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Abstract

Industrial assembly involves sensing the pose (orientation and position) of a part.
Efficient and reliable sensing strategies can be developed for an assembly task if the
shape of the part is known in advance. In this article we investigate two problems of
determining the pose of a polygonal part of known shape for the cases of a continuum
and a finite number of possible poses respectively.

The first problem, named sensing by inscription, involves determining the pose of a
convex n-gon from a set of m supporting cones. An algorithm with running time O(nm)
that almost always reduces to O(n+m log n) is presented to solve for all possible poses
of the polygon. We prove that the number of possible poses cannot exceed 6n, given
m ≥ 2 supporting cones with distinct vertices. Simulation experiments demonstrate
that two supporting cones are sufficient to determine the real pose of the n-gon in
most cases. Our results imply that sensing in practice can be carried out by obtaining
viewing angles of a planar part at multiple exterior sites in the plane.

On many occasions a parts feeder will have reduced the number of possible poses
of a part to a small finite set. Our second problem, named sensing by point sampling,
is concerned with a more general version: finding the minimum number of sensing
points required to distinguish between n polygonal shapes with a total of m edges.
In practice this can be implemented by embedding a series of point light detectors
in a feeder tray or by using a set of mechanical probes that touch the feeder at a
finite number of predetermined points. We show that this problem is equivalent to
an NP-complete set-theoretic problem introduced as Discriminating Set, and present
an O(n2m2) approximation algorithm to solve it with a ratio of 2 ln n. Furthermore,
we prove that one can use an algorithm for Discriminating Set with ratio c log n to
construct an algorithm for Set Covering with ratio c log n + O(log log n). Thus the
ratio 2 ln n is asymptotically optimal unless NP ⊂ DTIME(npoly log n), a consequence
of known results on approximating Set Covering. The complexity of subproblems of
Discriminating Set is also analyzed, based on their relationship to a generalization
of Independent Set called 3-Independent Set. Finally, simulation results suggest that
sensing by point sampling is mostly applicable when poses are densely distributed in
the plane.
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Figure 1: Geometric sensing of an 8-gon. (a) The case of a continuum of possible poses: Four
incidence constraints p1, p2, l1 and l2 suffice to determine the pose. (b) The case of a finite number
(three) of possible poses: Only the containment of two points q1 and q2 must be checked to determine
the real pose.

1 Introduction

Sensing a part involves determining both its shape and pose. By pose we mean the position
as well as the orientation of the part. Prior to selecting a sensing method, we often will make
some assumptions about the shape of the part to be sensed. The resulting sensing method
is affected greatly by what is known about the shape. For instance, without making any
assumptions, we might not even be able to start segmentation of the part image, whereas
knowing that the shape is convex polygonal, we can employ some simple non-vision technique
such as finger probing. An effective sensing method should make use of its knowledge about
the part shape as much as possible to attain simplicity, efficiency, and robustness.

Parts in many assembly applications are manufactured to high precisions, so we can
make the assumption that their shapes are known reasonably well in advance. Accordingly,
the design of sensing strategies should be based on the geometry of parts. The task of
sensing reduces to obtaining enough geometric constraints that, when combined with the part
geometry, suffice to derive the part poses. Consequently, minimizing the necessary geometric
constraints becomes very important for reducing the sensing complexity. In this article, we
propose two approaches for sensing polygonal parts in known shapes, one applicable to a
continuum of possible poses and the other applicable to finite possible poses.

Perhaps the simplest geometric constraint on a polygon is incidence—when some edge
touches a fixed point or some vertex is on a fixed line. For instance, Figure 1(a) shows
an 8-gon constrained by two points p1, p2 and two lines l1, l2. The question we want to
ask is: Generally, how many such constraints are necessary to fix the polygon in its real
position? Note that any two such incidence constraints will confine all possible positions
to a locus curve which consists of a finite number of algebraic curves parameterized by the
part’s orientation. Three constraints, as long as not defined by collinear points or concurrent
lines, will allow only a finite number of valid poses. These poses occur when different locus
curves, each given by a pair of constraints, intersect at the same orientations. An upper
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bound on the number of possible poses can be analyzed. The addition of a fourth constraint
is usually enough to reduce this number to one—the real pose.

If all incidences are given by lines, sensing can be viewed as inscribing the polygon into
a larger polygon (not necessarily bounded) defined by these lines; if all constraints are given
by points, sensing can be viewed as placing the polygon defined by these points into the
sensed polygon.

Point constraints can be created by “probing” the polygon along various directions with
a tactile sensor or a range finder. Line constraints can be obtained with an angular sensor
scanning across the object at exterior sites. In Section 2 we study the case of sensing with
line constraints only, offering a very efficient algorithm to solve for all possible poses. We
derive a tight upper bound on the number of poses given three line constraints and conduct
experiments to show that four line constraints are practically enough to determine the real
pose.

The set of possible poses can often be reduced from a continuum to a finite number in
advance by planned manipulations such as pushing or squeeze-grasping, or by sensing from
geometric constraints as mentioned above. More specialized sensing methods can be devised
to distinguish between the remaining finite number of poses. We now view each pose as a
closed set of points in the plane occupied by the part in that pose, so that sensing becomes
distinguishing point sets, say, P1, . . . , Pn. An easy way is to sample several points, checking
which of them are contained by the current point set (the real pose). Suppose the same
8-gon is known to have only three possible poses, as shown in Figure 1(b), then the real pose
(shown with a solid line) can be determined by verifying that it contains both points q1 and
q2. This can be implemented in a number of different ways, for instance, by placing light
detectors underneath the point locations or by probing the point locations from above with
a robot finger.

In Section 3 we address the problem of distinguishing finite polygons by point sampling.
We prove that minimizing the total number of sampling points is NP-complete and offer an
approximation algorithm with greedy heuristic. The algorithm produces a set of sampling
points whose size is within a factor of 2 logn of the optimal. We also exhibit a proof
demonstrating the hardness of improving this approximation ratio.

2 Sensing by Inscription

2.1 The Inscription Problem

In this section we will study the problem of detecting the pose of a convex polygon in the
plane by taking views of the polygon from multiple exterior sites. The shape of the polygon
is assumed to be known in advance, but the pose of the polygon can be arbitrary. Each view
results in a cone formed by the two outermost occluding rays starting from the viewing site.
The cone in turn imposes a constraint on the possible poses of the polygon: the polygon
must be contained in the cone and make contact with both its sides. A containment in which
every edge of the containing object touches the contained object is called an inscription, so
we will say that the polygon is inscribed in the cone. Such constraints imposed by individual
views together allow only a small number of possible poses of the polygon, which often
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Figure 2: Sensing the pose of a polygon by taking two views.

reduces to one. For example, Figure 2 illustrates two views taken of a convex 6-gon P in
some unknown pose from sites o1 and o2, respectively: The two cones C1 and C2 thus formed
determine the real pose of P , and this pose can be solved using the algorithm presented later
in Section 2.2.4.

The above sensing approach appears to be simple, but to make it efficient and to minimize
the cost of sensing hardware, we would like to take as few views as possible. This leads us
to the main question of this section: How many views are sufficient in the general case in

order to determine the pose of a convex n-gon?1

The answer to the above question is “two”, and to argue this answer we will go through
several steps, each of which occupies a separate subsection: Section 2.2 describes how to
compute the set of possible poses for a convex polygon inscribed in multiple cones and de-
rives an upper bound on the number of possible poses for two-cone inscription in particular;
Section 2.3 empirically demonstrates that in spite of the upper bound, two cones turn out
to be sufficient in most cases to uniquely determine the pose of an inscribed polygon. Sec-
tion 4 further discusses the extensions of this method and proposes a general sensing scheme:
sensing by inscription.

2.1.1 Related Work

Canny and Goldberg (1992) have introduced a reduced intricacy in sensing and control
(RISC) paradigm that aims at improving the accuracy, speed and robustness of sensing by
coupling simple and specialized hardware with fast and task-oriented geometric algorithms.

The cross-beam sensing method developed in Wallack et al. (1993) finds the orientation
of a polygon (or polyhedron) by measuring its diameters along three different directions and
comparing the measurements with the precomputed diameter function (Goldberg and Mason

1It should be noted that there exist cases in which the pose of a convex n-gon cannot be uniquely
determined, no matter how many views are taken. This happens only if the polygon preserves self-congruence
over certain rotations. (It is not hard to see that in such a case the rotation angle must be a multiple of
2π

k
, where k is a positive integer that divides n.) However, all congruent poses are usually considered as the

same in the real applications.

5



1990); then it solves a vertex-line correspondence problem for the position of the polygon by
least squares fitting. This method essentially determines the pose by inscribing the polygon
in a hexagon constructed from the sensory data. The idea of characterizing shapes with
diameters and chords was also addressed earlier in Sinden (1985).

For the special case that the poses are finite, Rao and Goldberg (1993) present an effi-
cient method of placing a registration mark on the object so that the pose can be recognized
by locating the mark position with a simple vision system. For robustness to sensor im-
perfections, the marked point maximizes the distance between the nearest pair among its
possible locations. For the case that the number of parts is finite, Govindan and Rao (1994)
recognize a part with a modified parallel-jaw gripper by a sequence of grasp actions and di-
ameter measurements. Some negative results about this projection-based sensing approach
are revealed in Rao and Goldberg (1994).

Model-based recognition and localization can often be regarded as a constraint satisfac-

tion problem that searches for a consistent matching between sensory data (e.g., 2D) and
model(s) (e.g., 3D) based on the geometric constraints between them (Grimson 1990). Gas-
ton and Lozano-Pérez (1984) discuss how to identify and locate a polyhedron on a known
plane using local information from tactile sensors that includes the position of contact points
and the ranges of surface normals at these points. Motivated by an interpretation tree de-
veloped in Gaston and Lozano-Pérez (1984), Siegel (1991) determines the pose of an object
grasped by a hand, under a situation very close to inscription. Also using an interpretation
tree search, Kemmotsu and Kanade (1993) solve the pose of a polyhedra by matching a
set of 3D line segments, obtained by three light-stripe range finders, to model faces; then
the pose uncertainty is estimated using the covariance matrix of the endpoints of these line
segments. Chen (1991) uses a polynomial approach to solve for the line-to-plane correspon-
dences involved in pose determination. Based on a generalized Hough transform, Linnainmaa
et al. (1988) estimate the pose of a 3D object by matching point triples on the object to
possibly corresponding triples in the image.

In the meantime, a variety of polygon shape descriptors (Arkin et al. 1991; Mumford 1987)
have been analyzed theoretically and/or demonstrated experimentally to be efficient and
robust to uncertainties.

Geometric algorithms for sensing unknown poses as well as unknown shapes have also
been studied. Cole and Yap (1987) considered “finger” probing a convex n-gon (n unknown)
along directed lines and gave a procedure guaranteed to determine the n-gon with 3n probes.
This work was later extended by Dobkin et al. (1986), who investigated the complexity of
various models for probing convex polytopes in d-dimensional Euclidean space. Using a
more powerful probe model that returns not only the contact points but also the normals
at these points, Boissonnat and Yvinec (1992) showed how to compute the exact shape of
a simple polygon as long as some mild conditions about the shape are met. Li (1988) gave
algorithms of projection probing and line probing (similar to inscription) that perform the
numbers of probes that are both sufficient and necessary to determine a convex n-gon. Close
upper and lower bounds were derived in Lindenbaum and Bruckstein (1992) on the number
of composite probes to reconstruct a convex n-gon, where a composite probe comprises in
parallel several supporting line probes or finger probes.

The polygon containment problem, that is, deciding whether an n-gon P can fit into
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an m-gon Q under translations and/or rotations, has been studied by various researchers
in computational geometry (Chazelle 1983; Baker et al. 1986; Fortune 1985; Avnaim and
Boissonnat 1988). In the case where Q is convex, the best known algorithm runs in time
O(m2n) when both translations and rotations are allowed (Chazelle 1983). Here we will deal
with a special case of containment in which each edge of Q must touch P ; this constraint
causes a reduction of the running time to O(mn), or O(n+m logn) in practical situations.

