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Abstract
Model-based recognition of an object typically involves match-
ing dense 3D range data. The computational cost is directly
affected by the amount of data of which a transformation needs
to be found before carrying out the match against a model. This
paper investigates recognition using “one-dimensional” data,
more specifically, points sampled along three concurrent curves
on the surface of an object. The introduced method determines
the quality of match against a model in two steps. First, the
Gaussian and mean curvatures at the curve intersection point are
estimated and used in a table lookup to find multiple candidate
points on the model that have similar local geometry. Second,
starting at each point, local optimization is conducted to search
for a possible location of the curve intersection on the model
as well as an orientation that leads to a good match of all data
points. The best match between the model and the data curves is
chosen over the results obtained from all candidate points. The
quality of this match is used for comparison against other mod-
els. Simulation and experiment have been conducted to validate
the recognition approach.

1 Introduction
Object recognition using range data in two and three dimensions
often relies on the recovery of rotation and translation param-
eters through a least-squares formulation. Curves and curved
surfaces have been discretized into points, line segments, and
planar facets in advance. Correspondences between these prim-
itives in the range data and those on the model are either implied
by the parametrization (in the case of a 2D curve) [21], or de-
termined using a search tree of the hypothesis-and-test type [5].

Efficiency and robustness are the main issues in recover-
ing the transformation parameters over a large amount of range
data. To ease the computation, hashing over local geometric
features such as curvatures and distances (within point tuples or
triples) is conducted to narrow down to a small number of trans-
formations before refining them with a least-squares method or
a heuristics-based search [3].

Tactile shape sensing does not possess the capability of
global recognition. Nevertheless, it has several advantages over
range sensing. First, it can identify the relative position and

orientation of an object being manipulated by the robot hand.
Second, range images are subject to occlusions of the camera,
which is not an issue for the touch sensor. Third, mounted on a
high-precision robot (such as the Adept Cobra), even a simple
joystick sensor can achieve an accuracy of

�������
mm on position,

which is higher than those of many range sensors.
The inherent local nature of tactile sensing prompts the use

of differential invariants in recognizing planar shapes bounded
by low-order algebraic curves [10] and simple curved sur-
faces [12]. Only minimal tactile data are needed for recogni-
tion. These differential invariants, however, must have values
independent of point locations on a shape. Their derivations
involve meticulous algebraic manipulation of primitive invari-
ants including curvatures and torsions. Such derivations are
also very shape specific and appear to be very difficult, if not
impossible, to generalize to more complex shapes.

The coefficients of a superquadric fit over sparse tactile
data [1] can be directly used for shape matching. Nevertheless,
the data points need to be distributed all over the surface to gen-
erate a good fitting result. This approach also tends to be more
effective at reducing the set of possible models than recognizing
a specific one.

In this paper, we present a method that recognizes a surface
by registering points acquired along three concurrent curve seg-
ments residing on the surface. The idea is to compute the best
superposition of these curves onto a surface model. We make
use of the local geometry at their intersection point � , and com-
bine table lookup with nonlinear optimization.

With tactile data along three concurrent curve segments, we
estimate the Gaussian curvature � and mean curvature 	 at
their intersection point � using data points in its neighborhood
as described in [11]. All data points are fixed with respect to a
local frame at � whose 
 -axis is aligned with the surface normal
and � - � plane with the tangent plane.

A table is constructed in advance for every surface model to
store Gaussian and mean curvatures evaluated at discrete points.
We look up the table with the pair 
�����	�� to find a set of esti-
mated locations for � on the model that have similar local ge-
ometry. This has reduced the search for the location of � on the
surface model to multiple local searches.

Starting at each estimated location for � on the model, a lo-
cal search walks a path to a point ��� in the neighborhood that
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induces the best superposition of the data points onto the model.
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Figure 1: Registering three data curves on a surface. The grey (green)
dots represent candidate locations of the curve intersection point � on
the surface found in a table lookup. A search path leads from one
of these locations to where the curves are “best” superposed onto the
surface.

