3 for three-dimensional impact with friction and compliance. To focus
on presenting the model for multiple impacts, we consider the absence of friction and tangential

compliance. The dynamics equation (2) reduces to

M(q)∆q̇ = A(q)In(q, q̇). (3)

As mentioned earlier, both matrices M(q) and A(q) depend on the geometry and configuration of
the system, and can be set up for individual problems from dynamics and contact kinematics.

We will focus on analyzing the ball-ball-table collision presented in Figure 1. There are several
reasons for such a choice. Turning out to be two-dimensional, the collision is likely the simplest
multiple impact problem. Yet, its solution can be easily generalized to solve a three-dimensional
problem, like modeling of a massé billiard shot (to be examined later), in which one of the two
impacts is eccentric4 A collision involving three rigid bodies with arbitrary geometry will be handled
easily once the dynamic equation (3) is set up.

In Section 2, we present a quick review of single impact with frictionless contact, offering the
derivative of contact energy with respect to impulse.

In Sections 3 to 7, we give a formal treatment of the multiple impact model for the ball-ball-
table collision. Section 3 presents a transition diagram involving four states, each representing a
different combination of active contacts during the collision, and introduces a set of energy-based
impact laws. Section 4 describes impact evolutions within the states. Section 5 reveals the effects
of the stiffness ratio and the mass ratio, and establishes the scalability of the post-impact ball
velocities over the pre-impact velocity of the upper ball. Section 6 introduces the impulse curve as
a trajectory of growth in the ball-ball and ball-table impulses, and shows that during the collision
the curve lies inside an ellipse derived based on non-negative contact strain energy. Instances of
elastic and plastic collisions are illustrated. Section 7 proves the convergence of state transitions.

Section 8 integrates the multiple impact model with a model for three-dimensional impact with
tangential compliance5 developed by Jia (2012), to simulate the task of shooting a billiard ball.
Impact dynamics and contact kinematics are combined with frictional contact modes analyzed
according to the second model. Section 9 describes two experiments: one of dropping a ping pong
ball onto another and the other of a massé shot. In Section 10, we will give a summary and discuss
an extension to simultaneous collisions involving three or more bodies, along with other future
research directions.

1.2 Related Work on Multiple Impacts

All collisions conserve momentum under Newton’s third law. Those that also conserve kinetic
energy are elastic, while those that do not are plastic. Molecular collisions can be regarded as elastic.
Collisions that we come across in daily life are generally plastic. The problem of determining post-
collision velocities is under-constrained by momentum conservation alone. One or more impact laws
need to be imposed accordingly. There are three commonly used laws: Newton’s law, Poisson’s
hypothesis, and the energy hypothesis, which respectively specify the ratios between the velocities
before and after an impact, the impulse growths during two different impact phases, and the

3This model is investigated in more details in Jia (2012).
4A central impact between two bodies happens when their centers of mass lie on the common normal line passing

through the contact. The impact is eccentric if one of the centers does not lie on the line.
5Compliance allows part of the work done by the tangential reaction force to be recoverable rather than dissipate

entirely due to friction.
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strain energies stored and released during those phases. Jia (2012) presents a progressive overview
of research in impact mechanics centered around these laws. Here we primarily survey work on
multiple impacts, which happen simultaneously but are sometimes not treated exactly so in the
analysis.

Newton’s law of impact (Mason 2001, p. 212) asserts that the speed of an object after an
impact is a constant fraction of that before the impact. It was applied very early on in the study
of multiple impacts by Maclaurin (1742), and in particular, in the treatment of elastic collision in
a system of spheres by Bernoulli (1969). More recently, Ivanov (1995) examined four approaches
that apply Newton’s law to solve multiple impact problems with no friction. He reported that two
of the approaches generated unrealistic results or no unique solution, one was highly sensitive to
the initial conditions, and one had to consider all possible sequences of pairwise collisions (thus
increasing the complexity significantly).

Newton’s law implies that still objects before an impact should remain still. This is nevertheless
incorrect since energy often gets transferred to these objects in the impact duration. Consider
a simple version of Newton’s cradle (Brogliato 1999), where three balls are aligned horizontally
with the leftmost ball having an initial velocity to start the collisions. All three balls may get
velocities out of the process (Liu et al. 2009). Another counterexample is dropping a ping pong
ball onto another one resting on the table. Both balls will bounce up as a result. Newton’s law is
generally inadequate for modeling multiple impacts and impacts with contact friction and tangential
compliance.

Poisson’s hypothesis (Routh 1905) states that an impact between two bodies begins with a
compression phase until their approaching velocity decreases to zero, and follows with a restitution
phase until the two bodies fully separate. The hypothesis also asserts that the impulse accumulated
during restitution is a fraction of that accumulated during compression. Aside from the possibility
of predicting an increase in kinetic energy (Wang et al. 1992; Stewart and Trinkle 1996), Poisson’s
hypothesis applies to the impact at each contact during simultaneous collisions in an isolated way,
whereas the phases of the impacts at different contacts often depend on each other. There may not
be enough energy stored at the contact to provide the amount of impulse growth during restitution
as prescribed by Poisson’s hypothesis (Jia et al. 2008). Impact analysis based on Poisson’s hypoth-
esis has been a subject of controversy over its consistency with Coulomb’s law of friction and the
law of energy conservation.

Glocker and Pfeiffer (1995) formulated two-dimensional impact under Coulomb friction and
Poisson’s hypothesis as a linear complementarity problem (LCP). They assumed that impacts at
different contacts end compression and restitution simultaneously, and used a polyhedral approx-
imation of the Coulomb friction cone to realize complementarity in the tangential direction (in
addition to the non-negativeness of impulse in the normal direction). Impulses at the ends of com-
pression and restitution were obtained under different LCP formulations, by employing Lemke’s
algorithm (Anitescu et al. 1996) which pivoted like the simplex algorithm in linear programming.
A similar formulation of multi-rigid-body impact problems with friction was proposed by Stewart
and Trinkle (1996), who applied a time stepping (integration) scheme that extended to a nonlinear
complementarity (NCP) formulation. Their method was modified by Anitescu and Portra (1997)
in order to guarantee a solution (though multiple ones may exist). We refer to Glocker (2001) for
a survey of LCP-based methods for frictionless collision problems.

An LCP formulation of multiple impacts, however, does not correspond to fundamental physical
properties (Chatterjee and Ruina 1998). It is based on an unrealistic assumption that all impacts

6



synchronize in compression and restitution. Lemke’s algorithm only generates the impulse values
after compression and restitution, but does not describe how the impulse accumulates, which is
important for contact mode analysis during the impact. Also, ambiguities exist because often the
LCP solution is not unique.

It is worthy to note that none of the frictional impact models mentioned so far under Poisson’s
hypothesis handles tangential compliance, which would return a portion of the work done by the
tangential interaction force during an impact rather than let it dissipate completely under friction.

Concurrent multiple collisions are sometimes sequenced into two-body collisions either by order
of position (Ivanov 1995), by order of normal approach velocity (Chatterjee and Ruina 1998), or by
a variational approach (Seghete and Murphey 2010) that extremizes action over nearby trajectories
of successive single impacts. Most of this type of works deal with frictionless impact. High-speed
photographs of such collisions show that multiple objects are simultaneously in contact rather than
only two at a time (Stewart 2000). Observations also seem to suggest that, during the physical
process, the involved objects may have broken and re-established contact multiple times. These
coupling effects among impacts at various contacts were approximated by some impulse correlation
ratios (Ceanga and Hurmulu 2001). Similar studies of a 3-ball chain were conducted by Acary and
Brogliato (2003), and by Acary and Taha (2005) with the introduction of a ratio between the total
kinetic energies after and before the collision. One problem with the impulse correlation ratio is
its lack of precise physical description.

Stronge (1990) developed an energy-based model that defines the energetic coefficient of restitu-
tion as the square root of the portion of the strain energy absorbed during compression that is to be
released during restitution. This coefficient measures energy dissipation directly, and is consistent
with the law of energy conservation, unlike Newton’s impact law and Poisson’s hypothesis.

Liu et al. (2008) described a framework for frictionless multiple impacts in a multi-body system.
Impulses are related to each other differentially, and determined by the relative contact stiffness
as well as the ratios of corresponding contact potential energies. Numerical integration is always
carried out over the impulse at the contact currently storing the maximum potential energy. En-
ergetic coefficients of restitution are applied to individual impacts, each of which may go through
multiple compression-restitution phases. Referred to as the “LZB multiple impact model”, this
work deals with general contact stiffness that subsumes those for Hertz and linear contacts. Their
sequel paper (Liu et al. 2009) presented a numerical algorithm and included simulation results for
several benchmark problems including Newton’s cradle, the Bernoulli problem, etc. As nicely as
the theory was presented, it did not analyze the collision behavior in the course of the accumulation
of individual impulses, nor did it provide a proof for termination or convergence.

Based on the LZB model, Zhao et al. (2008) studied energy dissipation and transfer during
multiple frictionless impacts. They obtained numerical results for a column of particles (a granular
chain) that were in good agreement with experimental findings (Falcon et al. 1998). Nguyen and
Brogliato (2012) recently used the same model to describe wave propagation during impacts of
multiple granular chains, matching some main observations by Nakagawa et al. (2003) from their
experiment.

Jia et al. (2008) independently proposed a multiple impact model that observes the same
differential relationship between impulses at various contacts, keeps track of contact strain energy
for restitution, and performs numerical integration over the currently dominant impulse. The
main difference from the LZB model is that Jia et al.’s model formulates the physical process as
a state transition diagram, where each state represents a different combination of contacts that
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are instantaneously active. A transition from one state to another happens when either an active
impact finishes restitution or an inactive impact gets reactivated. Every collision instance yields
a sequence of states with proven termination/convergence. Jia et al. (2008) also showed that,
for a linear arrangement of three objects (the third of which having infinite mass), the impulses
grow along a planar curve bounded by an ellipse derived from non-negative strain energy during
the collision. As mentioned earlier, this paper extends Jia et al. (2008) in formal analysis, and
integrates the model with another model (Jia 2012) to handle friction and tangential compliance
in multibody collisions in three dimensions.

2 Single Impact with Frictionless Contact

This section presents a very brief review of single impact with frictionless contact. Suppose a
particle of mass m with downward velocity v0 < 0 impacts on a horizontal plane. The particle
receives a contact force F ≥ 0 that varies in the duration τ of the impact. The force is physically
continuous, and thus integrable over [0, t], 0 ≤ t ≤ τ , yielding the impulse I =

∫ t
0F dt. Conversely,

we have İ = F during the impact, where the dot ‘.’ denotes differentiation with respect to time.
Furthermore, a one-to-one correspondence exists between t and I given that F > 0 except at the
beginning and end of the physical process.

On the particle, the gravitational force is significantly less than the impulsive force F and thus
ignored. It follows from Newton’s second law that during the impact F = mv̇, where v is the
particle’s velocity. Integration of the equivalent equation İ = mv̇ establishes that the total impulse
is equal to the particle’s change in momentum. This yields the velocity equation during the impact:

v = v0 +
I

m
. (4)

Under energy conservation, the particle’s post-impact velocity cannot exceed −v0. The total im-
pulse is thus finite. As the impact duration τ → 0, F →∞ in order to keep the integral I finite.

m

v0

v
x

Figure 2: Particle impact-
ing a table.

It is reasonable to assume that the impact happens in infinitesimal
time. It is thus best analyzed in the impulse space. To better un-
derstand this physical process, we connect the particle and the plane
with a virtual spring with stiffness k. See Figure 2. Let x measure the
change in the virtual spring’s length from its rest length. The value of
x is negative when the spring is compressed. We have the ball velocity
v = ẋ, the contact force F = −kx, and the potential energy stored by
the spring E = 1

2kx2. Note that E = 0 only when the impact begins
and finishes.

The impact can be divided into two stages (Mason 2001, p. 212):
compression and restitution. Compression transforms the particle’s kinetic energy into the potential
energy E of the spring, and ends at ẋ = 0 when the energy reaches its maximum value Emax.
The impulse exerted up to this point is I = −mv0 by (4). Restitution then releases the elastic
portion of the stored energy, of the amount e2Emax. Here e, 0 ≤ e ≤ 1, is referred to as the
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energetic coefficient of restitution,6 which was analyzed by Stronge (1990)7. The remaining portion
(1− e2)Emax is simply dissipated due to some irreversible internal deformations. With the energy
release, the impulse grows by an additional amount of −emv0. The impact ends with the particle
velocity −ev0.

We adopt the explanation by Stronge (2000, p. 98) for the energy loss8: When compression
ends the spring stiffness suddenly increases from k to k/e2. Such increase can be attributed to the
hardening of the material due to some irreversible deformation.9 Continuity of F then ensures a
simultaneous reduction of the change x in length of the spring to e2x.10

The one-to-one correspondence between I and t establishes E as a function of I, even though
the loss of energy after compression is directly due to deformation, not I. Discontinuous only at
the end of compression, the function E is differentiable during each impact phase:

dE

dI
=

Ė

İ
=

d(1
2kx2)/dt

−kx
= −ẋ (5)

= −v

= −
(

v0 +
I

m

)

, by (4). (6)

The third equation above holds because the stiffness k does not change its value during compression
or restitution. Since I is continuous, at the impact phase switch the left and right derivatives of
E, both given by (6), are equal.