2.2 Multi-Cone Inscription

To simplify the presentation, let us agree throughout Section 2.2 that all angles take values
in the half-open interval [0, 2π). In accordance with this agreement, any expression E on
angles equated with or assigned to an angle θ in formulas such as θ = E or θ ← E will
be regarded as “E mod 2π”, even though we do not mention so explicitly. (However, this
does not apply to conditions such as E1 = E2 where both sides are expressions on angles.)
Moreover, intervals for angle values whose left end points are greater than right end points
are allowed; for example, an interval [α, β], where 0 ≤ β < α < 2π, is understood as the
interval union [α, 2π) ∪ [0, β].

2.2.1 A Triangle Sliding in a Cone

We first deal with the case of a triangle in a cone, not only because it is the simplest, but
also because the case of a polygon, as we will see later, can be decomposed into subcases
of triangles. Let △p0p1p2 be a triangle inscribed in an upright cone C with angle φ and
vertex o, where 0 < φ < π, making contacts with both sides of the cone at vertices p1 and
p2 respectively. What is the locus of vertex p0 as edge p1p2 slides against the two sides of
the cone?

Two different situations can occur with this inscription: (1) p0 is outside △p1op2, and
(2) p0 is inside (only when 6 p1p0p2 ≥ φ)(Figure 3). Assume that △p0p1p2 may degenerate
into any one of its edges but not a point; writing α = 6 p0p2p1, β = 6 p0p1p2, r = |p0p2| and
s = |p1p2|, this degeneracy is taken into account by the following constraints:

0 ≤ α, β < π, s ≥ 0, and

{

r > 0, if s = 0 or α > 0;
0 ≤ r ≤ s, otherwise.

Let us set up a coordinate system with the origin at o and the y axis bisecting angle φ, as
shown in Figure 3. Then the orientation of △p0p1p2 can be denoted by the angle γ between
vector −−→p2p1 and the x axis. The range of valid γ values can be easily determined as

max(
π

2
+
φ

2
,
π

2
−
φ

2
+ α) ≤ γ ≤ min(

3π

2
−
φ

2
,
3π

2
+
φ

2
− β)

in case (1), and as γ = γ′ mod 2π in case (2), where

3π

2
+
φ

2
+ α ≤ γ′ ≤ 2π +

π

2
−
φ

2
− β.

For any valid γ, there exists a unique pose of the triangle in cone C; this allows us to
parameterize the locus (x, y) of p0 by γ.
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Figure 3: A triangle sliding in a cone. Vertices p1 and p2 move along the two sides of cone C.
The locus of p0 is an elliptic curve (possibly degenerating into a line segment) parameterized by the
angle γ between directed edge

−→
p2p1 and the x axis. There are two different cases: (a) p0 is above

edge p1p2; (b) p0 is below edge p1p2.

Cases (1) and (2) yield similar results differing only by a “+” or “−” sign, so we will
treat them together. We begin with writing out the following equations for the locus of p0:

x = r cos(γ − α)± |op2| sin
φ

2
;

y = r sin(γ − α) + |op2| cos
φ

2
,

where |op2|
s

=
∓ cos(γ∓φ

2
)

sinφ
. Here the notation “±” means “+” in case (1) and “−” in case (2)

and the notation “∓” means just the opposite. Several steps of manipulation on the above
equations plus a detailed subsequent analysis on the ranges of angles reveal the locus of p0

as described below.
Namely, as edge p1p2 slides in the cone, p0 traces out an elliptic curve C with implicit

equation
ax2 ± bxy + cy2 = d,

where

a = r2 − rs
sin(φ

2
∓ α)

sin φ

2

+
s2

2− 2 cosφ
;

b =
(2r cosα− s)s

sinφ
;

c = r2 − rs
cos(φ

2
∓ α)

cos φ

2

+
s2

2 + 2 cosφ
;

d =
(

r(r − s
sin(φ∓ α)

sinφ
)
)2
.
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Figure 4: A convex polygon P rotating in a cone. The pose of P is denoted by the position of vertex
p0 and the angle θ between directed edge

−→
p0p1 and the x axis. The space of orientations [0, 2π) is

partitioned into closed intervals, each defining an elliptic curve that describes the corresponding
locus of p0.

Furthermore, if the orientation γ changes monotonically within its range, p0 moves mono-

tonically along C except when C degenerates into a line segment. In that degenerate case, p0

moves along a segment of a line through the cone vertex o and with equation

{

cos φ

2
x ∓ sin φ

2
y = 0, if r = 0 (and thus α = 0);

cos(φ

2
∓ α) x ± sin(φ

2
∓ α) y = 0, if r 6= 0, s 6= 0, and r

s
= sin(φ∓α)

sin φ
,

crossing the same point at any two valid orientations γ1 6= γ2 with γ1 + γ2 = 2π ± φ when
the line segment assumes the first equation, or with γ1 + γ2 = 2π − φ + 2α in case (1) and
with γ1 + γ2 = 2α+ φ in case (2) when it assumes the second equation.

Interestingly, we observe that in case (1) if r 6= 0 and r
s

= sin(φ−α)
sinφ

, the second line

equation reduces to x = 0 when φ = 2α in case (1); but this reduction does not occur in case

(2) because r
s

= sin(φ+α)
sinφ

implies that 0 < φ+ 2α < 2π, thereby establishing sin(φ

2
+ α) > 0.

This observation reflects a small asymmetry between the two cases.

2.2.2 One-Cone Inscription

Now consider the case that a convex n-gon P with vertices p0, p1, . . . , pn−1 in counterclockwise
order is inscribed in a cone C. Let us choose the same coordinate system as in Section 2.2.1.
Then the pose of P is uniquely denoted by the locus of some vertex, say p0, and the angle
θ between the x axis and some directed edge, say −−→p0p1. Clearly, any orientation θ gives rise
to a unique pose of P ; so we can compute the locus of p0 as a function of θ over [0, 2π).
Let pl and pr be the two vertices currently incident on the left and right sides of cone C,
respectively (Figure 4). As long as pl and pr remain incident on these two sides, respectively,
the problem reduces to the case of △p0plpr sliding in cone C except that the locus of p0 (an
elliptic curve) now needs to be parameterized by θ, instead of γ, which we had used before.
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This is easy, for we observe that when pl 6= pr 6= p0,

γ =

{

θ + 6 p1p0pr + 6 p0prpl − π, if p0 is above edge plpr;
θ + 6 p1p0pl + 6 p0plpr − π, otherwise.

The three special cases pl = p0, pr = p0 and pl = pr can be handled by substituting π for
6 p1p0pr and 6 p1p0pr for 6 p0prpl for the first case, π for 6 p1p0pl and 6 p1p0pl for 6 p0plpr for
the second case, and 0 for 6 p0prpl (or 6 p0plpr) for the third case.

More observations show that the entire range [0, 2π) of orientations can be partitioned
into a sequence of closed intervals, within each of which the vertices pl and pr incident on
cone C are invariant.

We present a linear-time algorithm that computes the above orientation intervals as well
as the corresponding elliptic curves describing the locus of p0. The algorithm rotates the
polygon counterclockwise in the cone, generating a new interval whenever one (or both) of
the incident vertices pl and pr changes; the new incident vertex (or vertices) is determined by
a comparison between angle φ and the angle intersected by the two rays pl−1pl and prpr−1.

Let [θmin, θmax] denote the current interval, and let ϕi denote the interior angle 6 pi−1pipi+1

for 0 ≤ i ≤ n − 1. (For convenience, arithmetic operations performed on the subscripts of
vertices or internal angles are regarded as followed by a “modn” operation; for example,
p−1 is identified with pn−1 and pn with p0.) In the algorithm, Φleft and Φright keep track of
the angle between −−−→plpl+1 and −−→p0p1 and the angle between −−−→prpr+1 and −−→p0p1, respectively. The
algorithm proceeds as follows:

Algorithm 1

Step 1 Start at the pose such that edge p0p1 aligns with the right side of C. Locate the
vertex pi in contact with the left side of C. Set Φleft ←

∑n
j=l+1(π − ϕj), Φright ← 0,

θmin ←
π
2
− φ

2
, l ← i, and r ← 0.

Step 2 The current orientation interval has its left end point at θmin. Output the elliptic
curve (now parameterized by θ) resulting from sliding edge plpr in cone C.

Next determine the right end point θmax of the current interval. Let ψ be the angle
intersected by rays pl−1pl and prpr−1; set ψ ← nil if they do not intersect. There are
three different cases:

Case 1 ψ < φ or ψ = nil. [Advance pr clockwise to the next vertex.] Set Φright ←
Φright + π − ϕr, θmax ← Φright + π

2
− φ

2
, and r ← r − 1.

Case 2 ψ > φ. [Advance pl.] Set Φleft ← Φleft + π − ϕl, θmax ← Φleft + 3π
2

+ φ

2
, and

l ← l − 1.

Case 3 ψ = φ. [Advance both pl and pr.] Set Φleft ← Φleft + π − ϕl, Φright ←
Φright + π − ϕr, θmax ← Φleft + 3π

2
+ φ

2
, l ← l − 1, and r ← r − 1.

Output the current interval [θmin, θmax]. Set θmin ← θmax and repeat Step 2 until r
changes from 1 to 0.
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The number of intervals produced by the above algorithm cannot exceed 2n, because each
loop of Step 2 advances either pr to pr−1, or pl to pl−1, or both to pr−1 and pl−1, respectively,
and because there are 2n vertices in total (n each for pl and pr) to advance before returning
to the initial incident vertices p0 and pi.

We can easily apply the above algorithm for the general case in which the vertex of cone
C is at an arbitrary point (x0, y0) and the axis of the cone forms an angle θ0 with the y axis.
Each generated interval [α, β] now needs to be right-shifted to [α+θ0, β+θ0]. Let q = pr and
q′ = pl if p0 is above edge plpr, and let q = pl and q′ = pr otherwise. Then the corresponding
locus (x, y) of p0 is determined as, assuming pl 6= pr 6= p0,

x =
(

−|qp0| · cos 6 p1p0q + |plpr| · kc ·
sin(φ

2
∓ θ0)

sinφ

)

cos θ

+
(

|qp0| · sin 6 p1p0q − |plpr| · ks ·
sin(φ

2
∓ θ0)

sinφ

)

sin θ + x0;

y =
(

−|qp0| · sin 6 p1p0q ± |plpr| · kc ·
cos(φ

2
∓ θ0)

sin φ

)

cos θ

−
(

|qp0| · cos 6 p1p0q ± |plpr| · ks ·
cos(φ

2
∓ θ0)

sin φ

)

sin θ + y0,

where kc = cos( 6 p1p0q + 6 p0qq
′ − θ0 ∓

φ

2
) and ks = sin( 6 p1p0q + 6 p0qq

′ − θ0 ∓
φ

2
). Here “±”

and “∓” denote “+” and “−”, or “−” and “+”, according as p0 is above or below edge plpr.

2.2.3 Upper Bounds

The preceding subsection tells us that the set of possible poses for a convex polygon in-
scribed in one cone can be described by a continuous and piecewise elliptic curve defined
over orientation space [0, 2π). We call this curve the locus curve for the inscription. This
subsection will show that only finite possible poses exist for a convex n-gon P inscribed in
two cones, so long as the vertices of the cones do not coincide. An upper bound on the
number of possible poses can be obtained straightforwardly by intersecting two locus curves,
each resulting from the inscription of P in one cone.

Claim 1 There exist no more than 8n possible poses for a convex n-gon P inscribed in two

cones C1 and C2 with distinct vertices.

