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Abstract

This paperoffers a computationaktudyof finger localizationon
2-D curvedobjectsusing tactile data which builds on efficient
numericalprocessingf curves.

Ouir first algorithm localizesonerolling finger on a station-
ary object. It finds all boundarysegmentswith the samearc
lengthand total curvatue computedfrom tactile data. Theal-
gorithm slidesan imaginary segmentalong the objectboundary
by alternativelymarching its two endpointsorward, stretching or
contractingthe sggmentif necessaryThrougha curvatue-based
analysiswe establishthe global convergenceof the algorithmto
every location of sud a segmentand also derive the local con-
vergencerate Thealgorithm runsin time linear in the size of
the discretizedboundarycurve domain,which is asymptotically
asfastascomputingheobject’s perimeterthroughnumericalin-
tegration.

Basedntheaboveresultswethenpresenta globalalgorithm
to localizetwo fingers rolling on a freeobject. Thishasconsider
ablyimprovedover our previouslocal algorithm[6] usinga least-
squaesformulation. Thealgorithm partitions the objectbound-
ary into sggmentsover which relatedtotal curvatue functionsare
monotonic.Thenit combinedisectionwith forward marching to
seach for possiblelocationsof the fingers within every pair of
sud sggments.

1 Introduction

A robotgraspingstratey oftenrelieson knowledgeof the
exact placementof the fingerson an object. The useof
tactileinformationcombinedwith objectgeometrycanfa-
cilitate the localizationof thefingersrelative to the object.
In this paper we investigatehow oneor two fingerswith
tactile capability canactively determinetheir locationson
acurvedobjectfrom a few contactpointsrecordedon the
fingertips.

The action taken by the fingersis rolling on the ob-
ject, which is boundedby a known parametric2-D curve
with nontrivial curvatureundefinedat no morethana few
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isolatedpoints. The kinematicsof rolling togetherwith
recordedfinger contactswill reducelocalizationto iden-
tifying curve sggmentson the object boundarythat meet
geometricequirement®n arclengthandtotal curvature.

In Section2 we study a simple versionof localization
with onedisk-like fingerrolling on a stationarycurvedob-
ject. We will presenta numericalalgorithmwith provable
behaior. In Section3 we move onto the problemof local-
izing two rolling fingerson afreeobject. The problemwas
studiedearlierin [6] but only partially solved by a least-
squaresnethod.Built ontheresultsin Section2, a global
algorithmis presentedo find locationsof bothrolling fin-
gers. Simulationswill be presentedn Section4, followed
by furtherdiscussiongn Section5.

1.1 Reated Work

Thiswork is foundedon contackinematicsvhich describe
themotionof apointcontactbetweertwo rigid bodiesby a
setof differentialequationg11, 2]. Thespeciakinematics
of rolling motionallow fingerlocalizationto beformulated
asapurelygeometricproblem.

Grimson and Lozano-Ferez [5] usedtactile measure-
mentsof positionsandsurfacenormalsfor recognitionand
localizationof 3D polyhedra.KriegmanandPonce[8] ap-
pliedeliminationtheoryto matchcurvedthree-dimensional
objects with the shapeof image contoursthrough fit-
ting. Rimon and Blake [12] shoved how to “cage” a 2-
dimensionalobjectusingtwo fingersbut only onedegree
of control.

Allen andRoberts[1] deployedrobotfingersto obtain
a numberof contactpointsaroundan objectand usedfit-
ting to reconstructhe object’s shape Erdmann3] shaved
that the local geometryof an objectwith known angular
velocity canberecoveredby two passie lineartactile sen-
sors.Extendingthis work, Moll andErdmann10] applied
quasi-statiddynamicsto reconstructhe shapeof a corvex
objectandestimatets motionfrom tactilereadingson two
palmsin frictionlesscontactwith the object.

Fischler[4] describedanalgorithmto locatepointswith



extreme curvatureson planar curves and reconstructthe
original curves basedon thesepoints. Mokhtarian and
Mackworth [9] usedinflectionpoints(wherecurvaturesare
zero)for planarcurve descriptionsandmatching.

In the authors recentwork [6], the problemof localiz-
ing two rolling fingerson a free objectwaspresentedvith
aleast-squaresolution. Neverthelessthe solutionmethod
guaranteedeithercorvergencenor completenesandwas
slow. In Section3, we will presenta global numericalal-
gorithmto solve the sameproblem.