See Figure 1. Matching between the data points and the surface
model is done by aligning the two tangent planes, one at � and
the other at ��� , and rotating the first one (along with the data
curves) to yield the smallest total distance (in the least-squares
sense) from all data points to the surface.

The quality of match is defined as the minimum aggregated
distance over the results from all local searches. The model that
yields the best match against the data is then recognized.

Section 2 describes curve registration and model recognition
in detail. Section 3 presents simulation results with four classes
of shapes. An experiment involving several objects then follows
in Section 4. Section 5 summarizes the results and discusses
future work.

1.1 Previous Work
There are two primary recognition strategies in model-based vi-
sion. The first strategy hinges on the recovery of viewing pa-
rameters (and thus the pose) [14]. The second one develops
descriptors that are invariant to Euclidean, affine, or projective
transformation, or to camera-dependent parameters [15, 22].

Images of 2D objects can be mapped to points in a high-
dimensional manifold called the “shape space” [23]. The map-
ping is invariant to viewing parameters so that recognition re-
duces to measuring the geodesic distances between these points
on the manifold.

In touch sensing, shape recognition has long been based
on the notion of “interpretation tree”, which represents corre-
spondences between features extracted from the tactile data and
those on the model [8, 7, 6]. A volumetric approximation [2]
can be built over tactile data to enhance feature selection and
prune incompatible models. Constructed over a finite number
of features, the interpretation tree method is inherently discrete
and its applications have been mostly limited to polyhedral ob-
jects.

Geometric hashing and dynamic programming are the two
common techniques for matching two plane or space curves.

In geometric hashing [13, 9, 16], a curve is discretized, after
some smoothing, into equally spaced points. A hash table is
usually indexed by the values of some invariants such as cur-
vature, torsion, distance between two points, or angle cosines
between their tangents. This table stores the curve model and
point location on the model. Voting is done to identify the most
promising curve models as well as to set up point correspon-
dences for a least-squares method to find the longest matching
segment.

Methods based on dynamic programming [4, 18, 17] tend to
segment the curve at special points such as inflections. Con-
sequently, the curve is represented as a “string” of elements
corresponding to curve segments. The matching problem then
becomes finding the longest common subsequence with low-
level comparisons based on features such as total curvature, arc
length, etc.

2 Curve Registration
Let � be the surface of an object. Applying the method
from [11], we use a touch sensor to sample points along three
curves on � , each lying in a different plane. These curves in-
tersect at one point � on the surface. We call them the “data
curves” and, in case of no ambiguity, identify them with the
data points. The surface normal � and two principal curvatures��� and ��� at the intersection point � can be estimated [11]. Thus
we have the Gaussian curvature ��� ��� �!� and the mean cur-
vature 	"�$#�%'&)(*%,+.-� .

The tangent plane at � is orthogonal to the surface normal � .
Let us arbitrarily pick two orthogonal tangent vectors / � and / �
at � . Together with � these vectors form a local data frame0

, with respect to which the curves are fixed. All data points
1�32.���42���
526� , �87:9;7=<
, along the three data curves, are con-

verted into local coordinates in
0

:>? �3@2�A@2
 @2
BC �D
�/ � / � ���.E >?A>? �32�42
52

BCGF � BC �
To match against a surface model H , we superpose the three

data curves onto it by locating their intersection point � on the
model. Align � with the found location I and the estimated
normal � of � at � with the normal of H at I , and find a rotation
of the data points about the coinciding normals that minimize
their total distance to H .

2.1 Table Lookup
The surface model H has a preconstructed table which stores
the Gaussian and mean curvatures at a set of discretization
points. To match the data curves against H , we first look up
the table for points whose Gaussian and mean curvatures are
close to the estimated pair 
6�J��	K� at � . Let � � �6� � � �L�M� ���3N be
the points found. We refer to them as the candidate points. The
next step is to conduct local search, starting at each point �!O , for
the best superposition of all data points onto H .