Proof. Let p0, . . . , pn−1 be the vertices of P in counterclockwise order; then a pose of P
can be represented by the location of p0 as well as the angle θ between directed edge −−→p0p1

and the x axis. Let C1(θ) and C2(θ) be the two locus curves for the inscriptions of P in cones
C1 and C2 respectively. We need only to show that C1 and C2 meet at most 8n times, that
is, they pass through common points at no more than 8n values of θ.

It is known that each Ci consists of at most 2n elliptic curves defined over a sequence of
intervals that partition [0, 2π). Intersecting these two sequences of intervals gives a partition
that consists of at most 4n intervals. Within each interval the possible orientations (hence
the possible poses) of P can be found by computing where the corresponding pair of elliptic
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curves meet. According to the last subsection, this pair of curves may be written in the
parameterized forms

(aix cos θ + bix sin θ + xi, aiy cos θ + biy sin θ + yi),

for i = 1, 2. Here (xi, yi) is the vertex of cone Ci, and aix, bix, aiy, biy are constants determined
by P and Ci. Using the condition (x1, y1) 6= (x2, y2), we suppose x1 6= x2 without loss of

generality, and let ∆ =
√

(a1x − a2x)2 + (b1x − b2x)2. Then it is not hard to show that these

two curves do not meet if |x1 − x2| > ∆. Otherwise they may meet only at

θ = β − α and θ = π − β − α,

where α=atan(a1x−a2x

∆
, b1x−b2x

∆
) and β=sin−1 x2−x1

∆
. 2

The upper bound 8n is not tight: A lower one can be obtained even without using two
cones to constrain the polygon. Notice in the proof above that the bound came from a
partition of orientation space [0, 2π) into up to 4n intervals that combined the individual
pose constraints imposed by the two cones. Therefore, an improvement on that bound must
require a different partitioning of [0, 2π). To see this, we regard each cone as the intersec-
tion of two half-planes and decompose its constraint on the polygon into two constraints
introduced by the half-planes independently.

A polygon P is said to be embedded in a half-plane h if P is contained in h and supported
by its bounding line. Thus, P is inscribed in a cone if and only if it is embedded in the
two half-planes defining the cone by intersection. Two cones with distinct vertices together
provide three or four half-planes, of which at least three have nonconcurrent bounding lines
(i.e., bounding lines that do not pass through a common point). Such three half-planes are
indeed enough to bound the number of possible poses of P within 6n.

Theorem 1 There exist no more than 6n possible poses for a convex n-gon P embedded in

three half-planes with nonconcurrent bounding lines; furthermore, this upper bound is tight.

Proof. Let l1, l2 and l3 be the bounding lines of the three half-planes respectively. We can
assume that these lines are not all parallel; otherwise it is easy to see that no feasible pose
for P exists. So suppose l1 and l2 intersect; their corresponding half-planes form a cone in
which P is inscribed. Let the orientation of P be represented by the angle θ between the
x axis and some directed edge of P . Then orientation space [0, 2π) is partitioned into at
most 2n intervals according to which pair of vertices are possibly on l1 and l2, respectively.
In the mean time, it is also partitioned into exactly n intervals according to which vertex
is possibly on l3. Intersecting the intervals in these two partitions yields a finer partition of
[0, 2π) that consists of at most 3n intervals, each containing orientations at which P is to be
supported by l1, l2, and l3 at the same three vertices.

Let us look at one such interval, and let pi, pj , and pk be the vertices of P on l1, l2, and l3,
respectively whenever a possible orientation exists in the interval. The possible orientations
occur exactly where l3 crosses an elliptic curve C(θ) traced out by pk when sliding pi and
pj on l1 and l2, respectively. Now we prove that this interval contains at most two possible
orientations. Note C does not degenerate into a point, because the case pi = pj = pk
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will never happen, given l1, l2 and l3 are not concurrent. Therefore, C is either an elliptic
segment monotonic in θ or a line segment that attains any point for at most two θ values
(Section 2.2.1). In both cases, it is clear that C crosses l3 for no more than two θ values.
Thus there are at most 6n possible poses in orientation space [0, 2π).

Appendix A gives an example in which a polygon can actually have 6n poses when
embedded in three given half-planes, thereby proving the tightness of this upper bound. 2

When two of the three nonconcurrent bounding lines are parallel, we can similarly derive
a less and tight upper bound 4n, using the same interval partitioning technique. We omit
the details of the derivation here.

Since any two cones with distinct vertices are formed by three or four half-planes with at
least three nonconcurrent bounding lines, and since embedding a polygon in three half-planes
with nonconcurrent bounding lines is equivalent to inscribing it in any two cones determined
by intersecting a pair of the half-planes, we immediately have

Corollary 1 There exist at most 6n possible poses for a convex n-gon inscribed in two cones

with distinct vertices, and this upper bound is tight.

Would more half-planes (or cones) further reduce the number of possible poses for an
embedded polygon to be asymptotically less than n? The answer is no. For example, an
embedded regular n-gon will always have kn possible poses, where 1 ≤ k ≤ 6, no matter how
many half-planes are present. The experimental results in Section 2.3 will show that two
cones (or four half-planes) are usually sufficient to determine a unique pose for the polygon.

2.2.4 An Algorithm for Inscription

With the results in the previous subsections, we here present an algorithm that computes
all possible poses for a convex n-gon P to be inscribed in m cones C1, . . . , Cm, where m ≥ 2.
(The vertices of these cones are assumed to be distinct.) Let p0, . . . , pn−1 be the vertices of
P in counterclockwise order.

Algorithm 2

Step 1 [Compute an initial set of poses w.r.t. two cones.] Solve for all possible poses of P
when inscribed in cones C1 and C2 (use Algorithm 1 and see the proof of Claim 1),
and let set S consist of the resulting poses (already sorted by orientation). Set i← 3.

Step 2 [Verify with the remaining cones.] If i = m+1 or S = ∅, then terminate. Otherwise
go to Step 3 if |S| = 1 or |S| = 2. Otherwise apply Algorithm 1 to generate the locus
curve Ci(θ) for the inscription of P in Ci. Sequentially verify whether each pose in S
is on Ci(θ), deleting from S those poses that are not. Set i← i+ 1 and repeat Step 2.

Step 3 [More efficiently verify one or two poses.] For each pose in S, let polygon P ′ be P
in that pose and do the following: For i ≤ j ≤ m, construct the supporting cone C ′

j

of P ′ at the vertex of cone Cj; if there exists some C ′
j that does not coincide with Cj,

then delete the corresponding pose from S.
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When the above algorithm terminates, set S will contain all possible poses for the inscrip-
tion. Corollary 1 shows that there are at most 6n poses in S after Step 1. Since the supporting
cone of P from a point can be constructed in time O(logn) using binary search (Preparata
and Shamos 1988), the running time of the algorithm is O((k−1)n+(m−k+1) logn) (i.e.,
O(mn) in the worst case), where k is the value of variable i when leaving Step 2. However,
the experiments in Section 2.3 will demonstrate that k = 3 almost always holds; hence Step 2
will almost never get executed more than once, reducing the running time to O(n+m logn).

Since a convex m-gon Q is naturally the intersection of m cones, each with a vertex
of Q as its vertex and with the internal angle at that vertex as its apex angle, we can
use Algorithm 2 to compute all possible inscriptions of P in Q with the same time cost.
This problem shall be called the polygon inscription problem, which can be regarded as
another version of multi-cone inscription because the intersection of multiple cones is always
a polygon (possibly unbounded or empty).

2.3 Experiments

The first set of experiments were conducted to find out how many possible poses usually
exist for a polygon embedded in three half-planes with nonconcurrent bounding lines. The
results are summarized in Table 1.

# tests data # poly vertices # possible poses
source range mean range mean

10,000 10 sq. 3–9 5.9376 1–16 5.5436
10,000 10 cir. 3–9 6.1208 2–16 5.7006
1,000 100 sq. 6–19 11.917 2–16 7.242
1,000 100 cir. 10–22 15.108 2–24 10.012
1,000 1000 sq. 11–24 18.43 2–18 7.84
1,000 1000 cir. 23–43 33.595 2–60 18.709
1,000 cir. mar. 3–15 8.98 2–14 4.537

Table 1: Experiments on embedding a polygon in three half-planes.

Seven groups of convex polygons were tested. The first six groups consisted of convex
hulls generated over 10, 100, and 1000 random points successively and for each number in
two kinds of uniform distributions: inside a square and inside a circle, respectively. It can
be seen in the table that the polygons in these groups had a wide range (3–43) of sizes
(i.e., numbers of vertices), but their shapes were not arbitrary enough, approaching either
a square or a circle when large numbers of random points were used. So, we introduced
the last group of data, which consisted of polygons generated by a method called circular

march, which outputs the vertices of a convex polygon as random points inside a circle in
counterclockwise order. The size of a polygon in this group was randomly chosen between 3
and 15.

14



Given a convex polygon, three supporting lines, each bounding a half-plane on the side of
the polygon, were generated according to the uniform distribution; namely, with probability
π−ϕi

2π
, each line passed through vertex pi with internal angle ϕi. An additional check was

performed to ensure that these lines were not attached to the same vertex of the polygon.
The number of possible poses for the polygon to be embedded in these generated half-planes
was then computed, and the summarized results for all group are listed in the last two
columns of the table.

Table 1 tells us that three half-planes are insufficient to limit all possible poses of an
embedded polygon to a unique one, namely, the real pose; in fact the table suggests that a
linear (in the size of the polygon) number of possible poses will usually exist. We can see
in the table that despite the appearances of cases with one or two possible poses, the ratio
between the mean of numbers of possible poses and mean polygon size lies in the approximate
range 0.43–0.93, decreasing very slowly as the mean polygon size in a group increases. These
results tend to support a conjecture that in the average case there exist O(n) possible poses
for a convex n-gon embedded in three half-planes with nonconcurrent bounding lines.

The above conjecture may be very difficult to prove. However, a plausible explanation
for the experimental results can be sought. Recall, a polygon with three half-planes defines
a partition of orientation space [0, 2π) into at most 3n intervals, each containing orientations
that would allow the same three incident vertices whenever a possible pose exists at that
orientation. The feasible orientations in each interval occur when one supporting line crosses
the locus curve of its associated incident vertex. The locus curve results from moving the
other two incident vertices along their supporting lines. As these curves (for all intervals)
may often cluster together, the likelihood that they get crossed O(n) times in total by the
first supporting line is quite large. This happened particularly often during the experiments
when a vertex coincided with an intersections of two supporting lines (Figure 5).

The purpose of the second set of experiments was to study how many poses usually exist
for a convex polygon inscribed into two or more cones with distinct vertices. We first tested
with two cones using the same source of random data generated in the way we did for the
first set of experiments, and the results are shown in Table 2. Since a polygon was always

# tests data # poly vertices # possible poses
source range mean range mean

10000 10 sq. 3–10 5.9493 1–2 1.036
10000 10 cir. 3–10 6.1113 1–2 1.0117
1000 100 sq. 6–18 12.002 1–2 1.01
1000 100 cir. 9–21 15.138 1–1 1
1000 1000 sq. 10–26 18.073 1–2 1.002
1000 1000 cir. 26–45 33.665 1–2 1.003
1000 cir. mar. 3–15 9.009 1–2 1.106

Table 2: Experiments on inscribing polygons with two cones.

generated inside a square (circle), the cone vertices were chosen as random points uniformly
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Figure 5: Eight possible poses for a convex 6-gon bounded by three supporting lines (as taken
from a sample run). The first one represents the real pose whose supporting lines as shown were
generated randomly; the remaining seven represent all other poses consistent with the supporting
line constraints. Notice in this example that three of the eight poses occurred when a vertex of the
polygon coincided with an intersection of two supporting lines.

16



distributed between this boundary and a larger square (circle). The ratio between these two
squares (circles) was set uniformly to be 1

2
for all seven groups of data.