2 Localizing on a Stationary Object

We first look at how to determinethe location of a finger
rolling onastationaryobject.Boththefingerandtheobject
canbeof any shapeaslong asthey maintainpoint contact.
Let the objectbe boundedby a regular curve a(s), where
s is the location of contact. To simplify the analysis,we
assumehefingerto beadisk describedy r(cos u, sinu),
whereu locateshe contactonthedisk andcanbedetected
by its tactile sensorSeeFigure 1.
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Figure 1. A diskrolling on astationarycurved object.

Contactkinematicq11, 2] givethevelocitiesof contact:
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wherer istime,w theangulavelocity of thedisk,andx(s)
the curvatureof a ats. From (1) and(2), we obtainra =
—$||a'(s)||. Thelength L of a over [sg, s1] is —(u1 —
ug)r, henceknown from thetactilereadings Pluggingthis
equalityinto (1) yields

s|la’(s)|| w(s) — i = w.

Integratethis equationoverthetime period|0, 7]:

m—w+ﬂlwa=/mammwmw.<a

Here®(sg,s1) = fssol k(v)||a(v)|| dv is thetotal curvatue
of a over|sy, s1]. It givestheamountof rotationof theunit
tangentl’ = o' /||| asit movesfrom sg to s;.
Theamountof rotation [ w(€)d¢ of thediskis known.
Thusthe total curvatured over [so, s1] is alsoknown ac-
cordingto (3). Thelocationssy ands; of the disk on

canthenbe solvedfrom thefollowing equations:

t
(s, 1) /ume§=L, )
t

B(s,t) = /Mmm%m%::& (5)

Geometrically the problemis to locate a curve sgment
with lengthL andtotal curvatureg.

Oftentheintegral £ hasno closedform andneedso be
evaluatednumerically Theintegral ®(s,t) hasthe closed
form arccos(T'(s) - T'(t)) if it is within (—m,7) andoth-
erwise cannotbe determinedfrom 7T'(s) and 7T'(¢) alone.
We needto look for numericalsolutionsof equationg(4)
and(b).

2.1 Convex Boundary Curve

We begin with the casethatthe boundarycurve « is con-
vex. Below we presenta marching algorithmthatfindsall

curve sggmentson the boundarywith length L and total

curvaturef. For clarity of presentationwe assumehat o

is unit-speed. But the results(including the corvergence
rate)will extendto ary regular parameterizationAlso we

assumes(s) > 0 for all s. Extensionto x(s) > 0 will not

bedifficult.

Definethe function p(s) suchthat ®(s, s + p(s)) = 6.
Namely p(s) is thelengthof the curve segmentstartingat
s over which thetangentrotatesby the angled. The algo-
rithm startsatlocationsg = 0 andgenerateswo sequences
S0, 81, 82, - . . andtg, t1, ta, . . . underthefollowing rules:

Casel p(so) > L: ti = si+p(si);
siy1 = t;— L.
Case?2 p(sg) < L: ti = s;+L;
b(si41,t) = 0.

Figure 2 illustratesthe working of the algorithmin these
two cases For anon-unitspeedcurve, t; ands;; areob-
tainedfrom ¢;_; ands; throughnumericalintegration.

We first studythe behavior of the algorithmin Casel
andestablishits corvergence.Definethe function ¢(s) =
®(s, s + L) to measurehetotal curvatureover a sggment
of length L thatbeginsat s. Leta > 0 be a solutionto
®(s,s + L) = 6 suchthat every othersolutionc > sg
impliesc > a. Soa is thefirst feasiblestartingpoint of the
curvesggment.Letb = a + L beits endpoint.It is easyto
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Figure 2: Two case®f marchings andt: (a) ®(s;, ;) = 6 but£(s;,t;) > L; (b) £(ss,t:) = L but ®(s;, ;) > 6.

shav by inductionthe following Lemma(a proofis given

in [7]):
Lemmal In Casel, s; < s;+1 < a holdsfor all i > 0.

The above lemma establishesthat the two sequences
80, 81, - .. andty, t1, ... aremonotonicandboundedby a
andb, respectiely. Hencethey corvergeto, say s* andt*
where®(s*,t*) = &(s*,s* + L) = 0. Therefores* = a
andt¢* = b by definitionof a andb. The next lemmagives
thelocal corvergencerate.

Lemma2 Supposep(0) < 6. Thenk(b) > k(a), where
k(a) = k(b) holdsif andonlyif ¢'(a) = 0. Whenk(b) >
x(a), thealgorithmhaslinear convergencerate givenby a
factorof k(a)/k(b).

Full proof of theabove lemmais givenin [7].