3 Multiple Impacts

From now on until Section 7, we study the following problem. A rigid ball B1 with mass m1

and initial velocity v0 < 0 strikes downward onto another rigid ball B2 with mass m2 resting on
a horizontal table. The two balls have their centers vertically aligned, and frictionless contacts
between them and between B2 and the table. The scenario is depicted in Figure 3(a). As B1

collides with B2, the latter ball in turn impacts the table. The goal is to determine the rebound
velocities of the two balls. This seemingly simple problem demands non-trivial analysis (which can
be generalized to solve more complex problems).

6Poisson’s hypothesis states that I will accumulate −ẽmv0 more during restitution to yield the final velocity −ẽv0,
where ẽ ∈ [0, 1] is called the kinetic coefficient of friction. When friction exists at the contact and the direction of
contact slip varies during collision, the kinetic coefficient of restitution ẽ is not consistent with energy conservation
(Stronge 2000, p. 47). The two coefficients of restitution ẽ and e are otherwise equivalent for single impact unless the
bodies in impact are rough and the impact configuration is eccentric (Stronge 2000, p. 28).

7and initially due to Boulanger (1939)
8An alternative is a mono-stiffness model (Goldsmith 1960) that does not change the stiffness at the end of

compression but rather ends restitution at the energy value E = (1 − e2)Emax. This approach, used by both Liu et
al. (2008) and Jia et al. (2008), is able to produce cycles of compression and restitution that have been experimentally
validated (Antonyuk et al. 2010). In our paper, the increase in stiffness after compression reflects the hardening of
material better as well as makes it convenient to model transition of compression back to restitution, a phenomenon
remarked by Liu et al. (2008) and described later in Section 3.2.

9Such material deformation is assumed here to happen much faster than impact.
10A different bi-stiffness model (Zhao et al. 2008; Nguyen and Brogliato 2012) subtracts from the change in length

at the end of compression a portion of 1 − e2 due to plastic deformation.
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Figure 3: (a) Ball-ball-table collision
and (b) virtual springs for modeling.

Let v1 and v2 be the respective velocities of B1 and B2

during the collision. We attach a virtual spring between B1

and B2 with stiffness k1, and another one between B2 and the
table with stiffness k2, as shown in Figure 3(b). The stiffness
ki, i = 1, 2, has original value k̄i. Following the discussion over
single impact in Section 2, ki will increase by a factor of 1/e2

i

whenever compression ends, where ei ∈ [0, 1] is the impact’s
coefficient of energy restitution.

Let x1 and x2 be the changes in length of the two virtual
springs. The gravitational forces are negligible compared to
the large impulsive forces F1 and F2 exerted on B1 and B2,
respectively. The kinematic and dynamic equations are:

ẋ1 = v1 − v2, (7)

ẋ2 = v2, (8)

m1v̇1 = F1 = −k1x1, (9)

m2v̇2 = F2 − F1 = k1x1 − k2x2, (10)

In the duration τ of the ball-ball-table collision, there are two impulses: I1 =
∫ t
0 F1 dt and

I2 =
∫ t
0 F2 dt, 0 ≤ t ≤ τ . Since F1, F2 ≥ 0, they never decrease. Integrate (9) and (10):

v1 = v0 +
1

m1
I1, (11)

v2 =
1

m2
(I2 − I1). (12)

The two virtual springs store strain energies E1 = 1
2k1x

2
1 and E2 = 1

2k2x
2
2, respectively. Their

derivatives11 assume the form (5), into which we substitute (7), (8), (11), and (12):

dE1

dI1
= −ẋ1 = v2 − v1

= −
(

v0 +

(

1

m1
+

1

m2

)

I1 −
1

m2
I2

)

, (13)

dE2

dI2
= −ẋ2 = −v2

=
1

m2
(I1 − I2). (14)

In the meantime, a differential relationship exists between the two impulses I1 and I2 that depends
on the two energies12:

dI2

dI1
=

İ2

İ1

=
k2x2

k1x1
=

√
k2E2√
k1E1

. (15)

The ordinary differential equations (ODEs) (13)–(15) can be viewed as a system in one variable I1

(or I2) that governs how the two impacts evolve.

11We abuse the meaning of ‘derivative’ at the end of compression to refer to the equal left and right derivatives of the
energy Ei. The same convention will apply to its second derivative (which is continuous according to Proposition 6).

12The ratio was called by Liu et al. (2008) as the distributing law and presented for nonlinear contact as well.
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3.1 State Transition Diagram

Though the ball-ball and ball-table impacts begin simultaneously, they will hardly end compression
or restitution at the same time. For instance, when the ball-ball impact finishes restitution, the
ball-table impact may be still undergoing restitution. As collision continues, the two balls may
start moving toward each other again at some later point, reactivating the ball-ball impact.

This suggests that we sequence the collision process into (repeats of) three states: S1, when
both impacts are active; S2, when only the ball-table impact is active; and S3, when only the ball-
ball impact is active. The three are referred to as the impact states. We also introduce a fourth
state S4, which is terminal and happens only if all active impacts end restitution simultaneously in
S1, S2, or S3.

With two active impacts the system is in S1. Both impacts could end simultaneously, placing
the system in state S4. Otherwise, one impact ends before the other, placing the system in either
state S2 or state S3. In S2, there is no ball-ball impact, just a ball-table impact. If the ball-table
impact causes the lower ball to catch up with the upper ball in velocity, the system then re-enters
state S1. Similarly, in state S3, there is only a ball-ball impact. Again, the system re-enters state
S1 if the lower ball starts moving downward.

The above idea leads to a state transition diagram shown in Figure 4. The collision always starts
with state S1. A transition S1 → S2 happens when the ball-ball impact finishes restitution before
the ball-table impact. So the two balls are “breaking” contact momentarily. Since the ball-ball
impact was in restitution just before the transition, ẋ1 ≥ 0, which by (7) implies v1 ≥ v2 when
S2 begins. Because gravity is neglected during the collision, v1 will not vary during S2. The state
will transition back to S1 if v2 increases to become equal to v1 before restitution of the ball-table
impact ends. Otherwise, state S4 will be reached with v1 ≥ v2 to end the collision.

Note positiveness of the coefficient of restitution e1 as part of the condition for the state tran-
sition S2 → S1. When e1 = 0, the state S1 just before S2 must have ended with compression of the
ball-ball impact. There was no restitution phase in S1 because the strain energy E1 was lost under
e1 = 0. The two balls collapse into one object, reducing the remaining process to that of a single
impact. This case is analyzed in the paper’s supplement Jia et al. 2011a (Section E.3).

Similarly, a transition S1 → S3 happens when the ball-table impact finishes restitution before
the ball-ball impact. At the moment, v2 ≥ 0. State S3 will transition to S1 when v2 = 0, that is,
when the lower ball re-establishes contact with the table. An extra condition e2 > 0 is imposed
over the transition, since otherwise the lower ball and the table collapse into one body, leading to
a single impact problem (treated in Jia et al. 2011a). If the ball-table impact finishes restitution
in S3, S4 follows to end the collision.

State S4 is the terminal state. The only computation within the state happens with plastic
ball-ball collision (e1 = 0) when this impact ends compression in state S3. We again refer to Jia et
al. (2011a, Section E.3) for a treatment of this special case.

An impact may start with one state, end compression in another, and finish restitution to end
a third one. By induction on the number of states, we can easily establish that equations (11)
and (12) hold across any state sequence.

Proposition 1 The velocities of the two balls are (11) and (12) during the collision.

The collision described in Figure 1 is generated with m1 = 1, m2 = 2/
√

3, k2/k1 = 1,13 e1 = 0.9,

13Section 5 will show that the collision outcome is affected by the stiffness ratio k2/k1 but not individual stiffness
values.
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1

2

ends restitution
otherwise, spring 1

ends restitution

spring 2 ends

restitution first

restitution together

both springs end 

restitution first
spring 1 ends 

spring 2 ends restitution spring 1 ends restitution

(end of collision)

otherwise, spring 2

and 

before before

and 
S2

S3

(v2 ≥ 0)

S1

v1

v2

(v1 ≥ v2 ≥ 0)

v1

v2

v1

v2

v2

v1

(v1 ≥ v2)

S4

e1 > 0

v1 = v2 v2 = 0
e2 > 0

(v1 ≥ v2 ≥ 0)

Figure 4: State transition diagram for the ball-ball-table collision in Figure 3. During each state Si,
1 ≤ i ≤ 3, v1 and v2 can be either upward or downward, except v2 is always upward in S3. Both velocities
are upward in S4.

and e2 = 0.7. The initial velocity of the upper ball is v0 = −1. The impulse trajectory takes the
shape of a curve14. The dots A, B, F , G on the curve mark the ends of a ball-ball impact phase,
while the dots C and E mark the ends of a ball-table impact phase. The dot D represents a
transition S2 → S1 due to v1 = v2 not the end of any impact phase. The coordinates of G are the
final impulses exerted on the balls. Substituting them into equations (11) and (12), we obtain the
ball velocities after the collision. In Figure 1, we see that I1 does not change in S2 while I2 does
not change in S3.

3.2 Restart of Compression from Restitution

From Section 2, single impact starts with compression and ends with restitution. Once started,
restitution will never switch back to compression. When two impacts are simultaneously active
(i.e., in state S1), however, this is no longer true. The two ball velocities, given in (11) and (12),
are governed by the differential equations (13)–(15), the last of which is nonlinear. It may happen
that during restitution of the ball-ball impact v1 − v2 decreases to zero and goes negative. Then

14which will be formally introduced as the impulse curve in Section 6
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the impact will end restitution and restart compression at v1 = v2.
15 We defer an example to

Section 6.3.3 after the notion of impulse curve is introduced.

3.3 Assumptions of Multiple Impacts

We extend the law of single impact in Section 2 to the following set of three assumptions for multiple
impacts (for i = 1, 2):

i) Whenever the ith impact ends compression, the contact stiffness suddenly increases from ki

to ki/e
2
i while the strain energy suddenly drops from Ei to e2

i Ei. Or, more succinctly in the
assignment forms: ki ← ki/e

2
i and Ei ← e2

i Ei.

ii) The value of ki does not change whenever the ith impact switches from restitution back to
compression.

iii) Reactivation of the ith impact does not affect the value of ki.

Under assumption i), the contact force
√

2kiEi is continuous when the impact ends compression.
So is the impulse derivative dIj/dIi, j 6= i, which equals the ratio of the two contact forces.

When restitution switches back to compression, loading of the ith virtual spring restarts. Under
assumption ii), its stiffness does not change as the spring begins absorbing work into internal energy.
Neither do the contact force Fi and the spring energy Ei. Hence the impulse derivative is continuous
at this transition.

Owing to possible restarts of compression, an impact may go through multiple compression
and restitution phases. Suppose the impact has ended compression j times, that is, restitution has
switched back to compression j − 1 times. Then the stiffness ki = k̄i/e

2j
i under assumptions i) and

ii), where k̄i is the original stiffness value.
When an impact gets reactivated, it should respect the effect of irreversible deformation that

has happened before. This is reflected in zero change to the contact stiffness under assumption iii).
More specifically, at a transition S2 → S1 or S3 → S1, k1 or k2 retains its value at the end of the
last state S1.

3.4 Energy Conservation Unless End of Compression

The total energy of the impact system consists of the kinetic energies of the two balls and the strain
energies at the ball-ball and ball-table contacts. Energy loss happens only at an end of compression
if the corresponding coefficient of restitution is less than one, as stated in the following theorem.

Theorem 2 The total energy of the two-ball impact system decreases whenever impact i with ei < 1,
for some i = 1, 2, ends compression, but does not vary otherwise.

Proof Under the impact assumptions in Section 3.3 when impact i with ei < 1 ends compression,
a loss of the strain energy Ei by a factor of 1− e2

i happens. We now prove that the total energy

U =
1

2
m1v

2
1 +

1

2
m2v

2
2 + E1 + E2

is conserved over a period of collision during which no compression of any impact ends.

15Such a phenomenon was first observed by Liu et al. (2008).
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From (13) and (14) we obtain:

−d(E1 + E2) = v0 dI1 +

(

1

m1
+

1

m2

)

I1 dI1 −
1

m2
I2 dI1 +

1

m2
I2 dI2 −

1

m2
I1 dI2

=

(

v0 +
I1

m1

)

dI1 +
1

m2

(

I1dI1 + I2dI2 − d(I1I2)
)

.

= v1dI1 +
1

m2
d

(

1

2
(I2 − I1)

2
)

by (11)

= d

(

1

2
m1v

2
1

)

+ d

(

1

2
m2v

2
2

)

by (11) and (12).

The above equation implies energy conservation:

dU = d

(

1

2
m1v

2
1 +

1

2
m2v

2
2 + E1 + E2

)

= 0.

Note that dI1 = 0 in state S2, and dI2 = 0 in state S3.

3.5 Energy-Based Criteria for Impact Phases

For convenience, we sometimes refer to the ball-ball and ball-table impacts as the first and second
impacts, respectively. Compression of the ith impact ends when ẋi = 0 and ẍi > 0. Since
ẋi = −dEi/dIi by (5), ẍi = −(d2Ei/dI2

i ) · İi, and İi = Fi > 0 at the moment, the two sufficient
conditions are equivalent to dEi/dIi = 0 and d2Ei/dI2

i < 0. Namely, the strain energy stored at
the ith contact has reached a (local) maximum.

Under (13) and (14), the first order necessary conditions for ends of the ball-ball and ball-table
compression are respectively

v0 +

(

1

m1
+

1

m2

)

I1 −
1

m2
I2 = 0, (16)

I1 − I2 = 0. (17)

In state S2, the ball-ball contact is inactive with I1 ≡ I
(0)
1 , its value at the start of the state.