2.2 Local Search
Suppose the surface model H has an implicit form PQ
1�R�.����
S�T��

and a parameterization UV
�WR��XS� . Consider the intersection
point � of the three data curves coinciding with a point I on H .
Let Y be the surface normal at I , and Z � and Z � be two arbitrar-
ily selected tangent vectors at I such that Z ��[ Z � �\Y .

We align the ��� -plane of the local data frame
0

, that is, the
tangent plane to the data curves, with the tangent plane at I on
the model. Let ] be the angle of rotation from Z � to the � -axis
of

0
. Every data point 
1��@2 �.�A@2 ��
^@2 � in the frame

0
is transformed

into some point 
1� @ @2 ��� @ @2 ��
 @ @2 � in the coordinate system of the sur-
face model:>? �!@ @2� @ @2
^@ @2

BC �_
`Z � Z � Ya� >? �3@24b c^d ] F �A@24d.e�f ]� @24d�egf ]ih8� @2jb c^d ]
k@2
BC hlI �

This transformation depends on the parameters W and X , which
locate the point I on the model, as well as on the angle ] . The
distance from the transformed data point 
1��@ @2 ���A@ @2 ��
^@ @2 � , �m7\9n7<

, to H has a first order approximation o p #gq,r rs^t u r rsAt v r rs - oowo xnp #gq r rs t u r rs t v r rs - owo .The registration error at Iy�lUV
1Wz�.XA� for the data curves is
the total distance from all transformed data points to H . It is a
function of the parameters W and X and the rotation angle ] :{ 
1Wz�.X3�|]��}� ~� 2�� � � PQ
1�3@ @2 �.�A@ @2 ��
^@ @2 � ��g� � PQ
1� @ @2 �.� @ @2 ��
 @ @2 � ���

�
(1)

2.2.1 Error Minimization

Starting at every candidate point ��O���UV
1W�O4�.X,O,� , we search
for a local minimum of the function

{ 
�WR��X!��]3� using the steep-
est descent method [19, p. 318]. The gradient � { 
�WR��X!��]3���
 {a� � {�� � {�� � is obtained by differentiating (1) with respect toW , X , and ] , respectively.

The values 
�W O �.X O � obtained from the table lookup are used
as initial estimates of 
�WR��XS� , respectively. Let � #���-O ���AO , such

that W #g�|-O ��W�O and X #g�|-O ��X,O . Since W #���-O and X #���-O are known,
the error

{
depends on ] only. Figure 2 shows how it changes

with ] when three (synthetic) data curves are superposed onto
an ellipsoid. We find ] #���-O that minimizes the registration error

2π0

E

0.39

φ
φ j

(0)

Figure 2: Error (1) of superposing three data curves onto an ellip-
soid ���|�,�S�}�)���}�S�)�4� �*�)�����}�)�����S���j�  ����M�S�4¡ over ¢ �j��£L¤�¥R¦�¢ �4��¤�¥ . The
curves, each consisting of 61 points, were obtained from the ellipsoid
where they intersected at ���3�)�4¡T§¨�ª©M� �,£j���4� «M¬5¡ . They are now placed
at the point �1�4� ­j©,�.�4� «M­5¡ and rotated about its surface normal through
an angle ® .

and use it as the initial value of ] O .

To compute the initial estimate ] #���-O , we discretize the do-
main ¯ � ��°'±*� of ] . All local minima of

{
are bracketed. Within

each bracket, bisection is performed to find a local minimum.
Then, ] #���-O is the angle yielding the smallest of these minima.

2.3 The Registration Algorithm

The input to the algorithm include data points along three
curves on a real shape and their intersection point � . It also
includes a surface model H with a lookup table recording
precomputed Gaussian and mean curvatures at discretization
points. The pseudocode of the algorithm is given below.