In contrast to Table 1, Table 2 tells us that two cones allow a unique pose of an inscribed
polygon in most cases. In each group of tests, only cases with one or two poses occurred,
and the mean of possible poses stayed very close to 1, independent of the mean polygon size.
(It is not hard for us to see that the percentage of two-pose cases was very low, in the range
of 0% to 3.6% for the first six groups of data. The 10.6% for the seventh group was a bit
high but expected, because polygons generated by circular march were more likely to be in
a certain shape that would often incur two possible poses, as we will discuss later.)

Tests were also conducted with 3–10 cones on reproduced data of four of the seven groups,
while the other experiment parameters were kept the same. As shown in Table 3, the means
of possible poses did not decrease dramatically as compared to those in Table 2. Finally,

# tests data # poly vertices # possible poses
source range mean range mean

10000 10 sq. 3–10 5.95 1–2 1.0056
1000 100 sq. 6–19 11.901 1–1 1
1000 1000 sq. 10–27 18.26 1–1 1
1000 cir. mar. 3–15 8.96 1–2 1.022

10000 10 sq. 3–10 5.9587 1–2 1.1158
10000 10 sq. 3–10 5.9741 1–2 1.1738

Table 3: More experiments on inscribing polygons with cones. The first four groups of data
were tested with a random number (between 3 and 10) of cones; the last two groups were tested
with two cones with vertices chosen from wider ranges—the ratio between the two squares (circles)
determining the range of cone vertices was set to 1

5 and 1
10 respectively for these two groups.

we repeated the first group of tests with two cones but chose their vertices from two wider
ranges (with the previous ratio 1

2
replaced by ratios 1

5
and 1

10
, respectively), and the results

are shown in the last two rows of the same table.
The experimental result that two nonincident cones usually allow a unique pose of an

inscribed convex n-gon P has in fact a very intuitive explanation. As mentioned before,
two such cones generally provide four half-planes, some three of which will limit the number
of possible poses of P to at most 6n. Let polygons P1, . . . , Pm, where m ≤ 6n, represent
P in all possible poses, respectively, when embedded in the these three half-planes; then
those Pi corresponding to the final possible poses must be supported by the bounding line
l of the fourth half-plane. So the probability that a two-pose case occurs is no more than
the probability that l passes through a vertex of Pi and a vertex of Pj, for i 6= j. Note
the vertices of P1, . . . , Pm together occupy Θ(mn) points in the plane in general, only one of
which must lie on l. If no two of these vertices coincide, the probability that l passes through
two vertices of different polygons is zero (assuming that l is independent of the other three
bounding lines), which means that a two-pose case almost never occurs in this situation.
Otherwise suppose two vertices of Pi and Pj, respectively, are at the same point p for some
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Figure 6: Two possible poses for a convex 6-gon inscribed in two cones (as taken from a sample
run). The two cones are supporting the polygon at a pair of vertices.

i 6= j; then the probability that l passes through p is Θ( 1
nm

). This is Θ( 1
n2 ) in the average

case, as suggested that m = Θ(n) by the first set of experiments. Since in the usual case
there exist only a constant number of such coincident vertex pairs, the probability Θ( 1

n2 ) is
an approximate upper bound on how often two-pose cases occur. This bound turns out to
be consistent with the percentages of two-pose cases in Table 2.

It was observed during the experiments that a large number of two-pose cases occurred
when both cones happened to be supporting the polygon at the same pair of vertices (Fig-
ure 6). The two possible orientations differed by π, and each supporting vertex in one pose
coincided with the other in the other pose. This situation often happened when the distance
between one pair of vertices of the polygon was much larger than the distance between any
other pair of vertices, or when the sites were far away from the polygon (as evidenced by the
high percentages of two-pose cases in the last two groups of tests in Table 3).

3 Sensing by Point Sampling

3.1 The Point Sampling Problem

Often the possible poses in which a part settles on the assembly table are not of a contin-
uum but of a small number, either reduced by a parts feeder or limited by the mechanical
constraints imposed by a sequence of planned manipulations. See the tray-tilting method
(Erdmann and Mason 1988) and the squeeze-grasping method (Brost 1988) for examples
of the latter case. These facts together allow the implementation of more effective sensing
mechanisms. The efficiency of such sensing mechanisms depends on both the time cost of
the physical operations and the time complexity of the algorithms involved. Consequently,
minimizing one or both of these two factors has become an important aspect of sensor design.

To illustrate the goals of this section, consider a polygonal part resting on a horizontal
assembly table. The table is bounded by vertical fences at its bottom left corner, as shown
in Figure 7. Pushing the part toward that corner will eventually cause the part to settle
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(a)

(b)

Figure 7: Sensing by point sampling. (a) The 12 possible stable poses of an assembly part
after pushing, along with 4 sampling points (optimal by Lemma 1) found by our implementation
of the approximation algorithm to recognize these poses, where dashed line segments are fences
perpendicular to the plane. (b) The planar subdivision formed by these poses that consists of 610
regions.
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in one of the 12 stable poses listed in the figure. (Note that to reach a stable pose, both
fences must be in contact with some vertices of the part, while at least one fence must be
in contact with no less than two vertices.) To distinguish between these 12 poses, the robot
has marked 4 points on the table beforehand, so it can infer the pose from which marks are
covered by the part and which are not.2

The above “shape recovery” method is named sensing by point sampling, as a loose
analogy to the reconstruction of band limited functions by sampling on a regular grid in
signal processing. To save the expense of sampling, the robot wants to mark as few points
as possible. The problem: How to compute a minimum set of points to be marked so that

parts of different types and poses can be distinguished from each other by this method?

3.1.1 Related Work

Orienting mechanical parts was early studied by Grossman and Blasgen (1975). They used a
vibrating box to constrain a part to a small finite number of possible stable poses and then de-
termined the particular pose by a sequence of probes using a tactile sensor. Natarajan (1987)
examined a similar strategy of detecting the orientations of polygonal and polyhedral objects
with an analysis of the numbers of sensors sufficient and necessary for the task.

More recent related work includes Belleville and Shermer (1993) and Arkin et al. (1993a).
Belleville and Shermer (1993) show that the problem of deciding whether k line probes are
sufficient to distinguish a convex polygon from a collection of n convex polygons is NP-
complete. This result is very similar to our Theorem 3. A variation of the line-probing
result in Belleville and Shermer (1993) would give us the point sampling result of Theorem 3.
Arkin et al. (1993a) prove a similar result as well, namely, that the problem of constructing
a decision tree of minimum height to distinguish among n polygons using point probes is
NP-complete. This result holds even if all the polygons are convex. Arkin et al. (1993a) also
exhibit a greedy approximation algorithm for constructing such a decision tree. This result
is similar to our approximation algorithm of Section 3.4, with a similar ratio bound. The
difference is that our greedy algorithm seeks to minimize the total number of probe points
rather than the tree height.3

Closely related work includes the research by Romanik and others on geometric testability
(Romanik 1992; Romanik and Salzberg 1992; Arkin et al. 1993b). Their research develops
strategies for verifying a given polygon using a series of point probes. Moreover, the research
examines the testability of more general geometric objects, such as polyhedra, and develops
conditions that determine whether a class of objects is (approximately) testable.

A number of researchers have looked at the problem of determining or distinguishing
objects using finger probes. Finger probing is closely related to sensing by point sampling,

2This can be implemented in multiple ways, such as placing light detectors in the table; probing at the
points; or if the robot has a vision system, taking a scene image and checking the corresponding pixel values.

3It is easy to give an example for which a minimum height decision tree uses more than minimum number
of total probes, while a decision tree with minimum number of total probes does not attain the minimum
height. Consider the problem of discriminating sets {a, b, a′, e′}, {a, a′}, {b, b′, d′}, {c, b′}, {d, c′}, and ∅,
which can be viewed as probing a collection of polygons by the later transformation technique in the proof
of Theorem 3. The decision tree using minimum probes a, b, c, d always has height 4, and the decision tree
using probes a′, b′, c′, d′, e′ can achieve minimum height 3.
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as indicated by our discussion of Belleville and Shermer (1993). For a more extensive survey
of probing problems and solutions, see Skiena (1989).

There would seem to be connections between our work and the concept of VC-dimension
often used in learning theory. For instance, in this section we develop the notion of a
“discriminating set” to distinguish different polygons. The concept of a discriminating sets
bears some resemblance to the idea of shattered sets associated with VC-dimension. However,
discriminating sets and shattered sets are different. A minimum discriminating set is the
smallest set of points that uniquely identifies every object in a set of objects, whereas VC-
dimension is the size of the largest set of points shattered by the set of objects. Thus, the
VC-dimension of a finite class gives a lower bound on the size of a minimum discriminating
set. For dense polygon distributions, the two cardinalities may be the same, namely, log n,
where n is the number of polygons. For sparsely distributed polygons, the two cardinalities
are different. For instance, the VC-dimension can be 1, while the minimum discriminating
set has size n− 1 (Figure 8).

Finally, the work described in this section is part of our larger research goal to under-
stand the information requirements of robot tasks. Related work includes the sensor design
methodology of Erdmann (1993) and the information invariants of Donald et al. (1993).
Erdmann (1993) proposes a method for designing sensors based on the particular manipu-
lation task at hand. The resulting sensors satisfy a minimality property with respect to the
given task goal and the available robot actions. Donald et al. (1993) investigate the relation-
ship among sensing, action, distributed resources, communication paths, and computation
in the solution of robot tasks. That work provides a method for comparing disparate sensing
strategies, and thus for developing minimal or redundant strategies, as desired.

3.1.2 The Formal Problem

Consider n simple polygons P1, . . . , Pn in the plane, not necessarily disjoint from each other.
We wish to locate the minimum number of points in the plane such that no two polygons
Pi and Pj, i 6= j, contain exactly the same points. To avoid ambiguities in sensing, we
require that none of the located points lie on any edge of P1, . . . , Pn. The planar subdivision
formed by P1, . . . , Pn divides the plane into one unbounded region, some bounded regions
outside P1, . . . , Pn, called the “holes”, and some bounded regions inside. (For example, the
12 polygons in Figure 7(a) form the subdivision in Figure 7(b) that consists of 610 regions,
none of which is a hole.) Immediately we make two observations: (1) Points on the edges
of the subdivision, in the interior of the unbounded region, or in “holes” do not need to be
considered as locations; and (2) for each bounded (open) region inside some polygon, only
one point needs to be considered.

Let Ω denote the set of bounded regions in the subdivision that are contained in at least
one of P1, . . . , Pn. Each polygon Pi, 1 ≤ i ≤ n, is partitioned into one or more such regions;
we write ω ⊑ Pi when a region ω is contained in polygon Pi. A region basis for polygons
P1, . . . , Pn is a subset ∆ ⊆ Ω such that

{ω | ω ∈ ∆ and ω ⊑ Pi } 6= {ω | ω ∈ ∆ and ω ⊑ Pj },

for 1 ≤ i 6= j ≤ n; that is, each Pi contains a distinct collection of regions from ∆. A region
basis ∆∗ of minimum cardinality is called a minimum region basis. Thus, the problem of
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Figure 8: Two examples whose minimum region basis sizes achieve the lower bound ⌈log n⌉ and the
upper bound n−1, respectively. Bounded regions in the examples are labelled with numbers. (a) For
1 ≤ i ≤ n polygon, Pi is defined to be the boundary of the union of regions ⌈log n⌉+1, . . . , ⌈log n⌉+i,
and all regions k with 1 ≤ k ≤ ⌈log n⌉ such that the kth bit of the binary representation (radix 2)
for i − 1 is 1. Thus, ∆∗ = {1, 2, . . . , ⌈log n⌉}. (b) The polygons P1, . . . , Pn contain each other in
increasing order: ∆∗ = {2, 3, . . . , n}.

sensing by point sampling becomes the problem of finding a minimum region basis ∆∗. We
will call this problem Region Basis and focus on it throughout the section. The following
lemma gives the upper and lower bounds for the size of such ∆∗.

Lemma 1 A minimum region basis ∆∗ for n polygons P1, . . . , Pn satisfies ⌈logn⌉ ≤ |∆∗| ≤
n− 1.