From (14) we obtain that d2E2/dI2 = −1/m2 < 0. If within the state I2 reaches I
(0)
1 to make (17)

hold, compression will end. Similarly, in state S3, the ball-table contact is inactive with I2 assuming

its value I
(0)
2 at the state of the state. From (13) we obtain that d2E1/dI2

1 = −(1/m1 + 1/m2) < 0.
If I1 grows to make (16) hold during the state, compression will end.

In state S1, the end of compression will be conveniently determined using the impulse curve
and compression lines introduced in Section 6.2.

4 Three Impact States

To focus our investigation, from now through Section 6 we make several assumptions: a) k2/k1 > 0
and is finite; b) e1 6= 0; and c) e2 6= 0. To save space, the degenerate cases k2/k1 = 0, k2/k1 =∞,
e1 = 0, and e2 = 0 are treated in details in the supplement Jia et al. (2011a, Section E).16 We will
only make some remarks about these cases when needed.

16In such a degenerate case, the problem can be simplified with a closed-form solution. For example, if k2/k1 = ∞

(infinitely stiffer ball-table contact than ball-ball contact), the lower ball can be treated as an integral part of the
table so the collision reduces to single impact.
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This section looks at how each of the states S1, S2 and S3 evolves and how to decide the next
state. State S4 need only handle perfectly plastic ball-ball impact, which is also described in Jia
et al. (2011a, Section E.3) Before examining the other three states one by one, we look at how to
track the strain energies stored at the two contacts within a state.

4.1 Changes in Strain Energies within a State

Let us use the superscript ‘(0)’ to refer to the value of a physical quantity at the start of a state, and
the notation ‘∆’ to refer to its amount of change so far in the state. Rewrite the velocities of the

two balls (11) and (12) in terms of the impulse accumulations ∆I1 = I1− I
(0)
1 and ∆I2 = I2− I

(0)
2 :

v1 = v
(0)
1 +

1

m1
∆I1, (18)

v2 = v
(0)
2 +

1

m2
(∆I2 −∆I1), (19)

With (18) and (19), the energy derivative dE1/dI1 = −ẋ1 from (13) is rewritten as

dE1

dI1
= −

(

v
(0)
1 − v

(0)
2 +

(

1

m1
+

1

m2

)

∆I1 −
1

m2
∆I2

)

. (20)

Integration of the above yields the change in E1 from its value E
(0)
1 when the state began:

∆E1 =
(

v
(0)
2 − v

(0)
1

)

∆I1 −
1

2

( 1

m1
+

1

m2

)

∆I2
1 +

1

m2

∫ I1

I
(0)
1

∆I2 dI1.

There is one bug with the above formula though. If compression has ended during the growth of

I1 from I
(0)
1 to its current value, we must include an energy loss by the amount of (1 − e2

1)E1max,
where E1max was the value of E1 at the end of compression. Introduce a two-value variable α1 such

that α1 = 1 if compression ends at some impulse value in (I
(0)
1 , I1], and α1 = 0 otherwise. Then

the correct form of the energy change is

∆E1 =
(

v
(0)
2 − v

(0)
1

)

∆I1 −
1

2

( 1

m1
+

1

m2

)

∆I2
1 +

1

m2

∫ I1

I
(0)
1

∆I2 dI1 + α1(e
2
1 − 1)E1max. (21)

Similarly, from equations (8) and (19) we rewrite (14) and then integrate it to obtain the energy

change from E
(0)
2 :

dE2

dI2
= −

(

v
(0)
2 +

1

m2
(∆I2 −∆I1)

)

, (22)

∆E2 = −v
(0)
2 ∆I2 −

1

2m2
∆I2

2 +
1

m2

∫ I2

I
(0)
2

∆I1 dI2 + α2(e
2
2 − 1)E2max, (23)

where α2 takes on the value 1 or 0 depending on whether or not the ball-table impact ends compres-

sion at some impulse value in (I
(0)
2 , I2], and E2max is the strain energy at the end of compression.
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4.2 State S1: Simultaneous Ball-Ball and Ball-Table Impacts

Both impulses I1 and I2 are increasing in the state according to (15).

• If S1 is the start of the collision or follows S3, I1 is the primary impulse (variable), and I2 is
the secondary impulse (function of I1). We solve the system (13)–(15).

• If S1 follows S2, the two impulses switch their roles. We obtain I1 as a function of I2 defined
by the equation

dI1

dI2
=

√

k1

k2
·
√

E1

E2
. (24)

This time we need to solve the system made up of (13), (14), and (24).

We first consider the case that S1 is at the start of the collision, and characterize how I2, E1,
and E2 vary with I1. From (13), we have dE1/dI1(0) = −v0, and hence the Taylor series

E1 = −v0I1 + O(I2
1 ). (25)

In the above, we used the big-O notation such that O(I2
1 ) < cI2

1 for some constant c and some
small enough value of I1.

Next, we determine the Taylor series for I2. Let ρ = (dI2/dI1)(δ), where δ is some small enough
positive number. The idea is to solve for ρ from equation (15) and then take the limit as δ → 0 to
obtain the value of dI2/dI1(0). With I1 = δ and I2(δ) ≈ ρδ, we substitute into (21) and (23) the
following impulse integrals:

∫ δ

0
∆I2 dI1 ≈

∫ ρδ

0

∆I2

ρ
dI2 =

1

2
ρδ2 and

∫ ρδ

0
∆I1 dI2 ≈

∫ δ

0
∆I1 · ρ dI1 =

1

2
ρδ2. (26)

The two energies are then approximated as (setting α1 = α2 = 0 because no compression ends)

E1 = ∆E1 ≈ −v0δ −
1

2

(

1

m1
+

1

m2

)

δ2 +
1

2m2
ρδ2,

E2 = ∆E2 ≈ 1

2m2
ρδ2(1− ρ).

Plug the above equations into (15) and square both sides. A few more steps of symbolic manipu-
lation lead to a quadratic equation:

ρ2 + b1ρ−
k2

k1
= 0,

where b1 = −2 · m2v0
δ − 1− m2

m1
+ k2

k1
> 0. Thus

dI2

dI1

∣

∣

∣

∣

δ
= ρ ≈ 1

2

(

√

b2
1 + 4k2/k1 − b1

)

=
2k2/k1

b1 +
√

b2
1 + 4k2/k1

. (27)

Since 4k2/k1 ≪ b1 as I1 = δ → 0, we have that

dI2

dI1
= − k2

2m2v0k1
I1 + o(I1), (28)
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where the small-o notation is used such that limI1→0 o(I1)/I1 = 0. From (28) we have

dI2

dI1

∣

∣

∣

∣

0
= 0 and

d2I2

dI2
1

∣

∣

∣

∣

0
= − k2

2m2v0k1
. (29)

The ball-table impulse has a Taylor series about I1 = 0:

I2 = − k2

4m2v0k1
I2
1 + O(I3

1 ). (30)

Similarly, from (14) and applying (28) and (30), we obtain for small enough I1:

dE2

dI1
=

dE2

dI2
· dI2

dI1
= − k2

2m2
2v0k1

I2
1 + o(I2

1 ).

This gives us the first three derivatives of E2 at I1 = 0, and the Taylor series about the point:

E2 = − k2

6m2
2v0k1

I3
1 + O(I4

1 ). (31)

Proposition 3 A unique solution to the system (13)–(15) exists in state S1 that starts the collision.

Proof Collision starts with I1 = I2 = 0 and E1 = E2 = 0. The initial changes in I2, E1, and E2

as I1 increases are unique according to (30), (25), and (31), respectively.
Once I1, I2, E1, E2 > 0, existence and uniqueness of the solution to the system follows from

Picard’s existence theorem (Wolfram Mathworld17) because the right hand sides of (13)–(15) are
continuous and have continuous partial derivatives with respect to I1, I2, E1, and E2.

The right hand side of equation (15) stays continuous when the ith impact ends compression
because the contact forces are continuous. Meanwhile, the discrete loss of Ei and increase in ki

have no effect over (13) and (14).

Similarly, we can derive the Taylor series for the secondary impulse and strain energies in
terms of the primary impulse at the start of S1 when the state succeeds S2 or S3. Existence and

uniqueness of solution within S1 can be established. Here, (dI1/dI2)(I
(0)
2 ) = 0 if S1 succeeds S2

and (dI2/dI1)(I
(0)
1 ) = 0 if it succeeds S3.

With no closed-form solution to (13)–(15) in general, the state evolution is simulated via nu-
merical integration18. At each integration step, we check if compression of either impact has just
ended as described in Section 3.5, and if so, scale the corresponding strain energy Ei by e2

i accord-
ingly to recognize the energy loss. The state transitions to S2 when E1 decreases to zero during
restitution of the ball-ball impact, or to S3 when E2 decreases to zero during restitution of the
ball-table impact, whichever occurs earlier.

In numerical integration, we use (27) instead of (29) so that I2 increases if S1 is at the start of
the collision. For the other two cases, we initialize the impulse derivatives as follows:

dI1

dI2

∣

∣

∣

∣

I
(0)
2 +δ
≈ 2k1/k2

b2 +
√

b2
2 + 4k1/k2

, if the preceding state was S2,

dI2

dI1

∣

∣

∣

∣

I
(0)
1 +δ
≈ 2k2/k1

b3 +
√

b2
3 + 4k2/k1

, if the preceding state was S3,

17See http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html.
18For numerical stability, it is better to choose I1 as the variable whenever k1E1 ≥ k2E2 and I2 as the variable

otherwise. In Liu et al. (2008), Ij , j = 1, 2, is chosen if Ej is the larger one of the two energies.
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where b2 =
2m2E

(0)
2

δ2 − 2m2v
(0)
2

δ − 1 + k1
k2

(

1 + m2
m1

)

and b3 =
2m2E

(0)
1

δ2 − 2m2v
(0)
1

δ − 1− m2
m1

+ k2
k1

.

In the supplement Jia et al. (2011a, Sections E.1 and E.2), S1 will be augmented to handle the
special cases k2/k1 = ∞ and k1/k2 = 0. If ei = 0 and impact i ends compression in S1, another
special treatment is needed. This will also be described in the same supplement (Section E.3).

4.3 State S2: Ball-Table Impact Only

The state S2 starts with ẋ1 > 0, or by (7), v
(0)
2 < v

(0)
1 since the ball-ball impact has just finished

restitution. During the state, v1 ≡ v
(0)
1 , ∆I1 ≡ 0, ∆E1 ≡ 0, and thus from (19),

v2 = v
(0)
2 +

1

m2
∆I2. (32)

If v
(0)
1 < 0, then v

(0)
2 < 0. Thus, state S2 starts during compression of the ball-table impact.

Since compression would not end until v2 = 0, v2 will reach v
(0)
1 first, triggering a transition to S1.

If v
(0)
1 > 0, there are two cases depending on the phase of the ball-table impact when S2 starts.

• Compression. Since ẋ2 = v2 by (8), we conclude that restitution will start during the state

when v2 = 0 at ∆I2 = −m2v
(0)
2 by (32). Substituting this value and α2 = 0 into (23) to

determine ∆E2, we obtain E2max = E
(0)
2 + 1

2m2v
(0)
2

2
. The next state is S1 if there is enough

strain energy after the loss to increase the velocity of the lower ball B2 to v
(0)
1 . This leads to

the condition e2
2E2max > 1

2m2v
(0)
1

2
. Otherwise, the final state S4 is next to end the collision

with B2 having the velocity

v2 =

√

2e2
2E2max

m2
= e2

√

√

√

√

v
(0)
2

2
+

2E
(0)
2

m2
.

• Restitution. The ball B2 will increase its velocity to v
(0)
1 to reactivate the ball-ball impact

(and switches to the state S1) if 1
2m2v

(0)
2

2
+E

(0)
2 > 1

2m2v
(0)
1

2
. Otherwise, a transition to state

S4 takes place to end the collision with

v2 =

√

√

√

√

v
(0)
2

2
+

2E
(0)
2

m2
.

The above analysis of state S2 can be augmented with the case where e2 = 0 and the ball-table
impact ends compression in the state. We also need to handle the case k2/k1 = 0 when S2 is the
second state and followed by S4. These two cases are described in Jia et al. (2011a, Sections E.2
and E.3).

4.4 State S3: Ball-Ball Impact Only

During state S3, ∆I2 ≡ 0, and E2 ≡ 0. The lower ball B2’s velocity has a reduced form from (19):

v2 = v
(0)
2 −

1

m2
∆I1, (33)
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while the upper ball B1’s velocity is still (18). Through an analysis based on the phase of the
ball-ball impact during which S3 starts, the maximum possible accumulation of I1 within the state
can be determined (Jia et al. 2011a, Section C) to be

∆I1max =



























M

(

v
(0)
2 − v

(0)
1 + e1

√

(

v
(0)
2 − v

(0)
1

)2
+ 2

M E
(0)
1

)

, if S3 starts during compression,

M

(

v
(0)
2 − v

(0)
1 +

√

(

v
(0)
2 − v

(0)
1

)2
+ 2

M E
(0)
1

)

, if S3 starts during restitution,

(34)
where M = 1/( 1

m1
+ 1

m2
).

A transition S3 → S1 happens if the lower ball’s velocity reduces to zero before S3 ends, that
is, if

v
(0)
2 −

∆I1max

m2
< 0. (35)

In this case, the impulse accumulation within S2 is ∆I1 = m2

(

v
(0)
2 − 0

)

= m2v
(0)
2 by (33).

If condition (35) does not hold, the state ends with impulse accumulation ∆I1 = ∆I1max. The
terminal state S4 is next. The final ball velocities are obtained by plugging ∆I1 = ∆I1max and
∆I2 = 0 into (18) and (19).