Similarly, in Case2, ¢'(a) < 0. It followsthatk(a) >
k(b) wherethe equality holdsif andonly if ¢'(a) = 0.
The local corvergenceratein this caseis linear given by

k(b)/k(a) whenk(a) > k(b).

Proposition 3 Thealgorithmcorvergesto thefirstfeasible
segmentsatisfying(4) and(5) in themarching direction.

To find thenext sgmenton ¢, weresets, to bethesum
of a very small positive amountands; for large enought,
andrepeatthe sameprocedure.Both s andt move along
the objectboundaryno morethanonceat stepsizeh. So
at most 2T'/h stepsare performedin all numericalinte-
grations. The numberof numericalstepsfor obtaining
to ism < T/h. Hencethe algorithm performsat most
2T /h 4+ m numericalincrements.

Theorem 4 Themarchingalgorithmlocatesall curveseg-
mentswith length L and total curvatue § on a non-
degenete closedsimple curve a up to numericalreso-
lutionin no morethan ©(T'/h) numericalsteps.

(b)

2.2 Non-Convex Boundary Curve

In this sectionwe extend the localization procedurein
Section2.1 to an arbitrary-speecalosedsimple curve a.
The correctnes®f that procedurerelies on that the total
cunature ®(s,t) haspartial derivativesd®/9s < 0 and
0®/0t > 0forall s < t. Thisis nolongertrueeverywhere
whena hasconcaities. For example,if x(s) < 0, then
0%/0s > 0.

We marchthe two endpointss andt of a hypothesized
curve sgmentcounterclockwisalonga. Therearefour
basicmodes: corvex-corvex (k(s) > 0 andx(t) > 0),
concave-concavék(s) < 0 and x(t) < 0), corvex-
concave(k(s) > 0 andk(t) < 0), and concave-comex
(k(s) < 0andk(t) > 0).

Within eachof the four modes the hypothesizedurve
sgmentslidesalonga until aninflectionpoint! is reached
by eithers or t sothatthemodechangesLocation(s)of the
desireccurve segment,if exists,is alsofoundduringthead-
vancementSlidingis doneby increasingoneof s andt and
simultaneouslykeepingtrack where the other should be
(withoutactuallyincreasingt). Figure3 illustratesthe op-
erationsn the modescorvex-corvex andconcae-corvex.

Bisectionwill beinvokedin the modescorvex-concae
and concae-corvex. In preprocessingwe computeall
points of inflection; andthenin ©(T'/h) time we evalu-
atearclengths/(zy, z;) andtotal curvatures®(z,, z;), for
i=1,...,n,and¥l(zp, 21 + T) and ®(z,, 21 + T). For
adetaileddescriptionof all operationsye referthereader
to [7], wherethe total numberof numericalincrementds
shavn to beatmost5T '/ h.

Theorem 5 All sgmentswith lengthZ andtotal curvatue
6 canbefoundon a closedsimplecurvedefinedon [0, T']
up to numericalresolutionin ©(T/h) steps.

We candirectly modify the marchingalgorithmto find
all stationarypointsof the total curvaturefunction ®(s, t)
over ary segmentof length L alonga closedcurve. It is

LA simplepoint of inflectionsatisfiess = 0 but &’ # 0.
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Figure 3: Two of thefour modesof thelocalizationalgorithm: (a) corvex-corvex, wherex(s) > 0 andx(t) > 0, andits following mode
(b) concare-comvex, wherex(s) < 0 andk(t) > 0. Thefunctiono(s) determineghe endingpoint of a curve segmenton « of length
L thatstartsat s. In both (a) and(b), z, correspondso thefirst inflection point after s, and z; the lastinflection point beforet. In (a), ¢
advanceso min(o(zx), z1+1) = o(zx) ands advancesaccordinglyto zx. In (b), s advancesto min(zx, 0~ (z141)) = ¢~ (2141) andt

adwancesaccordinglyto z;4+1. Thenext modeis concae-concae.

not hardto shav that sucha stationarypoint satisfiescon-
dition (4) in additionto thefollowing condition:

k(t) — K(s) = /t k' (u) du = 0. (6)

Therolesof ®(s, t), k, andinflectionsin the marchingal-
gorithmarenow replacedby «(t) — x(s), ', andvertices
in the modified version. And the preprocessingnvolves
computingall simplevertice$ of thecurve.