Proof. To verify the lower bound ⌈log n⌉, note that each of the n polygons must contain
a distinct subset of ∆∗; so n ≤ 2|∆

∗|, the cardinality of the power set 2∆∗

.
To verify the upper bound n− 1, we incrementally construct a region basis ∆ of size at

most n−1. This construction is similar to Natarajan (1987)’s Algorithm 2. Initially, ∆ = ∅.
If n > 1, without loss of generality, assume P1 has the smallest area. Then there exists some
region ω1 ∈ Ω outside P1. Split {P1, . . . , Pn} into two nonempty subsets, one including those
Pi containing ω1 and the other including those not; and add ω1 into ∆. Recursively split
the resulting subsets in the same way, and at each split, add into ∆ its defining region (as
we did with ω1) if this region is not already in ∆, until every subset eventually becomes a
singleton. The ∆ thus formed is a region basis. Since there are n− 1 splits in total and each
split adds at most one region into ∆, we have |∆| ≤ n− 1. 2

Figure 8 gives two examples for which |∆∗| = ⌈log n⌉ and |∆∗| = n − 1, respectively.
Therefore these two bounds are tight.

We can view all the bounded nonhole regions as elements of Ω and all the polygons
P1, . . . , Pn as subsets of Ω. Then a region basis ∆ is a subset of Ω that can discriminate
subsets P1, . . . , Pn by intersection. Hence the Region Basis problem can be rephrased as:
Find a subset of Ω of minimum size whose intersections with any two subsets Pi and Pj,
1 ≤ i 6= j ≤ n, are not equal. The general version of this set-theoretic problem, in which
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Ω stands for an arbitrary finite set and P1, . . . , Pn stand for arbitrary subsets of Ω, we call
Discriminating Set. We have thus reduced Region Basis to Discriminating Set, and the
former problem will be solved once we solve the latter one.

Let us analyze the amount of computation required for the geometric preprocessing to
reduce Region Basis to Discriminating Set. Letm be the total size of P1, . . . , Pn (i.e., the sum
of the number of vertices each polygon has); trivially m ≥ 3. Then the planar subdivision

these polygons define has at most s vertices, where 3 ≤ s ≤
(

m

2

)

. By Euler’s relation
on planar graphs, the number of regions and the number of edges are upper bounded by
2s − 4 and 3s − 6, respectively. So we can construct the planar subdivision either in time
O(m logm + s) using an optimal algorithm for intersecting line segments by Chazelle and
Edelsbrunner (1992), or in time O(s logm) using a simpler plane sweep version by Nievergelt
and Preparata (1982). To obtain the set of regions each polygon contains, we need only to
traverse the portion of the subdivision bounded by that polygon, which takes time O(s). It
follows that the reduction to Discriminating Set can be done in time O(m logm + ns), or
O(nm2) in the worst case.

Here is a short summary of the structure of the rest of Section 3: Section 3.2 proves
the NP-completeness of Discriminating Set; based on this result, Section 3.3 establishes an
equivalence between Discriminating Set and Region Basis, hence proving the latter problem
NP-complete; Section 3.4 presents an O(n2m2) approximation algorithm for Region Basis
with ratio 2 lnn and shows that further improvement on this ratio is hard; Section 3.5 closes
up the complexity analysis of various subproblems of Discriminating Set and introduces a
family of related NP-complete problems called k-Independent Sets; the simulation results
in Section 3.6 show that sensing by point sampling is mostly applicable for dense pose
distributions in the plane. We have implemented our approximation algorithm and have
tested it on both real data taken from mechanical parts and random data extracted from
the arrangements of random lines. The algorithm works very well in practice.

3.2 Discriminating Set

Given a collection C of subsets of a finite set X, suppose we want to identify these subsets just
from their intersections with some subset D ⊆ X. Thus, D must have distinct intersection
with every member of C; that is,

D ∩ S 6= D ∩ T, for all S, T ∈ C and S 6= T.

We call such a subset D a discriminating set for C with respect to X. From a different point
of view, each element x ∈ D can be regarded as a binary “bit” that, to represent any subset
S ⊆ X, gives value 1 if x ∈ S and value 0 otherwise. In such a way D represents an encoding
scheme for subsets in C.

Below we show that the problem of finding a minimum discriminating set is NP-complete.
As usual, we consider the decision version of this minimization problem:

Discriminating Set (D-Set)
Let C be a collection of subsets of a finite set X and l ≤ |X| a non-negative integer. Is there
a discriminating set D ⊆ X for C such that |D| ≤ l?
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Our proof of the NP-completeness for D-Set uses a reduction from Vertex Cover (VC), which
determines if a graph G = (V,E) has a cover of size not exceeding some integer l ≥ 0 (i.e.,
a subset V ′ ⊆ V that, for each edge (u, v) ∈ E, contains either u or v). The reduction is
based on a key observation that for any three finite sets S1, S2, and S3,

S1 ∩ S2 6= S1 ∩ S3 if and only if S1 ∩ (S2△S3) 6= ∅,

where △ denotes the operation of symmetric difference (i.e., S2△S3 = (S2 \S3)∪ (S3 \S2)).

Theorem 2 Discriminating Set is NP-complete.

Proof. That D-Set ∈ NP is trivial.
Next we establish VC∝P D-Set; that is, there exists a polynomial-time reduction from VC

to D-Set. Let G = (V,E) and integer 0 < l ≤ |V | be an instance of VC. We need to construct
a D-Set instance (X,C) such that the collection C of subsets of X has a discriminating set
of size l′ or less if and only if G has a vertex cover of size l or less.

The construction uses the component design technique described by Garey and John-
son (1979). It is rather natural for us to begin by including every vertex of G in set X, and
assigning each edge e = (u, v) a subset S(e) in C that contains at least u and v; in other
words, we have V ⊂ X and

{u, v} ⊂ S(e) ∈ C, for all e = (u, v) ∈ E.

To ensure that any discriminating set D for C contains at least one of u and v from subset
S(e), we add an auxiliary subset Ae into C that consists of some new elements not in V , and
in the meantime define

S(e) = {u, v} ∪ Ae.

Hence S(e)△Ae = {u, v}; and D ∩ {u, v} 6= ∅ follows directly from D ∩ S(e) 6= D ∩ Ae.
Since any discriminating set D′ for {Ae | e ∈ E } can also distinguish between S(e1) and
S(e2) and between S(e1) and Ae2

for any e1, e2 ∈ E and e1 6= e2, D
′ unioned with a vertex

cover for G becomes a discriminating set for C. Conversely, every discriminating set D for
C can be split into a discriminating set for {Ae | e ∈ E } and a vertex cover for G.

The m = |E| auxiliary subsets should be constructed in a way such that we can easily
determine the size of their minimum discriminating sets in order to set up the entire D-Set
instance. There is a simple way: We introduce m elements a1, a2, . . . , am 6∈ V into X and
define subsets Ae, for e ∈ E, to be

{a1}, {a2}, . . . , {am},

where the order of mapping does not matter. It is clear that there are m minimum discrim-
inating sets for the above subsets: {a1, . . . , am} \ {ai}, 1 ≤ i ≤ m.

Setting l′ = l +m− 1, we have completed our construction of the D-Set instance as

X = V ∪ {a1, . . . , am}; a1, . . . , am /∈ V ;

C = {S(e) | e ∈ E } ∪ {Ae | e ∈ E }.
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The construction can be carried out in time O(|V | + |E|). We omit the remaining task of
verifying that G has a vertex cover of size at most l if and only if C has a discriminating set
of size at most l +m− 1. 2

One thing about this proof is worthy of note. All subsets in C constructed above have
at most three elements. This reveals that D-Set is still NP-complete even if |S| ≤ 3 for all
S ∈ C, a stronger assertion than Theorem 2. The subproblem where all S ∈ C have |S| ≤ 1
is obviously in P, for an algorithm can simply count |C| in linear time and then answer “yes”
if l ≥ |C| − 1 and “no” if 0 ≤ l < |C| − 1. For the remaining case in which all S ∈ C have
|S| ≤ 2, we will prove in Section 3.5 that the NP-completeness still holds. However, the
proof will be a bit more involved than the one we just gave under no restriction on |S|.

3.3 Region Basis

Now that we have shown the NP-completeness of D-Set, the minimum region basis cannot
be computed in polynomial time through the use of an efficient algorithm for D-Set, because
no such algorithm would exist unless P = NP. This conclusion, nevertheless, leads us to
conjecture that the minimization problem Region Basis is also NP-complete. Again we
consider the decision version:

Region Basis (RB)
Given n polygons P1, . . . , Pn and integer 0 ≤ l ≤ n− 1, does there exist a region basis ∆ for
the planar subdivision Ω formed by P1, . . . , Pn such that |∆| ≤ l?

The condition 0 ≤ l ≤ n − 1 above is necessary because we already know from Lemma 1
that a minimum region basis has size at most n− 1.

Consider a mapping F from the set of RB instances to the set of D-Set instances that
maps regions to elements and polygons to subsets in a one-to-one manner. Every RB instance
is thus mapped into an equivalent D-Set instance, as pointed out in Section 3.1. We claim
that F is not onto. Suppose F were onto. Then the elements of each subset in a D-Set
instance must correspond to regions in some RB instance. The union of these regions must
be a polygon, and this polygon must map to the subset given in the D-Set instance. However,
this is not always possible. Consider a D-Set instance generated from a nonplanar graph such
that each edge is a subset containing its two vertices as only elements. No RB instance can
be mapped to such a D-Set instance. For if there were such an RB instance, the geometric
dual of the planar subdivision it defines would contain a planar embedding for the original
nonplanar graph. This is an impossibility, and hence we have a contradiction.

Thus, the set of RB instances constitutes a proper subset of the set of D-Set instances; in
other words, RB is isomorphic to a subproblem of D-Set. Therefore, the NP-completeness
of RB does not follow directly from that of D-Set established earlier. Fortunately, however,
D-Set has an equivalent subproblem that is isomorphic to a subproblem of RB under F .
That isomorphism provides us with the NP-completeness of Region Basis.

Theorem 3 Region Basis is NP-complete.

Proof. That RB ∈ NP is easy to verify, based on the fact mentioned in Section 3.1 that
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Figure 9: Two reductions from Discriminating Set to Region Basis.

the number of regions in the planar subdivision is at most quadratic in the total size of the
polygons.

Let (X,C) be a D-Set instance, where

X = {x1, x2, . . . , xm};

C = {S1, S2, . . . , Sn} ⊆ 2X .

Without loss of generality, we make two assumptions

n
⋃

i=1

Si = X and
n
⋂

i=1

Si = ∅,

because elements contained in none of the subsets or contained in all subsets can always
be removed from any discriminating set of (X,C). Now add in a new element a /∈ X and
consider the D-Set instance (X ∪ {a}, C ′), where C ′ = {Si ∪ {a} | 1 ≤ i ≤ n }. Clearly
(X ∪ {a}, C ′) and (X,C) have the same set of irreducible discriminating sets,4 and hence
they are considered equivalent.

The planar subdivision defined by the constructed RB instance for (X ∪ {a}, C ′) takes
the configuration shown in Figure 9(a): A rectangular region is divided by a horizontal
line segment into two identical regions among which the bottom region is named ω(a);
the top region is further divided, this time by vertical line segments, into 2m − 1 identical
regions among which the odd numbered ones, from left to right, are named ω(x1), . . . , ω(xm),
respectively. Remove those m−1 unnamed regions on the top. For 1 ≤ i ≤ n, define polygon
Pi to be the boundary of the union of all regions ω(x), x ∈ Si ∪ {a}. It should be clear that
Pi is indeed a polygon; and the two assumptions guarantee that P1, . . . , Pn form the desired
subdivision. Note that the subdivision consists of m + 1 rectangular regions and 4m + 2
vertices. All can be computed in time Θ(m), given the coordinates of the four vertices of
the bounding rectangle. Thus, the reduction takes time Θ(

∑n
i=1 |Si|).