A special treatment is given in Jia et al. (2011a, Section E.3) for the case where e1 = 0 and the
ball-ball impact ends compression in S3.

5 Stiffness and Mass Ratios and Input/Output Scalability

Sections 4.3 and 4.4 offered closed-form solutions respectively in states S2 and S3 based on the
values of the impulses, velocities, and energies entering the states. Section 4.2 established existence
of a unique solution in S1 whether it starts the collision or succeeds S2 or S3.

Theorem 4 A unique solution exists for the ball-ball-table collision problem based on the state
transition diagram in Figure 4.

Having described the states, we now take a high level view of the ball-ball-table collision — as
a system with input being the initial velocity v0 of the upper ball B1, and output (or outcome)
being the final (separation) velocities v1 and v2 of the two balls. The theorem below states how
the collision outcome is influenced by the physical parameters.

Theorem 5 The following statements hold about the collision outcome:

i) It depends on the stiffness ratio k2/k1 but not on individual values of k1 and k2. Scaling of
k1 and k2 by the same factor does not change evolutions of the two impulses I1 and I2.

ii) It depends on the mass ratio m2/m1 but not on individual values of m1 and m2. Scaling of
m1 and m2 by a factor of s results in scaling of I1 and I2, and the strain energies E1 and E2,
all by s, during the collision.

iii) The output-input velocity ratios v1/v0 and v2/v0 are invariant to any change in v0. Scaling
of v0 by a factor of s will result in scaling of I1 and I2 by s, and E1 and E2 by s2 during the
collision.
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In fact, part i) of Theorem 5 is a known result. Brogliato (1999, pp. 306–307) applied a
time-based analysis to establish that the separation velocities of three balls colliding in a chain
configuration depend on the relative stiffness at their two contact points.

Part ii) of the theorem can be interpreted differently. Suppose we impose two unilateral con-
straints: a) the distance between the centers of the two balls is no less than the sum of their radii;
and b) the distance between the center of the lower ball and the table is no less than its radius.
The kinetic angle, defined in Brogliato (1999) as that between the normals of the corresponding
equality constraints, depends on the mass ratio but not on individual masses. The geometry of the
collision is determined by the mass ratio (up to scaling), as we will soon examine in Section 6.

Following the theorem, we see that the ratios v1/v0 and v2/v0 depend on the stiffness ratio
k2/k1, the mass ratio m2/m1, and the coefficients of restitution e1 and e2 only.

Input/output scalability over the initial upper ball velocity and dependence on the mass ratio
are two desired properties for an impact model using linear stiffness. They also simplify our analysis
of the collision process and computation of the final ball velocities. To solve a collision instance with
initial velocity v0 < 0, and ball masses m1 and m2, we instead consider another instance where the
upper ball has unit mass and unit initial velocity −1, and the lower ball has mass m2/m1. Suppose
the new instance yields final ball velocities v̄1 and v̄2. Then the original collision instance yields
final velocities −v0v̄1 and −v0v̄2. The state sequences from the two instances are exactly the same
under a one-to-one correspondence between their impulse growths.

6 The Impulse Curve

From now on, we need only consider a collision instance where

m1 = 1 and v0 = −1. (36)

Under Theorem 5, analysis of impulse evolution will carry over for arbitrary v0 < 0 and m1 > 0
merely by scaling the impulses and velocities by a factor of −m1v0 and the strain energies by a
factor of m1v

2
0 .

Accumulations of the ball-ball impulse I1 and the ball-table impulse I2 are best described in
the impulse plane with I1 and I2 as coordinates. Every point in this I1-I2 plane represents a pair
of impulse values that may or may not be attained during the collision. By Proposition 1, the
point would yield intermediate ball velocities according to (11) and (12). As I1 and I2 accumulate,
the moving point (I1, I2) traces out a set of points in the plane. Since the contact forces F1 and
F2 are continuous and non-negative, the impulse I1 and I2 as their integrals are continuous and
monotonically increasing.

The impulse curve consists of all pairs of intermediate impulse values (I1, I2). It grows upward
and/or rightward. The next proposition establishes the first order continuity of the impulse curve.

Proposition 6 The impulse curve is first order continuous, namely, its tangent is defined every-
where as the curve extends with the growing impulses during the collision.

Proof The impulse derivative dIj/dIi = Fj/Fi, where Ii and Ij are the primary and secondary
impulses, respectively, is continuous within state S1. Within state S2 or S3, the secondary impulse
Ii is constant, and the derivative dIi/dIj = 0, j 6= i, is clearly continuous.
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Now we show that the tangent is defined at every possible state transition by establishing the
equality between the left and right derivatives of the secondary impulse with respect to the primary
impulse. There are four types of transitions among states S1, S2, and S3 as shown in Figure 4.

• S1 → S2. At the end of S1, the two balls break contact with E1 = 0. Thus the left derivative
dI−1 /dI2 =

√

k1/k2 ·
√

E1/E2 = 0. Throughout state S2, I1 remains constant, which implies
the right derivative dI+

1 /dI2 = 0 at the transition point.

• S1 → S3. Similar to the above case.

• S2 → S1. The left derivative dI−1 /dI2 = 0 since I1 does not change its zero value within S2.

The right derivative dI+
1 /dI2 =

√

k1E1
k2E2

= 0 because E1 = 0 at the start of S1.

• S3 → S1. Similar to the above case.

A transition to state S4 ends the impact right away.19

6.1 Bounding Ellipse

In this section, we will show that the two growing impulses are bounded inside an ellipse determined
by m2. To be derived from non-negativeness of the total contact strain energy, this bounding ellipse
will help us not only visualize impulse growth during each state but also prove convergence of state
transitions later in Section 7. The next lemma bounds the total strain energy using the impulses.

Theorem 7 The following inequality is satisfied during a collision where the upper ball has unit
mass (m1 = 1) and unit initial velocity (v0 = −1):

E1 + E2 ≤ I1 −
1

2
I2
1 −

1

2m2
(I1 − I2)

2. (37)

Proof By induction. The energy equations (21) and (23), after substitution of (36), become
inequalities with removal of the terms containing α1 and α2 from their right hand sides:

∆E1 ≤
(

v
(0)
2 − v

(0)
1

)

∆I1 −
1

2

(

1 +
1

m2

)

∆I2
1 +

1

m2

∫ I1

I
(0)
1

∆I2 dI1, (38)

∆E2 ≤ −v
(0)
2 ∆I2 −

1

2m2
∆I2

2 +
1

m2

∫ I2

I
(0)
2

∆I1 dI2. (39)

From d(I1I2) = I2dI1 + I1dI2 we have

∫ I1

I
(0)
1

∆I2 dI1 +

∫ I2

I
(0)
2

∆I1 dI2 = ∆I1∆I2.

19We are assuming e1, e2 6= 0 through Section 6. Otherwise, state S4 needs to handle the special case where the
ball-ball impact is plastic (e1 = 0) and ends in S3 (cf. Jia et al. 2011a, Section E.3). The impulse curve has a
continuous tangent during S4.
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Add up the inequalities (38) and (39):

∆E1 + ∆E2 ≤
(

v
(0)
2 − v

(0)
1

)

∆I1 − v
(0)
2 ∆I2 −

1

2m2
(∆I1 −∆I2)

2 − 1

2
∆I2

1

=

(

1

m2

(

I
(0)
2 − I

(0)
1

)

+ 1− I
(0)
1

)

∆I1

− 1

m2

(

I
(0)
2 − I

(0)
1

)

∆I2 −
1

2
∆I2

1 −
1

2m2
(∆I1 −∆I2)

2, (40)

where in the last step we substituted v
(0)
1 = −1 + I

(0)
1 and v

(0)
2 = (I

(0)
2 − I

(0)
1 )/m2 by (11) and (12).

In the initial state S1, v
(0)
1 = −1, v

(0)
2 = 0, I

(0)
i = 0, ∆Ii = Ii, and ∆Ei = Ei, for i = 1, 2. This

simplifies (40) to

E1 + E2 ≤ I1 −
1

2
I2
1 −

1

2m2
(I1 − I2)

2.

Next, assume that (37) holds after the first k states; namely, at the start of the (k +1)-st state,

E
(0)
1 + E

(0)
2 ≤ I

(0)
1 − 1

2
I
(0)
1

2
− 1

2m2

(

I
(0)
1 − I

(0)
2

)2
.

Add the above inequality to inequality (40), merging the terms on the right hand side:

E1 + E2 = E
(0)
1 + E

(0)
2 + ∆E1 + ∆E2

≤ (I
(0)
1 + ∆I1)−

1

2
(I

(0)
1 + ∆I1)

2 − 1

2m2

(

(I
(0)
1 + ∆I1)− (I

(0)
2 + ∆I2)

)2

= I1 −
1

2
I2
1 −

1

2m2
(I1 − I2)

2.

From the proof we see that (37) becomes an equality if and only if there has been no energy
loss. This is the case throughout the collision if e1 = e2 = 1. Otherwise, no energy loss occurs until
the first impact, with coefficient of restitution less than one, ends compression.

Since E1+E2 ≥ 0, condition (37) imposes a constraint over the ball-ball and ball-table impulses.

Corollary 8 Every point on the impulse curve satisfies

1

2
I2
1 +

1

2m2
(I1 − I2)

2 − I1 ≤ 0. (41)

Appendix A shows that the equation

1

2
I2
1 +

1

2m2
(I1 − I2)

2 − I1 = 0 (42)

defines an ellipse (see Figure 5) centered at (1, 1). The semi-minor axis rotates from the x-axis
through an angle

θ = −1

2
arctan

(

2

m2

)

. (43)
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1 + 1√
1+m2

I1

I2

1 −
√

1 + m2

1

2

1 +
√

1 + m2

2

θ

1 − 1√
1+m2

1

Figure 5: The impulse curve must lie in-
side an ellipse and above the I1-axis. Here
m1 = 1 and v0 = −1.

The ellipse is tangent to two vertical lines: the I2-axis
at the origin and I1 = 2 at the point (2, 2). It is also
tangent to two horizontal lines: I2 = 1 − √1 + m2, and
I2 = 1 +

√
1 + m2.

During the collision, the growing impulses (I1, I2)
must stay inside the region bounded by the ellipse (42)
and above the I1-axis. This region, shaded in Figure 5,
is referred to as the impulse region. Rewrite the veloc-
ity equations (11) and (12) into the matrix form (note
m1 = 1 and v0 = −1):

(

1 0
− 1

m2

1
m2

)(

I1

I2

)

=

(

v1 + 1

v2

)

.

Since the coefficient matrix is non-singular, different
points in the impulse region, if representing the impulses
at the end of the collision, would generate different final
ball velocities.

Given the same lower ball mass, every triple
(k2/k1, e1, e2) defines a different collision instance. Thus,
the impulse region bounds a three-dimensional set of im-
pulse curves resulting from all possible collisions. Every

point in the region potentially lies on the impulse curve of some collision instance.
It is easy to see that the result on bounded impulse curve generalizes to a collision at n > 2

contacts by deriving an inequality for the total contact strain energy in terms of impulses.

6.2 Partitioning the Impulse Region

In the impulse plane, we add two lines ℓ1 and ℓ2 defined by equations (16) and (17), respectively.
Under (13) and (14), these two lines have equations v2 − v1 = 0 and v2 = 0. They respectively
represent the first order necessary conditions for ends of compression of the ball-ball and ball-table
impacts. Referred to as the compression lines by convention (Mason 2001, p. 215), they partition
the impulse region into four smaller regions I–IV as shown in Figure 6(a). Inside each region is a
different combination of the signs of v1 − v2 and v2, or equivalently, according to (7) and (8), of
the signs of the change rates ẋ1 and ẋ2 of the virtual contact spring lengths, and thus a different
combination of the phases of the two impacts. The interior of region I includes all impulse values
that could possibly be attained during compression of both the ball-ball and ball-table impacts.
Accordingly, the region is labeled C1C2 in Figure 6(b). The interior of region II includes all impulse
values that could possibly be attained during restitution of the ball-ball impact and compression
of the ball-table impact. The region is thus labeled R1C2. And so on.

The impulse curve evolves from the origin at which it is tangent to the I1-axis since dI2/dI1 has
initial value 0 by (29). The curve enters region I as both impulses increase. The curve later crosses
ℓ1 (ℓ2, respectively) where dE1/dI1 = 0 (dE2/dI1 = (dE2/dI2) · (dI2/dI1) = 0, respectively). It is
not difficult to picture that in state S1, both impacts could be in either compression or restitution.

In state S2, v1 > v2 holds because the two balls are instantaneously separate. So the curve
grows vertically upward to the right of ℓ1. In S3, the lower ball has velocity v2 > 0 since it is
separate from the table. The curve grows horizontally rightward to the left of ℓ2.
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ẋ2 < 0

−1 +
(

1 + 1
m2

)

I1 − 1
m2

I2 = 0

−m2

m2
1+m2

R2

R1

R2

C1

C2

R1

C2
C1

(a) (b)

Figure 6: Regions of four different combinations of impact phases.

When a state finishes with the value (I1, I2) inside region IV, v1 > v2 > 0, state S4 follows to
end the collision.

During the collision, E1 + E2 > 0. Thus, by (37) the inequality (41) is strict. It is also strict
after the collision if there has been some energy loss. Therefore, after the start, the impulse curve
will not reach the bounding ellipse (42) again unless the collision ends and e1 = e2 = 1.