3 Localizing on a Movable Object

Now we considerthat the objectis no longer stationary
It movesin responseo the disk rolling. We let a second
identical disk with tactile capabilityrolling on the object,
asshawn in Figure4. Let wi andw bethe angularveloc-
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w

Figure 4: Two fingersrolling on oneobject.

ities of the objectandthe seconddisk, respectiely. The
contactbetweenthe objectandthe seconddisk are deter
minedby the parameter® andt, respectiely. The kine-
maticsof both contactsarealmostthe sameas(1) and(2)

2A simplevertex of acune satisfiess’ = 0 but &’/ # 0.

exceptthenumeratorsieedto bereplacedwith therelative
angularvelocityw — wp andw — wp. We caneliminatethe
objectsangularvelocity wg [6]:

u—r(s) || (8)|| 5 +w=1p— k()| @)|i+a@ (7)

Let thetwo disksrecordcontactpositionss;, t; simultane-
ouslyatthreetimeinstantsry, 71, 2. Integrateequation(7)
over|[ry, 1] and[ry, 72] yields

®(s0,51) — @(to,t1) = 01, (8)
@(80,82)—‘:1)@0,752) = 0. (9)

Here§; is computedfrom sensordataug andw;, control
dataw andw, andtime 1y andr;. Moreover, thearclengths
L = K(So, 81), Ly = 5(80,82), Ls = e(to,h), andL4 =
L(to, t2) areknown.

Geometricallylocalizationis equivalentto finding two
pointson o atwhicha) thetwo sggmentsof lengthsZ, and
L3, respectiely, differ by 6, in total curvature,andb) the
two segmentsof lengthsL, and L4, respectiely, differ by
- in total curvature.In thebelow, we will present global
numericalalgorithmthatfindsall pairssy andt, satisfying
equationg8) and(9).

3.1 Domain Partitioning

Definethefunctiong; (s) asthetotal curvatureof asegment
of theboundarycurve o startingat s andhaving length L;.
The stationarypointsof ¢; and¢., found by the modified
marchingalgorithmin the end of Section2.2, divide the
curve domaininto n intervals [a;, a;41], ¢ = 0,...,n — 1
anda, = ag + T. Thevaluesof ¢; and¢, atall a; are
computedwith one round of integrationsof ||&/|| and &
alonga in time ©(T'/h). Similarly, the stationarypoints
of ¢3 and¢, divide [0,T] into m intervals [b;, biy1], ¢ =
0,...,m —1andb, = by + T, and¢s and¢, atall b; are
evaluated.



Within eachintenal [a;, a;1+1], both functions¢; and
¢ increaseor decreasenonotonically Similarly, thefunc-
tion ¢3 and ¢4 are also monotonicwithin eachinterval
[bj,bj+1]. Thelocalizationalgorithm enumeratesill nm
pairsof intervals [a;, a;+1] and[b;, bj;1]. It determinesf
eachpair containsfeasiblestartingpointsof the curve seg-
ments,andnumericallyfindsthemif so.

3.2 A Pair of Monotonic Intervals

Theideais to usethe one-to-onecorrespondenchetween
s andt asdefinedby equation(8) or (9). We ensurethat
one of them, say (8), is always satisfiedwhile moving s

within theinterval [a;, a;+1] andt (accordingly)within the
interval [b;, bjy1].

Movemenf s resultsin movementf theendpointof
the two segmentsof length L, and L, thatstartat s. This
is donethroughnumericallyintegrating||c'||. Updateson
their total curvaturesp; (s) andg¢,(s) areperformedalong
theway. Similarupdate®n ¢3(s) andg,(s) areperformed
asaresultof themovementof ¢.

Let I; betheinterval definedby ¢4 (a;) and ¢ (a;+1).
And let J; be the interval definedby ¢s(b;) + 61 and
¢3(bj+1) +6.. f ;N J; = ¢, thenthe pair [a,-,ai+1]
and([b;, bj 1] canbeexcludedfrom consideration.

Otherwisewe first determinghe maximalsubintenals
of [a;, a;+1] with endpointse, y whereg; () < ¢1(y) and
of [bi, bir1] with endpointsw, z where ¢3(w) < ¢3(z)
suchthat ¢ (z) = ¢3(w) + 61 and¢i(y) = ¢3(z) + 61.
Therearea numberof casespneof which s illustratedin
Figureb.
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Figure5: One-to-onecorrespondendeetweens andt definedoy
¢1(s) — ¢3(t) = 01 ass decreasefom x to y while t increases
fromw to z . Sincedi(a;) > ¢1(as+1) andes(b;) < ¢p3(bj+1),
startwith s < a;4+1 andt < b;. Supposep: (ai+1) > ¢3(b;) +
0:. Increase until ¢1(ai+1) = ¢3(t) + 61 andthenlet w « ¢
andz < a;y1. Meanwhile,supposepi(a;) > ¢a(bjt+1) + 61.
Let s < a; andincreases until ¢1(s) = ¢3(bj+1) + 61. Let
y < sandz < bit1.