It is clear that C has a discriminating set of size l or less if and only if there is a region
basis of the same size for P1, . . . , Pn. Hence we have proved the NP-completeness of RB. 2

4A discriminating set D is said to be irreducible if no subset D′ ⊂ D can be a discriminating set.
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The above proof implies that we may regard Discriminating Set and Region Basis as
equivalent problems. Note that the polygons P1, . . . , Pn in Figure 9 are not convex; will
Region Basis become P when all the polygons are convex? This question is answered by the
following corollary.

Corollary 2 Region Basis remains NP-complete even if all the polygons are convex.

Proof. This proof is the same as the proof of Theorem 3 except that we use the planar
subdivision shown in Figure 9(b). (The vertices of the subdivision partition an imaginary
circle (dotted line in the figure) into 2n equal arcs.) 2

3.4 Approximation

Sometimes we can derive a polynomial-time approximation algorithm for the NP-complete
problem at hand from some existing approximation algorithm for another NP-complete prob-
lem by reducing one problem to the other. In fewer cases, where the reduction preserves

the solutions, namely, every instance of the original problem and its reduced instance have
the same set of solutions, any approximation algorithm for the reduced problem together
with the reduction will solve the original problem. The problem to which we will reduce
Discriminating Set is Hitting Set:

Hitting Set
Given a collection C of subsets of a finite set X, find a minimum hitting set for C (i.e., a
subset H ⊆ X of minimum cardinality such that H ∩ S 6= ∅ for all S ∈ C).

Karp (1972) shows Hitting Set to be NP-complete by a reduction from Vertex Cover. The
reducibility from D-Set to Hitting Set follows a key fact we observed when proving Theorem 2:
The intersections of a finite set D with two finite sets S and T are not equal if and only if
D intersects their symmetric difference S△ T . Given a D-Set instance, the corresponding
Hitting Set instance is constructed simply by replacing all the subsets with their pairwise

symmetric differences. Thus, every discriminating set of the original D-Set instance is also
a hitting set of the constructed instance, and vice versa.

The approximability of Hitting Set can be studied through another problem, Set Covering:

Set Covering
Given a collection C of subsets of a finite set X, find a minimum cover for X (i.e., a
subcollection C ′ ⊆ C of minimum size such that

⋃

S∈C′ S = X).

This problem is also shown to be NP-complete by Karp (1972) using a reduction from Exact
Cover by 3-Sets. A greedy approximation algorithm for this problem due to Johnson (1974)
and Lovász (1975) guarantees to find a cover Ĉ for X with ratio

|Ĉ|

|C∗|
≤ H(max

S∈C
|S|) or simply

|Ĉ|

|C∗|
≤ ln |X|+ 1,

where C∗ is a minimum cover and H(k) = Hk =
∑k

i=1
1
i
, known as the kth harmonic

number. The algorithm works by selecting, at each stage, a subset from C that covers the
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most remaining uncovered elements of X. We refer the reader to Chvátal (1979) for a general
analysis of the greedy heuristic for Set Covering.

Hitting Set and Set Covering are duals to each other—the roles of set and element in one
problem just get switched in the other. More specifically, let a Hitting Set instance consist
of some finite set X and a collection C of its subsets; its dual Set Covering instance then
consists of a set C̄ and a collection of its subsets X̄ where

C̄ = { S̄ | S ∈ C } and X̄ = { x̄ | x ∈ X },

and where each subset x̄ is defined as5,6

x̄ = { S̄ | S ∈ C and S ∋ x }.

Intuitively speaking, the element x ∈ X “hits” the subset S ∈ C in the original instance if
and only if the subset x̄ “covers” the element S̄ ∈ C̄ in the dual instance. Thus, it follows
that H ⊆ X is a hitting set for C if and only if H̄ = { x̄ | x ∈ H } is a cover for C̄. Hence the
corresponding greedy algorithm for Hitting Set selects at each stage an element that “hits”
the most remaining subsets. It is clear that the approximation ratio for Hitting Set becomes
H(maxx∈X | {S | S ∈ C and S ∋ x } |) or ln |C|+ 1.7

As a short summary, the greedy heuristic on a Discriminating Set instance (X,C) works
by finding a hitting set for the instance (X, {S△ T | S, T ∈ C }). Since an element can ap-
pear in at most ⌊n2

4
⌋ such pairwise symmetric differences, where n = |C|, the approximation

ratio attained by this heuristic is ln⌊n2

4
⌋+ 1 < 2 lnn. The same ratio is attained for Region

Basis by the heuristic that selects at each step a region discriminating the most remaining
pairs of polygons, where n is now the number of polygons.

The greedy algorithm for Set Covering (dually for Hitting Set) can be carefully imple-
mented to run in time O(

∑

S∈C |S|) (Cormen et al. 1990). The reduction from a D-Set
instance (X,C) to a Hitting Set instance takes time O(|C|2 maxS∈C |S|). Combining the
time complexity of the geometric preprocessing in Section 3.1, we can easily verify that Re-
gion Basis can be solved in time O(nm2 +n2m2) = O(n2m2), where n and m are the number
and size of polygons, respectively.

In the remainder of this subsection we establish the hardness of approximating D-Set and
hence Region Basis. Both problems allow the same approximation ratio, since the reductions
from one to another do not change the number of subsets (or polygons) in an instance. First
we should note that the ratio bound H(maxS∈C |S|) of the greedy algorithm for Set Covering
is actually tight; an example that makes the algorithm achieve this ratio for arbitrarily large
maxS∈C |S| is given in Johnson (1974).

5According to this definition, x̄ = ȳ may hold for two different elements x 6= y. In this case only one
subset is included in X̄.

6This definition also establishes the duality between D-Set and a known NP-complete problem called
Minimum Test Set (Garey and Johnson 1979). Given a collection of subsets of a finite set, Minimum Test
Set asks for a minimum subcollection such that exactly one from each pair of distinct elements is contained
in some subset from this subcollection.

7Kolaitis and Thakur (1991) syntactically define a class of NP-complete problems with logarithmic ap-
proximation algorithms that contains Set Covering and Hitting Set, and show that Set Covering is complete
for the class.
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Next we present a reverse reduction from Hitting Set to D-Set to show that an algorithm
for D-Set with approximation ratio c log n can be used to obtain an algorithm for Hitting
Set with ratio c logn + O(log logn), where c > 0 is any constant and n is the number of
subsets in an instance. Afterwards we will apply some recent results on the hardness of
approximating Set Covering (and thus Hitting Set).

Lemma 2 For any c > 0, if c log n is the approximation ratio of Discriminating Set, then

Hitting Set can be approximated with ratio c log n+O(log logn).

Proof. Suppose there exists an algorithmA for D-Set with approximation ratio c logn. Let
(X,C) be an arbitrary instance of Hitting Set, where C = {S1, . . . , Sn} ⊆ 2X , and let n = |C|.
To construct a D-Set instance, we first make f(n) isomorphic copies (X1, C1), . . . , (Xf(n), Cf(n))
of (X,C) such that Xi ∩ Xj = ∅ for 1 ≤ i 6= j ≤ f(n). Here f is an as yet undetermined
function of n upper bounded by some polynomial in n. Now consider the enlarged Hitting Set
instance (X ′, C ′) = (

⋃f(n)
i=1 Xi,

⋃f(n)
i=1 Ci). Every hitting set H ′ of (X ′, C ′) has H ′ =

⋃f(n)
i=1 Hi,

where Hi is a hitting set of (Xi, Ci), 1 ≤ i ≤ n; so from H ′ we can obtain a hitting set H of
(X,C) with |H| ≤ |H ′|/f(n) merely by taking the smallest one of H1, . . . , Hf(n).

Next we introduce a set A consisting of new elements a1, a2, . . . , alog(nf(n)) /∈ X
′ and for

1 ≤ i ≤ nf(n) define auxiliary sets Ai:

Ai = { aj | 1 ≤ j ≤ log(nf(n)) and the jth bit of the binary representation of i− 1 is 1 }.

It is not hard to see that {a1, . . . , alog(nf(n))} must be a subset of any discriminating set for
A1, . . . , Anf(n); therefore, it is the minimum one for these auxiliary sets. The constructed
D-Set instance is then defined to be (X ′′, C ′′), where

X ′′ = X1 ∪ · · · ∪Xf(n) ∪ {a1, a2, . . . , alog(nf(n))};

C ′′ = { T ∪ A(i−1)n+j | T ∈ Ci and T ∼= Sj } ∪ {A1, . . . , Anf(n) }.

It is easy to verify that every discriminating set of (X ′′, C ′′) is the union of A and a hitting
set of (X ′, C ′).

Now run algorithm A on the instance (X ′′, C ′′) and let D be the discriminating set found.
Then

|D|

|D∗|
≤ c log(|C ′′|) = c log(2nf(n)),

where D∗ is a minimum discriminating set. From the construction of (X ′′, C ′′) we know
that D = H1 ∪ · · · ∪ Hf(n) ∪ A and D∗ = H∗

1 ∪ · · · ∪ H
∗
f(n) ∪ A, where for 1 ≤ i ≤ n, Hi

and H∗
i are some hitting set and some minimum hitting set of (Xi, Ci), respectively. Let Hk

satisfy |Hk| = min
f(n)
i=1 |Hi| and thus let H ∼= Hk be a hitting set of (X,C). Also, let H∗ with

|H∗| = |H∗
1 | = · · · = |H

∗
f(n)| be a minimum hitting set of (X,C). Then

|D|

|D∗|
=

∑f(n)
i=1 |Hi|+ |A|

∑f(n)
i=1 |H

∗
i |+ |A|

≥
f(n) · |H|+ log(nf(n))

f(n) · |H∗|+ log(nf(n))
.
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Combining the two inequalities above generates:

|H|

|H∗|
≤ c log(2nf(n)) +

(c log(2nf(n))− 1) · log(nf(n))

f(n) · |H∗|

≤ c log(2nf(n)) +
(c log(2nf(n))− 1) · log(nf(n))

f(n)

= c logn+
[

c+ c log f(n) +
(c · (1 + logn + log f(n))− 1) · (log n+ log f(n))

f(n)

]

.

Setting f(n) = log2n, all terms in the brackets can be absorbed into O(log logn) after simple
manipulations on asymptotics (Graham et al. 1989); thus we have

|H|

|H∗|
≤ c log n+O(log logn).

2

Though Set Covering has been extensively studied since the mid 1970s, essentially nothing
on the hardness of approximation was known until very recently. The results of Arora et

al. (1992) imply that no polynomial approximation scheme exists unless P = NP. Based
on recent results from interactive proof systems and probabilistically checkable proofs and
their connection to approximation, several asymptotic improvements on the hardness of
approximating Set Covering have been made. In particular, Lund and Yannakakis (1993)
showed that Set Covering cannot be approximated with ratio c logn for any c < 1

4
unless

NP ⊂ DTIME(npoly log n); Bellare et al. (1993) showed that approximating Set Covering
within any constant is NP-complete, and approximating it within c log n for any c < 1

8

implies NP ⊂ DTIME(nlog log n). Based on their results and by Lemma 2, we conclude on
the same hardness of approximating D-Set and Region Basis:

Theorem 4 Discriminating Set and Region Basis cannot be approximated by a polynomial-

time algorithm with ratio bound c logn for any c < 1
4

unless NP ⊂ DTIME(npoly log n), or for

any c < 1
8

unless NP ⊂ DTIME(nlog log n).

Following the above theorem, the ratio 2 lnn ≈ 1.39 logn of the greedy algorithm for
D-Set remains asymptotically optimal if NP is not contained in DTIME(npoly log n).

3.5 More on Discriminating Set

Now let us come back to where we left the discussion on the subproblems of D-Set in
Section 3.2; it has not been settled whether D-Set remains NP-complete when every subset
S in the collection C satisfies |S| ≤ 2. We now prove that this subproblem is NP-complete.