6.3 Collision Examples

This section presents several collision instances: an elastic one, a plastic one, and a third one
in which compression restarts during restitution. In all instances, the upper ball has unit mass
(m1 = 1) and unit downward initial velocity (v0 = −1).

6.3.1 Elastic Collision

Figure 7 illustrates the growth of the impulse curve during a collision with additional physical
parameter values specified as follows:

m2 =
2√
3
,

k2

k1
= 1, and e1 = e2 = 1. (44)

The bounding ellipse has its minor axis rotated clockwise from the x-axis through π/6. The
equations of the ellipse and the two compression lines l1 and l2 are marked in the figure. The dots
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A,D,H, J on the impulse curve each marks the end of a ball-ball impact phase, while the dots E
and G each marks the end of a ball-table impact phase. The dot F represents a transition from
state S2 to state S1 that is triggered by a velocity condition (v1 = v2) not by the end of an impact
phase.

I
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− 2√
3

l1 :
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1 +
√

3

2

)

I1 −
√

3

2
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l2 : I1 − I2 = 0

√
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2
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Figure 7: Elastic collision. The values of the
physical constants are given in (44). There are
five states sequentially: S1 over the impulse seg-
ment [O, D), S2 over [D, F ), S1 over [F, G), S3

over [G, J), and S4 at J .

Starting at the origin tangent to the I1-axis and
entering region I, the impulse curve crosses the com-
pression line ℓ1 at the point A. By (13), the two
balls have the same velocity, i.e., v1 = v2, at the
point. Since the curve is entering region II, the ball-
ball impact has finished compression. The curve
continues growing to reach the point B, at which
its tangent is parallel to the compression line ℓ2

with slope 1. At B we infer dI2/dI1 = 1 from the
equation of ℓ2, and dv2/dI1 = 0 from (12). Since
the curve slope is increasing at B, so is dv2/dI1.
Hence d2v2/dI2

1 > 0 holds at B, which implies that
v2 has reached a local minimum value. The value
turns out to be an absolute minimum as the only
local minimum below ℓ2 (where v2 < 0). In other
words, the lower ball has the largest downward ve-
locity when the two impulses are at B.

The next point of interest on the curve is C,
at which the tangent is parallel to ℓ1 with slope
1 + 2/

√
3. Differentiating the last equation in (13),

we obtain

d

dI1
(v2 − v1) =

1

m2

(

dI2

dI1
− 1

)

− 1. (45)

Since dI2/dI1 = (1+
√

3/2)/(
√

3/2) at C, the same
as the slope of ℓ1, the derivative of v2 − v1 vanishes. At the point, the curve slope is increasing,
so d2I2/dI2

1 > 0. This suggests d2(v2 − v1)/dI2
1 > 0 according to (45). Thus, v2 − v1 has a local

minimum at C. Since v1 > v2 to the right of ℓ2, the lower ball’s velocity is the most below the
upper ball’s.

The ball-ball impact ends restitution when the impulse curve reaches D. State S2 follows
immediately. During the state, the ball-table impact ends compression when it crosses the line l2
at E. As I2 continues to accumulate, the curve extends to F , where a transition S2 → S1 happens.
The ball-table impact ends restitution at G with a transition S1 → S3.

In state S3, the ball-ball impact as the only active one ends compression when the impulse curve
crosses l1 at H and ends restitution at J = (1.94484, 2.29559), which lies on the bounding ellipse
since there is no energy loss under e1 = e2 = 1. The velocities after the collision are v1 = 0.94484
and v2 = 0.30376, respectively.

6.3.2 Plastic Collision

We change the coefficients of restitution to e1 = 0.9 and e2 = 0.7 while keeping the values of the
other collision parameters in (44). Now, neither impact is elastic. This is the collision instance
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Figure 8: Collision with energy loss. Diagrams (a) and (b) show the evolutions of the ball velocities and the
strain energies at the two contacts. Here m1 = 1, m2 = 2/

√
3, k2/k1 = 1, e1 = 0.9, e2 = 0.7, and v0 = −1.

state interval I1 I2 v1 v2 E1 E2 total energy phases

S1 [O,B) 0 0 −1 0 0 0 0.5 C1-R1

S2 [B,C) 1.13807 0.76239 0.13807 −0.32535 0 0.37671 0.44736 C2

S1 [C,E) 1.13807 1.29750 0.13807 0.13807 0 0.20353 0.22407 R2

S3 [E,G) 1.27281 1.85565 0.27281 0.50475 0.03966 0 0.22397 C1-R1

S4 G 1.61377 1.85565 0.61377 0.20947 0 0 0.21369
H

H
H

H
HH

Table 1: Values of I1, I2, v1, v2, E1 and E2 at the beginning of every state during the collision depicted in
Figures 1 and 8.

shown in Figure 1. With the impulse growth already overviewed following that figure, we focus on
how the ball velocities and the strain energies evolve as the impulses accumulate.

The collision goes through a sequence of five states: S1, S2, S1, S3, and S4. They correspond to
impulse curve segments [O,B), [B,D), [D,E), [E,G), and G in Figure 1. Owing to the energy
loss, the ending point G is now inside a bounding ellipse, the same as the one in Figure 7. Part (a)
of Figure 8 plots the varying ball velocities against each other, while part (b) plots the varying
strain energies stored at the two contacts. The velocity curve in (a) is continuous, following the
continuity of the impulse curve and the velocity formulae (11) and (12).

Points on the three curves in Figure 1, and Figures 8(b) and (c) that are labeled by the same
letter correspond to the same instant during the collision. On the latter two curves, ©i labels all
segments of impulse evolution within the ith state in the sequence.

The velocity curve starts at (−1, 0) in (a), and the energy curve at the origin in (b). The energy
loss (of E1) by a factor 1 − e2

1 = 0.19 happens at the point A when the ball-ball impact finishes
compression. It is shown as a discontinuity of the energy curve at A in (b). After the loss, the
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curve resumes at the point A′ to the left of A.
In Table 1, each row lists the values of the impulses, the ball velocities, and the strain energies

at the start of a state in the sequence. For example, the second to last entry in the row of S2 gives
the total energy 1

2m1v
2
1 + 1

2m2v
2
2 + E1 + E2 = 0.44736 of the system at the end of the first state —

S1, following the energy loss at A. The last entry in the previous row, C1-R1, marks that impact 1
(i.e., the ball-ball impact) has finished compression and restitution within the state S1.

In the second state (S2) starting at B with only the ball-table impact active, the velocity and
energy curves both evolve vertically from B upward since I1, v1, and E1 do not change their values.
The energy curve, however, has a discontinuity at the point C when the ball-table impact ends
compression. Here E2 suffers a loss by the factor of 1− e2

2 = 0.51. The curve resumes at C ′ below
on the E2-axis. When the velocity curve reaches D at which v1 = v2, the ball-ball impact gets
reactivated immediately to end S2. Note the small decrease of E2 over [C ′,D].

The third state S1 finishes with restitution of the ball-table impact and no energy loss.20 In
the following state S3, the velocity curve extends with slope −1/m2 according to (33). The energy
curve segment, labeled ©4 in (b), is on the E1-axis. It first grows to the right to reach F where
compression of the ball-ball impact ends. Restitution starts at F ′ following an energy loss, and
releases the remaining strain energy. The energy curve comes back to the origin with the final ball
velocities 0.61377 and 0.20947 at G in (a) and in the last row of Table 1.

6.3.3 Restart of Compression

Figure 9 shows the impulse curve of a collision with only three states: S1, S3, and S4. In S1, the
impulse curve crosses the compression line l1 three times, at A, B, and D, respectively. The first
and third crossings are from left to right, indicating ends of compression. Each of them results in
increase of the contact stiffness k1 by a factor of 1/e2

1. The second crossing indicates a switch from
restitution back to compression with no change to the value of k1. Note that in S1 the impulse
curve passes through all four regions.

The impulse curve also crosses the compression line l2 at C and E within state S1. The ball-
table contact becomes stiffer by 1/e2

2 after C. Similarly, the second crossing point E corresponds
to a switch from restitution to compression of the ball-table impact.

7 Convergence of State Transitions

Every state terminates. This is trivial for states S2 and S3 in which the impulse accumulations ∆I2

and ∆I1 are given in closed forms, respectively, in Sections 4.3 and 4.4. In state S1, the primary
impulse must stop increasing because the growth of (I1, I2) is bounded by the ellipse (42).

Special collisions (with k2/k1 = 0, k2/k1 = ∞, e1 = 0, or e2 = 0) all terminate after a few
state transitions (Jia et al. 2011a, Section E). In this section we look at the general case where
k2/k1 is finite and non-zero, and e1 and e2 are non-zero. Under Theorem 5, we need only consider
a collision instance with v0 = −1 and m1 = 1.

Let 〈s1, s2, . . .〉 be the sequence of states that results from the collision. Denote by I1i and I2i

the respective values of the two impulses I1 and I2 at the end of the ith state si. The sequence
{(I1i, I2i)} is monotonically non-decreasing. In the case that it is finite, from the diagram in

20Due to a round-off error in numerical integration, a slight discrepancy of 0.0001 can be seen in the total energy
column of Table 1 between the second S1 row and the following S3 row.
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Figure 9: Restarts of compression during restitutions of the ball-ball impact at B and the ball-table impact
at D. The lower ball has mass m2 = 0.5, while the other collision parameters have the same values as for
the instance in Figure 8.

Figure 4, state transitions will terminate with v1 ≥ v2 ≥ 0. In other words, the impulse curve will
stop its growth in region IV shown in Figure 6(a), with its boundary included.

Suppose that the monotonically increasing sequence is infinite. Bounded inside the ellipse (42),
it must converge to some point (I∗1 , I∗2 ) by a known result from calculus (Kaplan 1991, p. 173).

Lemma 9 The sequence {(I1i, I2i)} of pairs of impulses ending the states s1, s2, . . . will not con-
verge to a point in the interior of region I, II, III, or IV drawn in Figure 6(a).

Proof Suppose the sequence is infinite and converges to some point q in the interior of one of the
regions, say, IV. There exists some integer m such that, for all i > m, the points (I1i, I2i) are within
some neighborhood N of q that is inside the region. However, because the sequence is infinite, state
S1 must transition to S2 or S3. State S2 and S3 each has single impact, and the impulse curve
will always reach the compression line ℓ1 or ℓ2 at the end of such a state when it transitions to S1.
The sequence must therefore exit the neighborhood N at the end of every other state at least. A
contradiction.

Following Lemma 9, an infinite sequence {(I1i, I2i)} must converge to a point (I∗1 , I∗2 ) on the
compression line ℓ1 or ℓ2. It only makes physical sense to have an outcome with both balls re-
bounding and the upper ball at a speed no less than that of the lower ball. The convergence point
(I∗1 , I∗2 ) should be at or above (1, 1) to yield v1 ≥ v2 ≥ 0.

To show that (I∗1 , I∗2 ) is above (1, 1), we will use the following result regarding the minimum
increase of the ball-ball impulse or the ball-table impulse within state S1 during compression.

Lemma 10 State S1 will not end
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Figure 10: Contradiction from the hypothesis that the state sequence converges to a point q on ℓ2 below
the intersection p of the compression lines ℓ1 and ℓ2: (a) The sequence is supposed to alternate between S1

and S3 inside a disk N(ǫ); meanwhile, (b) the impulse curve must exit the disk (enlarged for display).

i) if the accumulation of the ball-ball impulse within the state satisfies

∆I1 ≤ −
v
(0)
1

1 + 1
m2

(

1 + k2
k1

) (46)

in the case that S1 is the first state (with v
(0)
1 = −1) or follows state S3 with v

(0)
1 < 0, or

ii) if the accumulation of the ball-table impulse within the state satisfies

∆I2 ≤ −
m2v

(0)
2

1 + k1
k2

(1 + m2)
(47)

in the case that S1 follows state S2 with v
(0)
2 < 0.

Note that v
(0)
2 = 0 at the transition S3 → S1 and v

(0)
1 = v

(0)
2 at S2 → S1. The proof of Lemma 10

is rather involved, and postponed to Appendix B, without interrupting our flow of presentation.

Proposition 11 If the sequence {(I1i, I2i)} is infinite, it must converge to a point on ℓ1 or ℓ2 but
not below (1, 1).

Proof By contradiction. Lemma 9 states that the point of convergence q = (I∗1 , I∗2 ) must be on
either ℓ1 or ℓ2. Suppose that the point q lies below p = (1, 1). Representing a pair of final impulse
values, it would yield the final ball velocities v∗1 and v∗2 .

First, we suppose that q is on ℓ2 below p. Then q lies to the left of ℓ1, as shown in Figure 10(a).
We have v∗1 < v∗2 = 0. Denote by N(ǫ) an open disk centered at q and with radius ǫ. This radius
can be chosen small enough such that the disk lies completely to the left of ℓ1. Every impulse point
in N would yield v1 < v2 (cf. Figure 6(a)), and v1 < 0 from (11) since I1 < 1, m1 = 1, and v0 = −1.

It follows from the convergence of the sequence that there exists some integer σ > 0 such that
(I1i, I2i) lies in N for i > σ. Because v1 < v2 for i > σ, the ball-ball contact remains in compression
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throughout the states sσ+1, sσ+2, . . .. So we infer that si 6= S2 (in which the ball-ball impact is
inactive), for i > σ. From then on the state sequence must be alternating between S1 and S3.