As s changedrom z to y, t changegaccordingly)from
w to z. We first considerthatoneof ¢2(s) and ¢4(t) in-
creasesand the other decreases.Without loss of gener
ality, supposep,(s) increasesas s changesrom z to y

while ¢4(t) decreasesist changesrom w to z. Then
¢2(s) — ¢4(t) increasesA uniquepair of curve locations
existif ¢2(z) — da(w) < 62 andea(y) — ¢pa(z) > 6>. The
locationscanbe found usingbisection.

Otherwise,both ¢, (s) and ¢4(t) increaseor both de-
crease.We employ aniterative procedureasillustratedin
Figure6.

XoX1 S Y Z oty Wowy W
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Figure 6: Iterationswhenboth ¢» and ¢4 decrease.Startwith

8 < xo = x andt < wo = w. Alternatelymovefromz; to z;+1

andfrom w; to w;+1 asfollows. Sincegs(wo) + 02 > pa2(xo), t

decreasefom wg to w1 whereg,(w1) + 62 = ¢2(zo). Butnow

¢d3(wi) + 01 > ¢1(zo). Next, increases from zo to z; where
¢1(z1) = ¢3(w1) + 01. A new roundstartsby decreasing from

w1 10 w2 to reestablishpa(w2) + 02 = ¢2(z1). Theiterations
continueuntil the differencebetweenp(w;) + 62 and¢ga(z;) is

smallenoughor oneof z; andw; exits thecorrespondindgnterval.

In the former case locationshave beenfound. In the later case,
locationsdo not exist.

The two intervals may contain more than one pair of
feasiblelocationsof curve sggments.To find the next pair,
we passby s; andt; for large enoughi by a smallamount
andcontinuetheprocess.

In theworstcasethealgorithmrequires®((m+n)T'/h)
steps. The real runningtime is usually fastersince most
of the mn pairsI; and J; of intervals arerejecteddueto
I;n J; = (), aswe have obsenredin simulations.

4 Simulations

Weimplementedothlocalizationalgorithmsn C++. Sim-
ulationsof the marchingalgorithmin Section2 werecon-
ductedon cubic splines limagons,logarithmicspirals,ex-
ponentialcurves, etc. In Figure 7, the disk startsrolling
at a5 on a cubic spline and stopsat b5. The localization
algorithmfinds six sggmentsover [a;, b;], 0 < i < 5, re-
spectvely, that have length £(as, bs) and total curvature
®(as,b5). To eliminatethe ambiguities,the disk contin-
uesrolling from b5 to ¢5 andreliesontheextrainformation
E(b{,, 05) and<1>(b5, C5).
In Figure8, two fingers(not shown) roll from sq to s

to s andfrom ¢y to ¢; to ts, respectiely. Herefd, =
—0.725248, and§, = —1.99849. The stationarypoints



Figure7: Simulationof themarchingalgorithmonacubicspline.

of ¢; and¢- dividesthe curve domaininto 16 intervals;

andthestationarypointsof ¢3 and¢, alsodivide thecurve

domaininto 16 intenvals. A total of 15 pairsof feasiblelo-

cationsfor so andty werefoundby thealgorithmdescribed
in Section3. The ambiguitieswere eliminatedwith extra
tactiledatatakenat afourth pair of contactpositions.

Figure 8: Localizationof two curve sggments.

5 Discussion

Tactile sensingin the rolling mode reducesthe localiza-
tion of fingersto constraintsatisactionin multiple vari-
ables.The presentealgorithmsexploit curve geometryto
runin time linear in the size of the discretizedcurve do-
main. This is achieved by partitioning the curve domain
into intervals monotonicwith respectto relatedfunctions
andthenby combiningbisectionwith marching.Thecom-
pletenes®f thesealgorithmsdistinguishthemselesfrom
alocal optimizationapproachlbasedon leastsquaresfor
instancewhosesucces$eaily reliesoninitial estimates.
The marchingalgorithmdescribedn Section2 canbe
easilygeneralizedo find all length-L segmentsonacurve,
openor closed,over which the integral of a function f (u)

equalssomeconstantC'.

An industrialapplicationoften handledarge quantities
of identical parts. The precomputatiorof inflectionsand
verticesis thusa one-timeoverheador onepartshape.

A key implementatiorissueis to ensurerolling contact
betweerboth fingersandthe object. We arecurrently ex-
perimentingwith one straightjaw and one passive wheel
onaverticalpin.
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