Here we look at a special case of this subproblem, namely, a “subsubproblem” of D-Set
and subject it to two restrictions: (1) ∅ ∈ C and (2) |S| = 2 for all nonempty subsets S ∈ C.
Let us call this special case 0-2 D-Set. If 0-2 D-Set is proven to be NP-complete, so will be
the original subproblem.
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It is quite intuitive to understand a 0-2 D-Set instance in terms of a graph G = (V,E),
where V = X, the finite set of which every S ∈ C is a subset, and

E =
{

(u, v)
∣

∣

∣ {u, v} ∈ C
}

.

In other words, each element of the set X corresponds to a vertex in G while each subset,
except ∅, corresponds to an edge. Clearly this correspondence from all 0-2 D-Set instances
to all graphs is one-to-one. Since any discriminating set D for C has

D ∩ S 6= D ∩ ∅ = ∅, for all S ∈ C and S 6= ∅,

D must be a vertex cover for G. Let d(u, v) be the distance (i.e., the length of the shortest
path) between vertices u,v in G (or ∞ if u and v are disconnected). A 3-independent set

in G is a subset I ⊆ V such that d(u, v) ≥ 3 for every pair u, v ∈ I. The following lemma
captures the dual relationship between a discriminating set for C and a 3-independent set
in G.

Lemma 3 Let X be a finite set and C a collection of ∅ and two-element subsets of X.

Let G = (X,E) be a graph with E = { (u, v) | {u, v} ∈ C }. Then a subset D ⊆ X is a

discriminating set for C if any only if X \D is a 3-independent set in G.

Proof. Let D be a discriminating set for C. Assume there exist two distinct elements
(vertices) u, v ∈ X \ D such that d(u, v) < 3. We immediately have (u, v) /∈ E, since D
must be a vertex cover in G; so d(u, v) = 2. Hence there is a third vertex, say w, that is
connected to both u and v; furthermore, w ∈ D holds, since the edges (u, w) and (v, w) must
be covered by D. However, now we have D∩ {u, w} = D ∩{v, w} = {w}, a contradiction to
the fact that D is a discriminating set.

Conversely, suppose X \D is a 3-independent set in G, for some subset D ⊆ X. Then
D must be a vertex cover. Suppose it is not a discriminating set for C. Then there exist
two distinct subsets S1, S2 ∈ C such that D ∩ S1 = D ∩ S2 = {w}, for some w ∈ S. Writing
S1 = {u, w} and S2 = {v, w}, we have d(u, v) = 2; but in the meantime u, v ∈ X \ D. A
contradiction again. 2

This lemma tells us that the NP-completeness of 0-2 D-Set, and therefore of our remaining
open subproblem of D-Set, follows if we can show the NP-completeness of 3-Independent Set.
3-Independent Set is among a family of problems defined, for all integers k > 0, as follows:

k-Independent Set (k-IS)
Given a graph G = (V,E) and an integer 0 < l ≤ |V |, is there a k-independent set of size
at least l, that is, is there a subset I ⊆ V with |I| ≥ l such that d(u, v) ≥ k for every pair
u, v ∈ I?

Thus 2-IS is the familiar NP-complete Independent Set problem. We will see in Appendix B
that every problem in this family for which k > 3 is also NP-complete. To avoid too much
divergence from 0-2 D-Set, let’s focus on 3-IS only here.

Lemma 4 3-Independent Set is NP-complete.
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Figure 10: An example of reduction from Independent Set to 3-IS. (a) An instance of Independent
Set. (b) The constructed 3-IS instance: α vertices are added to increase the distances between the
original vertices by exactly one.

Proof. It is trivial that 3-IS ∈ NP. To show NP-hardness, we reduce Independent Set
(2-IS) to 3-IS. Let G = (V,E) and 0 < l ≤ |V | form an instance of Independent Set. A
graph G′ is constructed from G in two steps. In the first step, we introduce a “midvertex”
αu,v for each edge (u, v) ∈ E, and replace this edge with two edges (u, αu,v) and (αu,v, v). In
the second step, an edge is added between every two midvertices that are adjacent to the
same original vertex. More formally, we have defined G′ = (V ′, E ′) where

V ′ = V ∪
{

αu,v

∣

∣

∣ (u, v) ∈ E
}

;

E ′ =
{

(αu,v, u)
∣

∣

∣ (u, v) ∈ E
}

∪
{

(αu,v, αu,w)
∣

∣

∣ (u, v) 6= (u, w) ∈ E
}

.

Two observations are made about this construction. First, it has the property that d′(u, v) =
d(u, v)+1 holds for any pair of vertices u, v ∈ V , where d and d′ are the two distance functions
in G and G′ respectively. This equality can be verified by contradiction. Next, if (u, v) ∈ E,
then any two midvertices αu,x and αv,y have

d′(αu,x, αv,y) ≤ d′(αu,x, αu,v) + d′(αu,v, αv,y) ≤ 2;
d′(αu,x, v) = d′(αu,x, αu,v) + d′(αu,v, v) ≤ 2;
d′(αv,y, u) = d′(αv,y, αu,v) + d′(αu,v, u) ≤ 2.

Note strict “<”s appear in the above three inequalities when x = v or y = u and in the first
inequality when x = y. It is not difficult to see that the entire reduction can be done in time
O(|V |3). Figure 10 illustrates an example of the reduction.

We claim that G has an independent set I of size at least l if and only if G′ has a 3-
independent set I ′ of the same size. Suppose I with |I| ≥ l is an independent set in G.
Then I is also a 3-independent set in G′. This follows from our first observation. Conversely,
suppose I ′ with |I ′| ≥ l is a 3-independent set in G′. Then the set I, produced by replacing
each midvertex αu,v ∈ I

′ with either u or v, is an independent set in G. To see this, assume
there exist two vertices u, v ∈ I such that d(u, v) = 1. Thus, d′(u, v) = d(u, v) + 1 = 2 < 3;
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so either u or v, or both, must have replaced some midvertices in I ′. Let s, t ∈ I ′ be the two
vertices corresponding to u and v before the replacement, respectively; that is, s = u or αu,x

and t = v or αv,y for some x, y ∈ V . According to our second observation, we always have
d′(s, t) ≤ 2. Thus we have reached a contradiction, since s, t ∈ I ′. That |I ′| = |I| ≥ l is easy
to verify in a similar way. 2

Combining Lemmas 3 and 4, we have the NP-completeness of 0-2 D-Set; this immediately
resolves the complexity of our remaining subproblem of D-Set:

Theorem 5 D-Set remains NP-complete even if |S| ≤ 2 for all S ∈ C.

3.6 Experiments

For geometric preprocessing, we implemented the plane sweep algorithm by Nievergelt and
Preparata (1982). We modified the original algorithm so that the containing polygons of
each swept region are maintained and propagated along during the sweeping.8 The greedy
approximation algorithm for Set Covering was implemented with a linked list to attain
the running time O(

∑

S∈C |S|). All code was written in Common Lisp and was run on a
Sparcstation IPX.

We discuss simulation results on random polygons. These simulations empirically study
how the number of sampling points varies with the “density” of polygons in the plane.
The results suggest that the point sampling approach is most effective at sensing polygonal
objects that have highly overlapping poses. Experiments on a Zebra robot are underway,
and the results will be presented in the near future.

3.6.1 Simulation Results

To generate random polygons, we precomputed an arrangement of a large number (such
as 100) of random lines using a topological sweeping algorithm (Edelsbrunner and Guibas
1986). A random polygon was extracted as the first “valid” cycle during a random walk on
this line arrangement, which was then randomly scaled, rotated, and translated. By “valid”
we mean that the number of vertices in the cycle was no less than some small random integer.
This constraint was introduced merely to allow a proper distribution of polygons of various
sizes, for otherwise triangles and quadrilaterals would be generated with high probabilities
according to our observations. In a sample run, a group of 1000 polygons generated (by this
method) from an arrangement of 100 random lines had sizes in the range 3–30, with mean
5.545 and standard deviation 3.225.

All random polygons (or all random poses of a single polygon) in a test were bounded
by some square, so that the “density” (i.e., the degree of overlap) of these polygons mainly
depended on their number as well as on the ratio between their average area and the size of the

8This implementation has the same worst-case running time as a different version described in Section 3.1
that obtains the containment information by traversing the planar subdivision after the sweeping. However,
the implemented version is usually more efficient in practice.
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bounding square. Since polygons were generated randomly, the average area could be viewed
as approximately proportional to the square of the average perimeter. The configuration of
each polygon, say P , was assumed to obey a “uniform” distribution inside the square. More
specifically, the orientation of P was first randomly chosen from [0, 2π); the position of P was
then randomly chosen from a rectangle inside the square consisting of all feasible positions
at that orientation.9

To be robust against sensor noise, the sampling point of every region in the region basis
was selected as the center of a maximum inscribed circle in that region. In other words,
this sampling point had the maximum distance to the polygon bounding that region. It
is not difficult to see that such a point must occur at a vertex of the generalized Voronoi
diagram inside the polygon, also called its internal skeleton or medial axis function.10 Also,
for sensing robustness, regions with area less than some threshold were not considered at the
stage of region basis computation.11 Although this thresholding traded off the completeness
of sampling, it almost never resulted in the failure of finding a region basis once the threshold
was properly set.

The first two groups of six tests gave a sense of the number of sampling points required
when polygons are sparsely distributed in the plane. The results are summarized in Table 4.
Every test in group (a) was conducted on distinct (i.e., non-congruent), random polygons

# polys # regions # sampling
points

50 320 31
60 500 37
70 594 41
80 783 46
90 973 47
100 1422 51

# polys # regions # sampling
points

50 362 36
60 609 34
70 741 34
80 1061 39
90 1125 49
100 1643 61

(a) (b)

Table 4: Tests on sampling sparsely distributed random polygons/poses. The twelve tests were
divided into two groups: (a) All polygons in each test were distinct, with perimeters between 1

4
and 3

4 times the width of the bounding square. (b) All polygons in each test represented distinct
random poses of a same polygon. The polygon perimeter was uniformly 5

8 times the side length of
the square for all six tests in the group.

with perimeters between 1
4

and 3
4

of the width of the bounding square; every test in group (b)

9If the diameter of P is greater than the width of the square, then not every orientation is necessarily
feasible. However, this situation was avoided in our simulations.

10The construction of the internal skeleton of a polygon is a special case of the construction of the general-
ized Voronoi diagram for a set of line segments for which O(n log n) algorithms are given in Kirkpatrick (1979),
Fortune (1987), and Yap (1987). Since the maximum region size for a region basis turned out to be very
small in the simulations, we implemented only an O(n4) brute force algorithm.

11We thresholded on the region area rather than the radius of a maximum inscribed circle merely to avoid
the inefficient computation on the latter for all the regions in the planar subdivision.
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(a) (b)

Figure 11: Sampling 100 sparsely distributed random polygons/poses. (a) The scene of the last
test from group (a) in Table 44: There are 1422 regions in the planar subdivision and 51 sampling
points (drawn as dots) to discriminate the 100 polygons. (b) The scene of the last test from
group (b) in Table 4: There are 1643 regions in the planar subdivision and 61 sampling points to
discriminate the 100 poses.

was conducted on distinct poses of a single polygon with perimeter equal to 5
8

of the width
of the square. The scenes of the last tests from these two groups are displayed in Figure 11.