Let us consider some state sj+1 = S1, where j > σ. It begins with the impulse curve at
qj = (I1j , I2j) inside N(ǫ), as shown in Figure 10(b). The point qj is on ℓ2 because v2 = 0 at
the transition S3 → S1. By part i) of Lemma 10 the impulse I1 will increase by an amount of

∆I1 ≥ −v1j/
(

1 + 1
m2

(1 + k2
k1

)
)

in the state sj+1, where v1j is the value of v1 as the state sj ends at

qj. We can choose ǫ small enough such that ∆I1 > 2ǫ holds (this is described in the next paragraph).
Consequently, I1j + ∆I1 is greater than I∗1 + ǫ, which bounds from above the I1-coordinates of all
points inside the disk N(ǫ). In other words, the impulse curve must exit the neighborhood within
the state sj+1. Hence a contradiction.

Now we look at how to choose ǫ. The condition ∆I1 > 2ǫ is satisfied if

− v1j

1 + 1
m2

(1 + k2
k1

)
> 2ǫ, i.e., v1j < −2ǫ

(

1 +
1

m2

(

1 +
k2

k1

))

.

Since qj ∈ N(ǫ), I1j < I∗1 + ǫ, which is equivalent to v1j < v∗1 + ǫ by (11) with m1 = 1 and

v0 = −1. It suffices to make sure that v∗1 + ǫ < −2ǫ
(

1 + 1
m2

(

1 + k2
k1

))

, which is satisfied when

ǫ < −v∗1/
(

3 + 2
m2

(

1 + k2
k1

))

.

Next, we show that the convergence point q cannot lie on ℓ1 below p — again, by contradiction.
Suppose otherwise. So q lies on ℓ1 below p. The states will eventually be alternating between
S1 and S2 with the impulses in some neighborhood N(ǫ) of q that is below ℓ2. Inside N(ǫ), at a
transition S2 → S1, v1 = v2 = u for some u < 0 because the impulse point is on ℓ1 but below
ℓ2. The ball-table impact is in compression at the moment since u < 0. The ball-ball impact
immediately goes into compression as v2 increases to make v1− v2 < 0. Hence, state S1 starts with
both impacts in compression, and the impulse curve leaving the line ℓ1 and going into region I.

By part ii) of Lemma 10, within state S1 the impulse I2 will grow by an amount of at least

∆I2 = −m2u/
(

1 + k1
k2

(1 + m2)
)

. Again, we just need to choose ǫ small enough such that u is

close enough to v∗1 to satisfy ∆I2 > 2ǫ. Within the state the impulses (I1, I2) will then exit the
neighborhood N(q). A contradiction to the convergence at q.

The point (1, 1) represents the outcome of plastic ball-ball and ball-table impacts where both
balls have zero velocities after collision. Proposition 11 therefore implies that an infinite sequence
of states results in a collision outcome equivalent to that when one of the two impacts is plastic.

Finally, we combine Proposition 11 for a general collision with the results on the output velocities
in special collisions treated in Jia et al. (2011a)

Theorem 12 The state transitions will either terminate with v1 ≥ v2 ≥ 0 or the impulse sequence
will converge to generate either v1 = v2 ≥ 0 or v1 > v2 = 0.

8 Shooting a Billiard — Integration of the Models for Multiple
Compliant Impacts

The model described in Sections 3–7 characterizes impulses along the normals at two contacts
where impacts take place simultaneously. In the presence of friction and tangential compliance,
at each contact, a tangential impulse also exists and has a differential relationship to the normal
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impulse. Only part of the work done by the tangential force dissipates due to friction. The
remaining part gets converted into strain energy to be released later. A model for 3-dimensional
impact with tangential compliance has been developed by Jia (2010, 2012) to compute tangential
impulse from normal impulse. Integration of the two models will equip us to solve a general impact
problem involving multiple frictional and compliant contacts. In this section, we describe how such
integration can be done via modeling a shot in the game of pool.

As shown in Figure 11, during a shot by the cue stick at the cue ball, the cue-ball impact
and the ball-table impact happen simultaneously at the cue-ball contact point p and the ball-table
contact point q. Denote by n̂ the unit normal of the ball at p, and ẑ that of the table at q. At p

two unit tangent vectors û and ŵ form a right-handed contact frame with n̂ such that û× ŵ = n̂.
Similarly, at q the unit tangent vectors x̂ and ŷ form a right-handed contact frame with ẑ.

I1

q

ball
cue

stick
cue

vc0

û

ŵ

ẑ ŷ

x̂

n̂

p

I2

Figure 11: Pool shot results in simulta-
neous cue-ball and ball-table impacts at p

and q.

Let the cue stick have mass mc, and the cue ball have
mass m and radius r, thus moment of inertia 2

5mr2. The
cue stick shoots at a velocity vc0 in the unit direction ĉ =
vc0/‖vc0‖ that is aligned with the cue’s axis of symmetry.
The cue-ball impact is eccentric when n̂ and ĉ are not
collinear. The condition n̂ · ĉ < 0 must hold for the shot
to happen.

To ensure the ball-table impact to be active during the
shot, we first assume that the point p of hit is above the
ball’s equator (i.e., n̂ · ẑ > 0) or on the equator with ĉ · ẑ <
0. We also assume that during the shot, the cue stick is
constrained to move along ĉ or −ĉ. This way our analysis
is not overcomplicated by taking into account rotation or
bending of the cue stick or shearing of the cue tip during
the shot, although these effects occur during a real pool shot. This second assumption is satisfied
by our design of a mechanical cue stick to be described in Section 9.2.

During the shot, the cue stick has velocity vc, the ball has velocity v and angular velocity ω, all
varying as the cue-ball and ball-table impacts develop. Denote by I1 and I2 the impulses exerted
on the cue and the ball at p and q, respectively. The velocity equations are as follows:

vc = vc0 +
1

mc
(I1 · ĉ)ĉ, (48)

v =
1

m
(I2 − I1), (49)

ω = − 5

2mr
(n̂× I1 + ẑ × I2). (50)

Let v1 be the relative contact velocity of the cue stick to the ball, and v2 be that of the ball to
the pool table. It follows from contact kinematics with substitutions of (48)–(50) that

v1 = vc − v − ω × (rn̂)

= vc0 +

(

1

mc
ĉĉT +

7

2m
− 5

2m
n̂n̂T

)

I1 +
1

m

(

−1 +
5

2
(n̂ · ẑ)− 5

2
ẑn̂T

)

I2, (51)

v2 = v − ω × (rẑ).

=
1

m

((

−1 +
5

2
(n̂ · ẑ)− 5

2
n̂ẑT

)

I1 +

(

7

2
− 5

2
ẑẑT

)

I2

)

. (52)
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Figure 12: Contact structures attaching massless points p and q via virtual springs to (a) the cue tip and
(b) the ball, respectively.

In the above equations, scalars appearing in the sums with matrices are treated as multiples of
the 3 × 3 identity matrix. Such a sum is always multiplied with a vector so it can be viewed as
multiplications distributed into the sum.

In (48), an impulse due to the implicit constraint force, which enforces the linear motion con-
straint on the cue stick, cancels out the component of I1 orthogonal to ĉ. Decompose the two
impulses in their respective contact frames:

I1 = Iuû + Iwŵ + Inn̂ and I2 = Ixx̂ + Iyŷ + Izẑ. (53)

We have In > 0 or Iz > 0 whenever the corresponding impact has been active, and In = 0 or Iz = 0
otherwise.

8.1 Embedding the Compliant Impact Model

The tangential impulses Iuû+Iwŵ and Ixx̂+Iyŷ are due to compliance and friction and dependent
on the normal impulses In and Iz, respectively. To model them, we use the 3-dimensional contact
structure from Jia (2012), which extends the planar structure introduced by Stronge (2000, p. 95–
96). As illustrated in Figure 12(a), we view the cue-ball contact p as a massless particle connected
to the cue tip via three virtual springs respectively aligned with û, ŵ, and n̂. For convenience, they
are referred to as the u, w, and n springs, while u, v, and n also denote the changes of their lengths
by a slight abuse of notation. The infinitesimal area on the cue tip attached to the springs may be
thought of as “concave”. Similarly, part (b) of the figure shows q as a massless particle connected
to the cue ball via three springs in the directions of x̂, ŷ, and ẑ. These springs are referred to as
the x, y, and z springs with changes of length x, y, and z, respectively. The impulses I1 and I2

result from compressions and extensions of these six springs over the shot period.
Let kn and kz be the stiffnesses of the n and z springs with original values k̄n and k̄z, respectively.

The u and w springs at p have the same stiffness whose ratio to k̄n is determined by the material
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Figure 13: Integrating the models for multiple and compliant impacts.

properties of the cue tip and the ball. The x- and y-springs at q also have the same stiffness with a
ratio to k̄z determined by the material properties of the ball and the table. The two normal springs
vary their lengths at the rates

ṅ = n̂ · v1 and ż = ẑ · v2. (54)

The cue-ball and the ball-table impacts are each described by a copy of the compliant impact
model (see Jia 2012). Each copy is completely characterized by the coefficient of friction and the
ratio of the normal stiffness to the tangential stiffness at the same contact. The sliding velocities
of p and q in their respective contact tangent planes are (cf. Figure 12) v1 − ṅn̂ − u̇û− ẇŵ and
v2− żẑ−ẋx̂− ẏŷ. If one of the sliding velocities is zero, the corresponding contact sticks; otherwise,
the contact slips. Mode analysis can be performed for each contact based on the energies stored by
its normal and tangential springs. The rates u̇, ẇ, ẋ, and ẏ of changes in length of the tangential
springs are updated based on the contact modes. The tangential impulse is updated as a function
of the accumulating normal impulse. Details of the procedure for such update can be found in Jia
(2012). The output from each compliance model includes the derivatives of the tangential impulses
Iu and Iw (or, Ix and Iy) with respect to the normal impulse In (or Iz).

Denote by en and ez the coefficients of restitution for the cue-ball and ball-table impacts,
respectively. The normal stiffness kn (or kz) scales up by a factor of 1/e2

n (or 1/e2
z) every time

the corresponding normal impact finishes compression. Its ratio to the tangential stiffness at the
contact needs to be scaled up by the same factor.

Figure 13 illustrates integration of the models for multiple impacts and compliant impact with
dynamics and contact kinematics. We apply the multiple impact model to compute accumulations
of the two normal impulses In and Iz. It is responsible for generating the state sequence. The shot
by the cue stick has four states: S1, during which both the cue-ball and the ball-table impacts are
active; S2, during which only the ball-table impact is active; S3, during which only the cue-ball
impact is active; and S4, the final state. The shot starts with S1 and ends with S4. The state
transition diagram has the same structure21 as that depicted in Figure 4 except for respective

21The diagram now is even simplified because the coefficients of restitution for both impacts are non-zero (and the
contact stiffnesses are finite and non-zero).
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replacements of v1 − v2 and v2 with the normal velocity components ṅ and ż. A cue-ball impact is
in compression when ṅ < 0. A ball-table impact is in compression when ż < 0.

In a state, the primary impulse is the variable that drives the entire system. All tangential
impulses are eventually functions of the primary impulse in the state.

8.2 Algorithm for Simulating a Billiard Shot

Algorithm 1 simulates a billiard shot via numerical integration. On line 7, update of the strain
energies En and Ez stored by the two normal springs proceeds according to the derivative (5) of
the strain energy stored by a single impact with respect to impulse, or more specifically here,

dEn

dIn
= −ṅ and

dEz

dIz
= −ż. (55)

Line 13 tests if the cue-ball impact is active. If so, lines 14–17 calls upon its compliant impact
model to determine the contact mode and evaluate the derivatives of the two tangential impulses
at the contact. Lines 21–24 handles the situation where the ball-table impact is active. Lines 7–12,
28–29, and 32 are carried out by the introduced multiple impact model.

Below we explain initialization of a state in line 3. The single-impact states S2 and S3 need
not be initialized, because the impulse derivative dIn/dIz or dIz/dIn inherits its value from the
previous state S1, and so do the strain energies and the active contact modes.

State S1 either is the first state or follows one of S2 and S3. If S1 is the first state, dIz/dIn

has the initial value zero by (29). Let δ be the step size of numerical integration (over either In

or Iz) used in Algorithm 1. So we determine the value ρ of dIz/dIn at In = δ. Use the compliant
impact model to determine whether the initial cue-ball contact sticks or slips, and along with it,
the derivative

dI1

dIn
(δ) = n̂ +

dIu

dIn
(δ)û +

dIw

dIn
(δ)ŵ.

Initially, I2 is dominated by I1, and thus ignored in obtaining the ball-table contact velocity
using (52). Apply the same initialization approach from Section 4.2:

ρ =
dIz

dIn
(δ) =

√

kz

kn
·
√

Ez(δ)

En(δ)
,

where En(δ) and Ez(δ) are in terms of I1(δ) (with I2(δ) ignored in comparison) via one step
numerical integration over In and Iz, respectively. This will set up a quadratic equation in ρ. Solve
it for ρ. We approximate Iz(δ) ≈ ρIn(δ) = ρδ and use the compliant impact model to obtain Ix(δ)
and Iy(δ), and thus I2(δ).