1 estimate the normal � of data at �
2 estimate Gaussian and mean curvatures 
6�J��	K� at �
3 convert all data points into the data frame

0
4 use the lookup table to find candidate points on H
5 for each candidate point � #g�|-O �\U\²LW #��|-O ��X #g�|-O´³
6 ] #���-O¶µ initial estimate of ] from bracketing and bisection
7 · µ �
8 repeat
9 � #�¸¹( � -O µ steepest descent from � #º¸¹-O on H

along

F
� { ² W #º¸¹-O �.X #�¸¹-O ��] #�¸¹-O ³

10 · µ ·Vh �
11 until no further minimization is possible
12 ���O µ � #�¸,» � -O

Each candidate point ��O will converge to some point ���O at
which the registration error (1) achieves a local minimum

{ �O ,
as illustrated in Figure 3. Let ��� be the point among the result-

jp

jp* M

n

d1

d2

Figure 3: Sliding and rotating three concurrent data curves (as dotted
lines) on a surface model to find the best superposition. The point �k¼
is the initial estimate of the location of the curve intersection while the
point ��½¼ is the location found through optimization.

ing points ���� �6���� � �M�L� �6���N that yields the minimum registration
error, which is {¿¾TÀ Á �\Â egf�Ã { �� � { �� � �M�L� � { �NÅÄ � (2)

Then ��� is the estimated location of � on the model H .



2.4 Recognition
Our recognition strategy is based on localization. Suppose we
are given an object whose model is known to be from a database.
The robot uses a touch sensor to sample data points along three
concurrent curves on the object’s surface. Estimate Gaussian
and mean curvatures at the curve intersection � as described ear-
lier in the section. Then, for each shape model in the database,
we run the registration algorithm in Section 2.3 to match the
data curves against every model in the database. The model that
yields the smallest error

{ ¾TÀ Á
defined in (2) is then recognized

as the shape of the object.

3 Simulation
Table 1 lists four families of surfaces, in both implicit and para-
metric forms, which were used in our simulation.

Implicit form Parametric formq +Æ + h u +Ç + h v +È + � � 
6É bLckd W d.e�f X!��Ê d.e�f W d�egf X3��Ë b c^d XA�
(ellipsoid) 
1Wz�.XA�ÍÌÎ¯ � ��°'±�Ï [ ¯ � �.±�Ïq +Æ + h u +Ç + �\
 
�É^X bLckd Wz�|Ê¹X d.e�f Wz�.X � �
(elliptic paraboloid) 
1Wz�.XS�ÍÌ8¯ � ��°'±�Ï [ ¯ F � � � Ï�!Ð FÎÑ �!� � �Ò
 
�WR��X!��W3Ð FÎÑ W3X � �
(monkey saddle) 
1Wz�.XA�ÍÌ8¯ F � � � Ï [ ¯ F � � � Ï� � � � �\
 
�WR��X!��W � X � �
(crossed trough) 
�WR��XS�ÍÌ8¯ F � � � Ï [ ¯ F � � � Ï

Table 1: Four surface families used in the simulation.

3.1 Curve Registration Results
Consider the elliptic paraboloid displayed in Figure 4. We select

Figure 4: Three data curves (in black color) and their registered loca-
tions (in white color) on the surface of an elliptic paraboloid given byÓ §ÕÔ +Ö)× Ø +aÙÛÚ +Ö)× Ö + .

a point � , say, with parameter values 
�WR��XS�n�l
 �4� ° � � ��� Ü Ñ � . In-
tersect the elliptic paraboloid with three arbitrary planes through� , and generate 61 data points along each of the three intersec-
tion curves. Random noises within the range of

����� �4���
are

added to the generated data points.