Without any surprise, the number of sampling points found were around half of the
number of polygons, for all twelve tests in Table 4. This supports the fact that, for n
sparsely distributed polygons in the plane, the minimum number of sampling points turns
out to be Θ(n). As we can see from Figure 11, in such a situation every polygon intersects
at most a few or, more precisely, no more than some constant number of, other polygons. In
other words, the number of polygon pairs distinguishable by any single region in the planar
subdivision is Θ(n); but there are ⌊n2

4
⌋ such pairs in total! Thus, sensing by point sampling

is inefficient in a situation with a large number of sparsely distributed polygons.
The next two groups of six tests were on polygons much more densely distributed in the

plane, and the results are given in Table 5. In these two groups of tests, we used a bounding
square with side length only 1

4
of the side length of the one used in the two test groups in

Table 4. Every test in group (a) was conducted on distinct polygons with perimeters in the
range 1

2
–2 times the side length of the bounding square. All tests in group (b) were distinct

poses of the same polygon used in the last test of group (b) in Table 4. Again, the scenes of
the last tests from groups (a) and (b) are shown in Figure 12.

All twelve tests in the above two groups except the last one in group (a) found sampling
points at most twice the lower bound ⌈log n⌉, while the first test in group (b) found exactly

35



# polys # regions # sampling
points

25 776 8
30 998 8
35 1270 12
40 1759 12
45 2153 11
50 2678 13

# polys # regions # sampling
points

10 264 4
20 1121 7
25 1781 6
30 2796 7
35 3655 9
40 4995 9

(a) (b)

Table 5: Tests on sampling densely distributed random polygons/poses, divided into two groups
(a) and (b). The width of the bounding square was reduced to 1

4 times the width of the square
used in groups (a) and (b) in Table 4. In group (a) all polygons in each test were distinct with
perimeters in the range between 1

2 and 2 times the width of the bounding square. In group (b) all
polygons in each test were distinct poses of the same polygon as in Figure 11(b).

(c) (d)

Figure 12: Sampling densely distributed polygons. The bounding square has width 1
4 times the

width of the one shown in Figure 11. (a) The scene of the last test from group (a) in Table 5:
There are 50 distinct polygons that form a planar subdivision with 2678 regions and that can be
discriminated by 13 sampling points. (b) The scene of the last test from group (b) in Table 5:
There are 40 distinct poses of the polygon from Figure 11(b), which form a planar subdivision with
4955 regions and can be discriminated by 9 sampling points.
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⌈log n⌉ sampling points. The data in group (b) were more densely distributed than the data
in group (a) in that any pair of poses intersected. Since an extremely dense distribution of
polygons may cause numerical instabilities in the plane sweep algorithm, smaller numbers
of polygons were tested in these two groups than were tested in the first two groups. The
results of these two groups of tests show that the sampling strategy is very applicable to
sensing densely distributed polygons.

4 Conclusion

The analyses and experiments in this article have laid out the bases for two general sensing
schemes applicable to planar objects with known shapes. The first scheme, termed sensing

by inscription, determines the pose of an object by finding its inscription in a polygon
of geometric constraints derived from the sensory data. An implementation may use a
rotary sensor or a linear CCD array combined with a diverging lens to obtain the necessary
constraints. In particular, two supporting cones are often enough to detect the real pose of
a polygonal object. In real situations, if two (or more) possible poses arise from a two-cone
inscription, they can be distinguished by point sampling.12

Although only the inscription of a convex polygon is treated the extensions to any ar-
bitrary polygon and any polyhedron should be straightforward. In the second case the 3D
cones are defined by visible vertices as well as edges. However, the extension to a closed and
piecewise smooth curve needs further study. The technique can also be applied in object
recognition: A finite set of polygons is generally distinguishable by inscription.

Robustness of inscription can be realized by allowing some tolerance for intersecting
locus curves; that is, an intersection of two locus curves is considered to be a real pose if it
is attained on these curves at orientations that differ by an amount less than the tolerance.

Future work will involve the design of specialized cone sensors or other sensors suited for
inscription, as well as an investigation of a theoretical framework for incorporating sensing
uncertainties into the inscription algorithms.

The second scheme, termed sensing by point sampling, distinguishes a finite set of poses by
examining the containment of a number of points. It also works for objects with more general
boundaries as long as the planar subdivision can be efficiently constructed. Robustness
mainly depends on the invariance of the topology of the planar subdivision. Therefore it
is often more robust to consider only regions whose maximum inscribed circles have radii
greater than a certain threshold.

Future work will combine existing mechanical orienting methods with point light detectors
or mechanical probes for pose detection.

12Notice that cases with more than two possible poses never occurred in our experiments on two-cone
inscription.
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Figure 13: A worst case example of inscription. The three half-planes form an equilateral triangle
△q0q1q2 by intersection and the convex n-gon P has vertex p0 at the center of an arc equally divided
by the remaining vertices p1, . . . , pn−1 of P . The conditions derived in this appendix on radius r

and measure α of the arc guarantee 6n different poses in which P is inscribed in △q0q1q2: (a)
6(n−1) poses of P result from rotations about p0 positioned at vertices q0, q1, and q2, respectively.
(b) Six other poses result when p0, p1, and pn−1 are incident on different edges of △q0q1q2. (cf)
illustrates a pose of the first type such that vertex pi, 2 ≤ i ≤ n − 2, is on edge q1q2 during the
rotation about q0.

Appendices

A A Worst Case of Inscription

In this appendix we construct an example where a convex n-gon embedded in three half-
planes can attain 6n possible poses.

Symmetry plays a central role in the construction. Let the three half-planes form an
equilateral triangle △q0q1q2 by intersection; and let P be a convex polygon with vertices
p0, p1, . . . , pn−1 in counterclockwise order such that p0 is the center of an arc of radius r and
measure α, and p1, . . . , pn−1 together divide this arc into n− 2 equal pieces. The reason for
choosing this particular shape of P is that we expect to obtain 2(n−1) poses by positioning
p0 at each of q0, q1, and q2 and rotating P about p0 inside △q0q1q2 such that p1, . . . , pn−1

will each touch the opposite edge of △q0q1q2 exactly twice during the rotation. Figure 13(a)
illustrates the first of a sequence of 2(n− 1) poses resulting from counterclockwise rotation
about q0. By symmetry we already have 6(n − 1) poses in total, called poses of the first

type. The remaining 6 poses of the second type are symmetric to each other, attained when
vertices p0, p1, and pn−1 are on different edges of △q0q1q2 (Figure 13(b)). So our task is to
derive the conditions on radius r and measure α of the arc that realize these two types of
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poses.
Let us look at poses of the first type. Let d > 0 be the altitude of △q0q1q2 and β an

acute angle with cos β = d
r
, and suppose p0 coincides with q0. We require that d < r and

α < α+β < π
6

so that p1 in the initial pose is not on edge q0q1 in order to allow poses of the
second type, and pn−1 lies to the left of the midpoint on edge q1q2 in order to be incident on
this edge twice as P rotates counterclockwise. Thus, we have the following conditions on α
and r:

0 < α <
π

6
and cos

(π

6
− α

)

<
d

r
< 1.

With the above constraints, we still need to make sure that P is indeed above edge q1q2
when each vertex pi, 1 ≤ i ≤ n − 1, becomes incident on this edge during the rotation.
In fact, it suffices to ensure that vertices pi−1 and pi+1 are above edge q1q2. Figure 13(c)
illustrates the case in which pi lies to the left of the midpoint on edge q1q2. It is clear that
pi−1 is above edge q1q2; pi+1 is above edge q1q2 if and only if 2β < 6 pip0pi+1 = α

n−2
; that is,

d

r
> cos

α

2(n− 2)
.

Starting at the initial pose shown in Figure 13(a), slide p0 down along edge q0q2 and pn−1

left along edge q1q2 until p1 touches edge q0q1; then we get the pose in Figure 13(b). Observe
that p0 is in the interior of edge q0q2 and closer to q0 than q2. The other five poses of the
second type follow by symmetry.

Hence P has 6n feasible poses when inscribed in △q0q1q2 if the following two conditions
are satisfied:

0 < α <
π

6
;

d < r < min

(

d

cos(π
6
− α)

,
d

cos α
2(n−2)

)

.

In fact, the above conditions are also necessary for the given shapes of P and △q0q1q2.

B k-Independent Sets

We extend Lemma 4 to all k-IS with k > 3: They are NP-complete as well. The proof
we will present is indeed a generalization of the proof of Lemma 4; it will again construct
a k-IS instance with graph G′ from an instance of Independent Set with graph G by local
replacement. In the proof, each vertex v in G will be replaced by a simple path Pv of fixed
length (depending only on k) that has v in the middle and an equal number of auxiliary
vertices on each side; and each edge (u, v) will be replaced by four edges connecting the two
end vertices on Pu with the two end vertices on Pv, either directly or through a “midvertex”.
More intuitively speaking, all shortest paths between pairs of vertices in G, if they exist, get
elongated in G′ to such a degree that (1) (u, v) is an edge in G if and only if the distance
between vertices u and v in G′ is less than k; and (2) any two vertices u′ and v′ in G′ with
a distance of at least k can be easily mapped to two nonadjacent vertices in G. The first
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Figure 14: Two subgraphs resulting from the described substitutions performed on edge (u, v) ∈ E

for the cases that (a) k is even; and (b) k is odd.

condition ensures that any given independent set in G will be a k-independent set in G′,
while the second condition ensures the construction of an independent set in G from any
given k-independent set in G′.

Lemma 5 k-Independent Set is NP-complete for all integers k > 3.

Proof. Given an instance of Independent Set as a graph G = (V,E) and a positive integer
l ≤ |V |, a k-IS instance is constructed by two consecutive substitutions. A path

Pv =

{

vk−3 . . . v1vv2 . . . vk−2, if k even;
vk−4 . . . v1vv2 . . . vk−3, if k odd,

first substitutes for vertex v ∈ V , where v1, . . . , vk−3 (and vk−2 when k is even) are auxiliary
vertices. And then a set of four edges

Eu,v =































{

(uk−3, vk−3), (uk−3, vk−2),

(uk−2, vk−3), (uk−2, vk−2)
}

, if k even;
{

(uk−4, αu,v), (uk−3, αu,v),

(vk−4, αu,v), (vk−3, αu,v)
}

, if k odd,

substitute for each edge (u, v) ∈ E, where αu,v is an introduced midvertex. Figure 14 shows
two subgraphs after applying the above substitutions on edge (u, v) ∈ E, for k even and odd,
respectively.

We can easily verify that for any pair of vertices x on Pu and y on Pv, both k even and
odd, we have d′(x, y) ≤ d′(u, v) = k − 1 < k if (u, v) ∈ E, where d′ is the distance function
defined on G′. On the other hand, if (u, v) /∈ E, we have d′(u, v) ≥ k when k is even and
d′(u, v) ≥ k + 1 when k is odd. Thus, an independent set I in G is also a k-independent set
in G′. Conversely, suppose I ′ with |I ′| ≥ l is a k-independent set in G′. We substitute u ∈ V
for every auxiliary vertex ui ∈ I on path Pu, and u or v for every midvertex αu,v ∈ I when k
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is odd. Let I be the set after this substitution. It needs to be shown that I is an independent
set in G and |I| = |I ′| ≥ l. This is obvious for the case that k is even. When k is odd,
however, the situation is a bit more complicated due to the possible occurrences of those α
vertices in I ′. We observe, for any αu,v, αu′,v′ , and x on path Pw where u, v, u′, v′, w ∈ V ,

d′(αu,v, x) ≤
k − 3

2
+ 3 < k, if w = u or v, or (u, w) ∈ E, or (v, w) ∈ E;

d′(αu,v, αu′,v′) ≤ 4 < k, if (u, u′) ∈ E.

In fact, these two conditions guarantee that I is an independent set in G and |I| = |I ′|,
which we leave for the reader to verify.

The reduction can be done in time O(k|V | + |E|), which reduces to O(|V | + |E|) if
k is treated as a constant, in contrast to the time O(|V |3) required for the reduction from
Independent Set to 3-IS. This time reduction is due to the fact that midvertices corresponding
to the same vertex in V no longer have edges between each other. 2

Since 1-IS can be easily solved by comparing |V | and l, we are now ready to sum up the
complexity results on this family of problems in the following theorem.

Theorem 6 k-Independent Set is in P if k = 1 and NP-complete for all k ≥ 2.
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