If S1 succeeds S3, that is, the ball-table impact is reactivated during the cue-ball impact, we
can estimate dIz/dIn similarly as in the above case, except plugging in the values of En, v1, v2,
and dI1/dIn at the transition point

If S1 succeeds S2, that is, the cue-ball impact is reactivated during the ball-table impact, suppose

the transition S2 → S1 happens at Iz = I
(0)
z . By ignoring the ball-ball impulse compared with the

ball-table impulse just after S1 starts, we can solve for dIn/dIz at I
(0)
z + δ from another quadratic

equation.
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Algorithm 1 Billiard Shot

1: state s← S1

2: while not S4 do
3: initialization
4: while state s do
5: update cue and ball velocities according to impact dynamics (48)–(50)
6: update contact velocities according to contact kinematics (51)–(52)
7: update strain energies using In and Iz according to (55)
8: if s = S3 or s is the initial state or (s = S1 and previous state is S3) then
9: dIz/dIn ←

√

kzEz/knEn

10: else
11: dIn/dIz ←

√

knEn/kzEz

12: end if
13: if s 6= S2 then
14: update strain energies stored by the u- and w-springs
15: determine cue-ball contact mode
16: evaluate dIu/dIn and dIw/dIn

17: update Iu and Iw via one-step integration
18: increment In

19: end if
20: if s 6= S3 then
21: update strain energies stored by the x and y-springs
22: determine ball-table contact mode
23: evaluate dIx/dIz and dIy/dIz

24: update Ix and Iy via one-step integration
25: increment Iz

26: end if
27: update I1 and I2 according to (53)
28: if any active impact ends compression or restitution then
29: update impact phase
30: end if
31: end while
32: s← next state according to the transition diagram in Figure 4
33: end while
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9 Experiments

In this section, we will first validate the ball-ball-table collision model described in Sections 3–7
using an experiment with two ping pong balls. Then we will compare measurements from a real
massé shot with predictions by Algorithm 1 that integrates the multiple impact model and the
compliant impact model.

9.1 Collision of Ping Pong Balls Against Plexiglass Surface

As shown in Figure 14(a), a ping pong ball B1 was dropped by hand onto another one B2 resting on
a plexiglass block. The two balls were identical with mass 0.00023kg and radius 0.019m. The block
was placed horizontally on the marker tray of a (vertical) office whiteboard, and against a vertical
axis ℓ drawn on the board. Both balls were positioned almost in contact with the whiteboard so
the line through their centers was as close to be parallel to ℓ as possible.

To measure the coefficient e2 of restitution between a ball and the plexiglass surface, we dropped
the ball from certain height h1 onto the surface and recorded the rebounding height h2 (on the
axis by human vision). So e2 =

√

h2/h1 after ignoring air resistance. Sixteen measurements from
different drop heights generated a mean estimate of 0.846529 with a standard deviation of 0.020827.
To measure the coefficient e1 of ball-ball restitution, both balls were hanged by parallel threads
at the same height (like two pendula) and a distance of twice the radius apart so the balls are in
contact. Next, one ball was raised to a height of h3 relative to the other one while its attached
thread was kept straight.22 Then it was released, colliding with the other ball, which reached a
height of h4. We obtained e1 =

√

h4/h3. The mean value of e1 calculated over eleven different
dropping heights was 0.950043 with standard deviation 0.0125718.

We could not get a good measure of the stiffness k1 between the two ping pongs or the stiffness
k2 between the ping pong and the plexiglass. We know that the ratio k2/k1 > 1 since the plexiglass
is considerably stiffer.

A collision trial involved dropping B1 from a fixed height onto B2 multiple times, and choosing
the one with the highest rebounds of both balls23. The velocity v0 of B1 before the collision and the
ball velocities v1 and v2 after the collision were calculated from the heights reached by the balls.

Results from ten trials, each with a different dropping height, are plotted in Figure 14(b) as pairs
of points (−v0,i, v1,i) and (−v0,i, v2,i), 0 ≤ i ≤ 9 for the guessed value k2/k1 = 2.25, where v0 varies
from v0,0 = −2.02014m/s to v0,9 = −3.59304m/s. Also shown are two lines of v1 and v2 predicted
by the multiple impact model as v0 varies from −2m/s to −3.6m/s. (The ratios v1/v0 and v2/v0

are invariants to v0 under Theorem 5.) In Figure 14(c), the same data points are plotted against
model predictions with k2/k1 = 2.7. The model generated the same state sequence 〈S1, S3, S4〉 in
all trials.

In (b), the model predictions had the best match with the data over v1; while in (c), the model
predictions did over v2 (except for the two outliers v2,0 and v2,9). Overall, (c) represents a better
match. Despite the rather primitive setup and measurements, the results suggest a reasonably good
match between our model and the physical collision process.

22For more accuracy, the horizontal distance of each ball at its maximum height to its resting position was measured,
and the height was calculated from this distance.

23thus the balls were the closest to be vertically aligned before the collision.
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Figure 14: (a) Collision between two ping pong balls and a plexiglass surface (from a video capture); (b)
results from 10 trials (dots) vs. predictions (lines) by the impact model (with guessed value k2/k1 = 2.25);
and (c) match with k2/k1 = 2.7.

9.2 A Massé Billiard Shot

To experimentally validate Algorithm 1, we designed a (manual) mechanical cue (see Figure 15(a)).
It was constrained to linear motions by ball bearings embedded inside an aluminum block. A small
flat aluminum piece attached to the other end of the cue stick served as a trigger which, connected
to the aluminum block via two identical springs, could be pulled and then released to execute a
shot on the cue ball. The block rested on an adjustable incline so the cue stick can hit the ball
from a wide range of directions.

The cue together with the trigger weighed mc = 0.5018kg. The cue ball had radius R = 0.0305m
and weight m = 0.01701kg. The two springs24 had stiffness ks = 353.756N/m and initial stretches
of ∆x0 = 0.011m. A ruler was fastened to the back side of the aluminum block to measure their

changes in length ∆x after the pulling. The cue hit the ball at speed
√

2ks(∆x2 −∆x2
0)/mc.

The coefficient of restitution e2 for a ball-table impact was measured by dropping a ball onto
the table and recording its drop height and bounce height, similarly to the measurement method in
Section 9.1 for a ping pong ball. The average value calculated from drops at four different heights
was e2 = 0.51625. The coefficient of restitution e1 between the cue and the ball was measured in
a similar way by dropping the ball onto an identical cue tip resting bottom-up on a hard surface.
Our estimate was 0.656532.

We taped four object balls (of the same material as the cue ball) from the top so they would
slide together. Then tilted the pool table until the balls started sliding. The coefficient µs of sliding
friction was calculated as the slope of the tilted table (µs = 0.152479).

We let the cue ball roll down a slope of height h set up on the pool table, and measured how far
it would continue on the table. The ball velocity right at the bottom of the slope was calculated
from the height of the slope. Then the coefficient µr of rolling friction was estimated from the
rolling distance d on the table due to the deceleration of −5

7µrg under friction, where g > 0 is

24model no. 9564K376 from McMaster-Carr, Inc.
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Figure 15: (a) Adjustable billiard shooter using springs and ball bearings (embedded). Setup for a massé
shot: (b) side view; and (c) top-down view.

the gravitational acceleration.25 It is easy to derive that µr = 7h/(5d). The calculated value was
0.0209727.

The coefficient of friction between the cue and the ball can be as high as 0.7 depending on the
amount of chalk (Cross). We used the value 0.7 in the experiment.

The relative stiffnesses were set as k2/k1 = 0.8, η2
1 = 7, and η2

2 = 10. Here, k2/k1 is the ratio
between the normal stiffnesses at the ball-table and cue-ball contacts, η2

1 and η2
2 the ratios between

the normal and tangential stiffnesses at the cue-ball and ball-table contacts, respectively. Unable
to measure these three parameters, we had to guess their values. The felt was softer than the cue
tip but not by too much because of the hard surface of the table underneath it. So we chose k2/k1

to be less than one but not by too much. The cue-ball contact likely had less tangential compliance
than the ball-table contact, so we set η1 < η2.

A massé shot was performed. Figure 15 (b) and (c) present two different views of the pre-shot
configuration. The cue stick tilted at an angle of φ = 2

5π with the pool table. Its projection
onto the table formed an angle of θ = 0.465762 with the negative x-axis which was aligned with
a table edge. The cue tip hit at a location on the cue ball with measured outward normal n =
(0.480151,−0.102889, 0.871131). Before the shot, the springs were stretched by ∆x = 0.079m due
to the hand pull. Based on the mechanical model for the shooter, we calculated that the cue tip
hit the ball at the speed vc = 3.089095m/s.

After the massé shot, the cue ball slid along a parabolic trajectory before rolling along a straight
trajectory to halt. A video of the shot was taken by a Cannon PowerShot SD7901S digital camera
at 30 frames/s. The video was sequenced at the same frame rate, and in each frame, the ball’s center
was measured manually. Figure 16(a) plots the positions (dots) of the ball’s center every 1/30th of
a second during the motion. Also shown are the trajectory fit over these positions along with the
parabola, and the line on which the ball had moved. Note that the leftmost dot represents only
the last position before the ball exited the camera’s field of view. In Jia et al. (2011b), an involved
analysis is presented for the trajectory of a billiard given its initial velocity and angular velocity,

25The deceleration of a rolling ball is derived as equation (16) in Jia et al. (2011b).
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Figure 16: Billiard trajectories related to the massé shot in Figure 15: (a) recovered trajectory via fitting
over ball positions sampled at 30Hz from the shot video; (b) trajectory extended from (a) were it not ended
by the cushion on the pool table; (c) predicted trajectory by the integrated impact model (η2

1 = 7); and (d)
a bundle of trajectories as the cue-ball compliance increases with η1.

along with an algorithm to recover these two velocities given a billiard trajectory. Applying the
algorithm, we estimated the velocities of the cue ball immediately after the shot to be

v̄ = (−1.67063,−0.274431, )T and ω̄ = (28.4584, 79.1561, )T . (56)

Their z-components, on the other hand, could not be recovered because they did not affect the
trajectory.

Figure 16(b) shows the free ball trajectory (at a different scale) that would have resulted from
the ball velocities (56). The actual ball trajectory ended earlier due to a collision with the table
cushion.

Using the measured physical parameter values, our integrated impact model predicts the post-
shot ball velocities to be

ṽ = (−1.67629,−0.075349, 0.637937)T and ω̃ = (40.3064, 83.6145,−15.4927)T . (57)
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The state sequence is 〈S1, S2, S4〉. The ball trajectory that would have been generated by these
velocities is shown in Figure 16(c). It looks quite similar to the reconstructed trajectory in (b).
Comparing (56) and (57), the (dominating) x-components of the two velocities are very close to
each other and so are the (dominating) y-components of the two angular velocities.

Figure 16(d) displays a bundle of trajectories predicted by the combined impact model as the
stiffness ratio η2

1 at the cue-ball contact increases discretely from 2 to 7. Accordingly, the tangential
stiffness decreases, or equivalently, the tangential compliance increases at the contact. With small
compliance (η2

1 = 2 or 3), the ball would slide with a right turn, and the resulting trajectory would
differ significantly from the one captured by the camera shown in part (a). When η2

1 is 4 or above,
the ball would slide to the left, and its trajectory would look more and more like the real one. This
shows the role of tangential compliance in modeling the actual parabolic trajectory generated by
the massé shot. The dependence of a massé shot on large compliance is consistent with our practice
of putting chalk on the cue tip before this type of shot.

In order to generate a parabolic trajectory as shown in the video, there has to be an enough
amount of tangential impulse to impart the spinning of the ball about its traveling direction.
Such an amount could not be provided by contact friction alone or generated under Poisson’s
hypothesis.26

10 Discussion and Future Work

The introduced state transition diagram breaks down a three-body frictionless collision with two
contact points into a state sequence generated from four states (with repeats). A transition from
one state to another happens when either an impact finishes restitution or an inactive contact is
reactivated because the two engaged objects are approaching each other again.

Every contact is associated with an energetic coefficient of restitution. The impact at this
contact is related to that at another contact differentially according to their relative stiffness and
the ratio between their stored strain energies. As a result, the impact may go through multiple
rounds of compression and restitution. The above aspects are the same as those of the impact
model introduced by Liu et al. (2008; 2009), though impulse growth was not characterized in that
work. Such characterization becomes prominent for detecting contact modes (slip and stick) in
the presence of friction and compliance so the whole physical process can be accurately described.
Another distinction is that our model increases the contact stiffness by a factor of 1/e2 every time
compression ends. Additionally, we have shown that the growth of impulse is along a bounded curve
that is first order continuous, and proved that any state sequence either terminates or converges.

The same ball-ball-table collision problem was also treated in (Glocker and Pfeiffer 1995) based
on the Poisson restitution under a linear complementarity formulation. The result was, however,
not quite satisfactory. The ball-ball impulse had to be enlarged in an ad hoc fashion to prevent
ball penetration. Simulation yielded an unnatural outcome where the two balls would bounce up
in contact if the value of the coefficient of restitution did not exceed 0.5.

Though the multiple impact model in Sections 3–7 considers central impacts, Section 8 demon-
strates that it is readily applicable to an eccentric impact. Objects of arbitrary geometry complicate
only the dynamics and contact kinematics that set up the impact equation (3), but not modeling
of multiple concurrent impacts themselves.

26from the first author’s own failed attempts between 2007 and 2011.
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Algorithm 2 Frictional Multibody Collision with Tangential Compliance

1: state s← S1

2: while not end of collision do
3: initialization
4: while state s do
5: update object and contact velocities based on dynamics and contact kinematics
6: for each contact do
7: update the strain energy stored by the normal spring
8: update the strain energies stored by the two tangential springs
9: determine the contact mode using the above three strain energies

10: update normal and tangential impulses
11: if the impact ends compression or restitution then
12: update the impact phase
13: end if
14: end for
15: increment the primary normal impulse
16: end while
17: s← next state according to the (extended) multiple impact model
18: end while

For n ≥ 3 contact points, states can still be defined according as which impacts are instan-
taneously active and which are not. Though there could be up to 2n states, many of them may
not occur in the collision. We can generate the transition diagram on the fly, starting with the
initial state where all contacts are active. A transition leads to either a new state or to an already
generated state. Expansion of the transition diagram stops as soon as the end state with no active
contacts is reached. The impulse curve will be n-dimensional.