The normal, the Gaussian curvature, and the mean curva-
ture at � are estimated using the method from [11] as Ý�Þ�
 ���g�,ß��k� � ��� à^á'ß4Ü � ��� âk���j� � , Ý��� ��� ß4�kâ ° , and Ý	Û� ����á'ã^àjã

.1 A
table lookup finds three candidate points: � � �ä
 �k� ° ß � ��� Ü � ,� � �å
 �4� Ü�� � ��� Ü � , and � Ð ��
 ��� ß Ñ � ��� à � , all in parameter val-
ues. The registration errors (1) at these points are respectively{ � � �����Mß ° à ,

{ � � ���g�'ájàjâ
, and

{ Ð � ��� Ñ � ° á .
Registration starting at the candidate points yields locations���� �æ
 �k� ° ß � ��� ÜkÜ � , ���� �ç
 �k� ° á � ��� Ü4Ü � , and ���Ð �ç
 �4���5á � ��� ÜkÜ � .

The corresponding registration errors are
{ �� � ����� ° �4� ,

{ �� ������ ° �Mâ , and
{ �Ð � ����� ° à4ß . The location of � is thus estimated

to be ���è�é
 �k� ° ß � ��� ÜkÜ � , which is very close to its real loca-
tion 
 �4� ° � � ��� Ü Ñ � . The three curves are well registered onto the
elliptic paraboloid, as shown in Figure 4.

More registration tests are conducted on the same elliptic
paraboloid as well as on three other shapes including an el-
lipsoid, the monkey saddle, and the crossed trough (see Fig-
ure 5). The results are displayed in Figure 6. On each of the

(a) (b) (c)

Figure 5: Three surfaces used in the simulation in addition to the one
shown in Figure 4: (a) an ellipsoid with êÅ§ë© , ìí§��j� � , and în§ï�4�   ;
(b) the monkey saddle; and (c) the crossed trough.

four surfaces, ten registration instances are performed with ran-
domly generated intersection points � and three cutting planes
through each. The real intersection points � of three data curves
are drawn as circular dots and their estimated locations �*� as
crosses. In the figure every original location � and its estimate� � lie the closest to each other. Table 2 summarizes the Eu-
clidean distances ð�� F ���4ð for the registration instances in Fig-
ure 6.

ellipsoid elliptic monkey crossed
paraboloid saddle trough

min 0.0169 0.0148 0.0053 0.0171
max 0.0408 0.0448 0.0433 0.0396
avg 0.0288 0.0297 0.0234 0.0265

Table 2: Minimum, maximum and average Euclidean distance ñ6�iò��½5ñ between the real and estimated locations of the curve intersection
calculated over the 40 registration instances in Figure 6.

1To verify, we also compute their values using the surface equation: ó_ôõ�ö,÷wø.ù,ø.ú,û)ö,÷ ü¹ý¹ú þMû`ö,÷ þ�ÿ¹ù¹ù��
, � ô ö,÷ ü¹ÿ,ø.ü

, and ��ô ö,÷ þ¹þ�ÿ¹ù
, respectively.
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Figure 6: Instances of curve registration on the four shapes displayed
in Figures 4 and 5: (a) an ellipsoid; (b) an elliptic paraboloid; (c) the
monkey saddle; (d) the crossed trough. In each instance, the intersec-
tion point � of three data curves is represented by a circular dot and its
estimated location � ½ by the closest cross.

3.2 Recognition Tests
As a recognition example we use the same generated data points
from the crossed trough, and superpose them onto the four sur-
faces. The minimum registration error (2) on the crossed trough
itself is

��� �Sá ° � . Using the estimated Gaussian and mean cur-
vature values, we find no candidate curve intersection points on
the ellipsoid and elliptic paraboloid after table lookups. The er-
ror on the monkey saddle is

�����Mâ4ßSá
,
�5àjã��

higher than that on
the crossed trough.

For each surface in Figure 6, ten recognition instances, each
with a different curve intersection, were carried out. The results

successes ellipsoid elliptic monkey crossed
paraboloid saddle trough

table lookup 2 1 9 0
local search 8 9 1 10

Table 3: Summary of recognition tests, ten on each shape.

are displayed in Table 3. In total, 12 out of 40 tests succeeded
after table lookups yielded no candidate points on the wrong
models. The other 28 successes involved both table lookups
and local optimizations. In these tests, the registration errors
on the wrong models exceeded those on the right models by an
average of

�Mâ4���
.