Algorithm 2 describes how the multiple impact model, extended for more than two contacts, can
be combined with multiple copies of the compliant impact model to solve a general simultaneous
multibody collision problem. At a contact, the normal contact velocity is used for updating the
strain energy stored by the normal spring, just like in (55).

Further investigation needs to be conducted to abstract out state evolution and transition
templates, and to find the range for the number of contacts to which this model is applicable
in practice. Measuring relative contact stiffness is important for real application of the model.27

Upgrade and better design of hardware will improve accuracy in validation. Other issues worthy
of exploration include area contact and gravity (when impact has a non-negligible duration).

If the time periods of multiple impacts have little overlaps so their correlations are weak, we
may opt for more efficient methods such as impact sequencing (Chatterjee and Ruina 1998). If the
impacts are synchronized on compression and restitution, we may use LCP (Glocker and Pfeiffer
1995; Stewart and Trinkle 1996).

Since a frictionless contact force acts in the direction of the outward normal, this imposes a
unilateral constraint during multiple impacts. In the control theory, it is known that a system of
differential equations with unilateral constraints could be very sensitive to small perturbations in
the input and round-off errors in numerical simulation, and have discontinuity in its solution.28

27A formula for (nonlinear) Hertz contact is known (Zhao et al. 2008; Nguyen and Brogliato 2012).
28Brach (2007) used the Design of Experiments method to examine the sensitivity of planar impact (particularly in
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Our impact system fits in this category. In the future, we hope to understand more about its
sensitivities to physical parameters including mass, coefficients of friction and restitution, stiffness
ratios, and the configuration of collision.

A longer-term objective is to design a robot able to play billiards with human-level skills. To
our knowledge, none of the developed systems (Moore et al. 1995; Long et al. 2004; Ho et al. 2007)
execute shots by exploiting the underlying mechanics, or exhibit human-like shooting skills.

The state transition diagram adds a flavor of computer science to impact problems. The model
is applicable to manipulation and mobile robot tasks, in situations where multiple collisions occur.
It also has potential impact in computer graphics on dynamic simulation of collisions over which
little physics-based work (Baraff 1993; Mirtich and Canny 1995) is known.
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[8] Boothroyd G and Redford AH (1968) Mechanized Assembly: Fundamentals of Parts Feeding,
Orientation, and Mechanized Assembly. London: McGraw-Hill Inc.

[9] Boulanger G (1939) Sur le choc avec frottement des corps non parfaitement élastiques. Revue
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A Geometry of the Impulse Bounding Ellipse

We rewrite the ellipse equation (42) into the standard form of a conic:

aI2
1 + 2bI1I2 + cI2

2 + 2dI1 + 2fI2 + h = 0,

where

a =
1

2
+

1

2m2
, b = − 1

2m2
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2m2
, d = −1

2
, and f = h = 0.

To determine the type of conic, let us evaluate the following determinant:
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Since A 6= 0, the curve is of second order. Next, we obtain
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Thus, the curve is an ellipse, which has the canonical form (Harris and Stocker, p. 394):

u2

(

2 + m2 −
√

4 + m2
2

)

/

2
+

w2

(

2 + m2 +
√

4 + m2
2

)

/

2
= 1. (58)

The positive square roots of the above two terms are respectively the semi-minor and semi-major
axes of the ellipse.

To determine the orientation of the ellipse, suppose a rotation of the I1-I2 coordinate frame
through θ would result in an x-y coordinate frame whose two axes are parallel to those of the
ellipse. We have I1 = x cos θ − y sin θ and I2 = x sin θ + y cos θ. Substitute the above expressions
into the ellipse equation (42). The quadratic term xy must vanish, that is, its coefficient 1

2 sin(2θ)+
1

m2
cos(2θ) = 0. This yields tan(2θ) = − 2

m2
. Thus, the ellipse in the impulse plane has undergone

a rotation given in (43).
Next, we determine the center (ξ, η) of the ellipse in the impulse plane. If we replace I1 with

I1−ξ and I2 with I2−η in the ellipse equation (42), the coefficients of I1 and I2 in the new equation
must vanish. This results in two conditions:

2

(

1

2
+

1

2m2

)

ξ − 1

m2
η − 1 = 0,

1

m2
(η − ξ) = 0.

The linear system has solution ξ = η = 1. Hence, the ellipse is centered at (1, 1). See Figure 5.
In (42), I1 ≥ 0 following that the first two terms are non-negative. Since (I1− I2)

2 ≥ 0, we also
infer from the same equation 1

2I2
1 − I1 ≤ 0, which implies that I1 ≤ 2. So the ellipse is defined over

[0, 2]. The two points (0, 0) and (2, 2) are the points of tangency of the vertical lines I1 = 0 and
I1 = 2 to the ellipse, respectively.

To find out the range of I2 on the ellipse, we view I2 as an implicit function of I1 defined by (42).
Differentiating the equation with respect to I1 gives us

dI2

dI1
= 1 +

m2(I1 − 1)

I1 − I2
.

At the highest and lowest points of the ellipse, the above derivative vanishes, yield I2 = I1 (1 + m2)−
m2. Substitute the above into (42), obtaining two roots: I1 = 1± 1√

1+m2
. Hence the corresponding

values: I2 = 1±
√

1 + m2. They locate two horizontal tangent lines of the ellipse.

B Proof of Lemma 10 on Minimum Impulse Growth in State S1

This appendix proves the lower bounds for minimum accumulation of the ball-ball impulse or the
ball-table impact in state S1 when it starts with one ball at some negative velocity and the other
at some non-positive velocity.

Proof There are three cases: a) S1 begins the collision; b) S1 starts after S3 with upper ball

velocity v
(0)
1 < 0; and c) S1 starts after S2 with lower ball velocity v

(0)
2 < 0. We will establish that

both impacts are in compression under condition (46) in cases a) and b), and under condition (47)
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in case c). Consequently, S1 cannot end because it must end with restitution according to the
transition diagram in Figure 4.

Case a) Note that v
(0)
1 = −1, ∆I1 = I1, and ∆I2 = I2. So condition (46) becomes

I1 ≤
1

1 + 1
m2

(

1 + k2
k1

) . (59)

The first end of compression of any impact happens in the start state S1 when the impulse curve
crosses either of the two compression lines ℓ1 and ℓ2. Within the state, the ball-ball impulse I1 is
the variable while the ball-table impulse I2 and the strain energies E1 and E2 stored at the two
contacts are functions. The state begins with I1 = I2 = 0 and E1 = E2 = 0. Equations (13)
and (14) give us the initial energy derivatives:

dE1

dI1

∣

∣
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= 0. (61)

Since the compression line ℓ1 defined by (16) has positive slope 1 + m2 (see Figure 6(a)), the
point of crossing by the impulse curve must have its abscissa greater than m2/(1+m2), the abscissa
of the intersection of ℓ1 and the I1-axis. Thus, the ball-ball impact is during compression if

I1 ≤
m2

1 + m2
(62)

Compression of the ball-table impact ends (before a state transition) only if dE2/dI2 = 0, or
equivalently, I1 = I2 after collision starts. Since dI2/dI1 has initial value zero by (29), the condition
I1 = I2 will not be satisfied until after dI2/dI1 = 1. The latter condition, according to (15), is
equivalent to k1E1 = k2E2 or E1 = (k2/k1)E2. Since dE1/dI1 > (k2/k1)dE2/dI1 at I1 = 0 by (60)
and (61), E1 > (k2/k1)E2 will remain true before

dE1

dI1
=

k2

k1
· dE2

dI1
=

k2

k1
· dE2

dI2
· dI2

dI1
.

Substitutions of (13)–(15) along with v0 = −1 and m1 = 1 into the above yields

−
(

−1 +

(

1 +
1

m2

)

I1 −
1

m2
I2

)

=
k2

k1
· I1 − I2

m2
·
√

k2

k1
·
√

E2

E1

=
1

m2
·
(

k2

k1

)3/2

·
√

E2

E1
· (I1 − I2).

Solving for I1 in terms of I2 and then setting I2 = 0, we infer that dE1
dI1

> k2
k1
· dE2

dI1
holds when

I1 ≤ 1

/

(

1 +
1

m2
+

(k2/k1)
3/2

m2

√

E2

E1

)

. (63)
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When condition (63) holds, E2/E1 ≤ k1/k2, which implies

1

/

(

1 +
1

m2
+

(k2/k1)
3/2

m2

√

E2

E1

)

≥ 1

/(

1 +
1

m2
+

k2

m2k1

)

.

Thus, (59) is a stronger sufficient condition than (63).
Tracing back the reasoning steps, we have right after the collision starts:

(59) ⇒ (63) ⇒ k2
dE2

dI1
< k1

dE1

dI1

⇒ k2E2 < k1E1 ⇒
dI2

dI1
< 1

⇒ I2 < I1 ⇒
dE2

dI2
> 0 by (14)

⇒ the ball-table impact in compression.

Since the inequality (59) also implies inequality (62), we conclude that restitution of neither impact
could start as long as (59) holds. The state does not end.

Case b) State S1 starts right after state S3 ends. The ball-ball impact has not finished
restitution while the ball-table impact is just starting compression. So E1 > 0, E2 = 0, and

∆I1 = ∆I2 = 0. Since v
(0)
1 < 0 (as stated in the lemma) and v

(0)
2 = 0, the rate of change in length

of the ball-ball spring is ẋ1 < 0 by (7). Hence the ball-ball impact is in compression. We substitute
the impulse and energy values into the energy derivatives (20) and (22) because of compression,
obtaining the initial energy derivatives

dE1

dI1

∣

∣

∣

I
(0)
1

= −v
(0)
1 and

dE2

dI2

∣

∣

∣

I
(0)
2

= 0.

Since the current state starts with E1 > E2 = 0, k2(dE2/dI1) < k1(dE1/dI1) still implies k2E2 <
k1E1. The rest of the proof parallels that of case a), where the inference steps near the end would
carry over after replacement of condition (59) with condition (46) in the first step.

Case c) State S1 starts right after state S2 ends. The condition v
(0)
2 < 0 implies that the

ball-table impact has not finished restitution. The ball-ball impact is starting compression. At the

transition, E2 > 0, E1 = 0, and ∆I1 = ∆I2 = 0. Also, v
(0)
1 = v

(0)
2 = h for some h < 0 at the

transition S2 → S1. Clearly, the ball-table impact is in compression. Since v2 is increasing, the
ball-ball impact goes into compression immediately. Substituting (18) and (19) into (7) and (8),
we have the rates of length changes of the two virtual springs:

ẋ1 =

(

1 +
1

m2

)

∆I1 −
1

m2
∆I2 and ẋ2 = h +

1

m2
(∆I2 −∆I1).

The two impacts are in compression as along as ẋ1 ≤ 0 and ẋ2 ≤ 0, which are true if the following
two conditions together hold:

∆I1 ≤ 1

1 + m2
∆I2, (64)

∆I2 ≤ −m2h. (65)
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Below we derive a condition on ∆I2 that will satisfy (64).
Section 4.2 showed that dI1/dI2 = 0 at the transition S2 → S1. Applying a sequence of

reasoning steps similar to the one listed in the end of the proof for case a), we have that, after S1

starts:

∆I1 ≤
1

1 + m2
∆I2 ⇐ dI1

dI2
≤ 1

1 + m2

⇐ k1E1 ≤
1

(1 + m2)2
· k2E2

⇐ dE1

dI2
≤ k2

k1(1 + m2)2
· dE2

dI2
. (66)

In the state, the energy derivatives with respect to I2 follow from (20), (22), and (24), with v
(0)
1 =

v
(0)
2 = h:

dE1

dI2
=

dE1

dI1
· dI1

dI2
=

(

−
(

1 +
1

m2

)

∆I1 +
1

m2
∆I2

)

·
√

k1E1

k2E2
,

dE2

dI2
= −

(

h +
1

m2
(∆I2 −∆I1)

)

.

We substitute the above derivatives into the last inequality in (66):

(

−
(

1 +
1

m2

)

∆I1 +
1

m2
∆I2

)

·
√

k1E1

k2E2
≤ − k2

k1(1 + m2)2

(

h +
1

m2
(∆I2 −∆I1)

)

. (67)

Next, divide both sides by
√

k1E1/k2E2. Move all the terms involving ∆I2 to the left hand
side, while all the terms involving ∆I1 to the right hand side. After merging, the coefficients of
∆I1 and ∆I2 are positive. Then we remove the term of ∆I1, obtaining a condition over ∆I2 that
implies condition (67):

∆I2 ≤ −
h
(

k2
k1

)3/2
·
√

E2
E1
· 1

(1+m)2

1
m2

+ 1
m2

(

k2
k1

)3/2
·
√

E2
E1
· 1

(1+m)2

= − m2h

1 + (1 + m2)2
√

E1
E2
·
(

k1
k2

)3/2
. (68)

Because (68) implies E1/E2 < k2/(k1(1+m2)
2) from the steps of reasoning in (66), we can substitute

k2/(k1(1 + m2)
2) for E1/E2 into the right hand side of (68) and get a condition that implies it:

∆I2 ≤ − m2h

1 + k1
k2

(1 + m2)

= − m2v
(0)
2

1 + k1
k2

(1 + m2)
. (69)

The inequality (69) also implies (65). Thus, it guarantees both impacts to be in compression.
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