4 Experiment
Figure 7 displays the four objects used in our experiment. Data
points were obtained using a joystick sensor driven by an Adept

Figure 7: Objects used in the experiment: two regular cylinders with
diameters  M�j� � mm and ¬�� mm, respectively, an elliptic cylinder with
semimajor axis  M�4� � mm and semiminor axis ­4©,� 	M  mm, and a sphere
with radius ­,­ mm.

robot [11]. By constraining the robot movement in three differ-
ent planes the sensor sampled points along the corresponding
intersection curves with the object. On each curve

Ü��
points in-

cluding the curve intersection were sampled. So a total of 121
points were acquired on each object.

Due to symmetry, curve registration results on the sphere and
cylinders were meaningless. But the minimum registration error{ ¾TÀ Á

defined by (2) was still useful for recognition of these
shapes. This error was computed for every object.

Each column in Table 4 records the minimum registration
error (2), averaged over the number of data points, for the same
three data curves onto the four models. The diagonal cells in the

model object cylin. 1 cylin. 2 ell. cylin. sphere

cylinder 1 0.033
�����,à4à ��� Ü4Ü^ß ��� ° ã4ß

cylinder 2
���g�,â ° 0.072

�����Mã^à �k� �^àjß
elliptic cylinder

��� ° Ñ � ��� °4° Ü 0.156
��� ° à'Ü

sphere
��� ° áS� ��� Ñ �4ß ��� ã ° ã 0.055

Table 4: Minimum error (in millimeters) of registering data acquired
from the four objects shown in Figure 7 onto their models.

table show the registration errors on the right models, while the
non-diagonal cells show the errors on the wrong models. For
each object the registration error was the smallest on the right
model. As a result, all four objects were correctly recognized.

5 Summary and Future Work
We have presented an approach that recognizes a curved object
from a set of surface models based on “one-dimensional” tactile
data. More specifically, the data points are sampled along three
concurrent (but otherwise arbitrary) curves using a touch sensor
on the object’s surface. The problem of recognition turns into
registering these data curves on each model and choosing the
one that yields the best matching result.

Finding the rotation and translation typically involves a
search in the 6D transformation space. However, our registra-
tion task simplifies to finding the location of the intersection
point � of the three data curves on the surface model, which is



determined by the values of the two surface parameters W andX . At this location, we align the estimated object normal at �
with the normal of the model and rotate the data curves about
it through an angle ] to obtain the best superposition. So there
are essentially three degrees of freedom to be determined.

The global minimization over the transformation parameters
1Wz�.X3�|]�� is eased with the estimated Gaussian and mean curva-
tures 
�����	�� at the point � . We use these two curvatures in a ta-
ble lookup to locate (discretization) points on the surface model
that have similar local geometry to that of � . Search is then car-
ried out in the neighborhood of each point to best superpose the
data curves onto the surface model.

The data curves do not need to be planar as long as we can re-
liably estimate the Gaussian and mean curvatures at the point � .
This will facilitate control of the touch sensor in data acquisi-
tion. For every shape model, a hash table over 
6�J��	K� could
be used instead of a 2D array over discrete 
1Wz�.XA� values. This,
however, is not expected to improve the recognition time signif-
icantly since most of the cost is attributed to local searches.

We have assumed that the surface model has both implicit
and parametric forms. However, the method is still applicable if
only the implicit form is provided, except that the construction
of the lookup table will be more costly. With just a parametric
form, the distance from a point to the surface may be found
by a search in the parameter space. This will slow down the
computation of the registration error.

Experiments with more complex shapes need to be carried
out in order to verify the effectiveness of the method. Besides
robustness to noise in the position data, we would like to un-
derstand how the accuracy of curve registration affects the suc-
cess rate of recognition. One factor is the “locality” of the data
curves — the less local they are, the better they can be regis-
tered onto a surface model as we have observed. However, a
large number of data points also slows down the computation
and is not always necessary for the recognition purpose.
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