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Abstract— A shell is a body enclosed between two closely
spaced and curved surfaces. Classical theory of shells [38],
[33], [16] assumes a parametrization along the lines of prin-
cipal curvature on the middle surface of a shell. Such a
parametrization, while always existing locally, is not known
for many surfaces, and deriving one can be very difficult
if not impossible. This paper generalizes the classical strain-
displacement equations and strain energy formula to a shell
with an arbitrary parametric middle surface. We show that
extensional and shearing strains can all be represented in
terms of geometric invariants including principal curvatures,
principal vectors, and the related directional and covariant
derivatives. Computation of strains and strain energy is also
described for a general parametrization.

The displacement field on a shell is represented as a B-
spline surface. By minimization of potential energy, we have
simulated deformations of algebraic surfaces under applied
loads, and performed experiments on an aluminum soda can
and a stretched cloth using a three-fingered Barrett Hand.
The measured deformations on each object match those in the
simulation with good accuracy. The presented work is an initial
step in our research on robot grasping of deformable objects.

I. I NTRODUCTION

Deformable objects are ubiquitous in our daily life. The
ability to manipulate them is an important measure of the
robot’s intelligence and dexterity. Such skill expects to not
only exert impact on medical robotics but also open the door
for the development of home robots. Despite the rich litera-
ture on robot grasping [4] and dexterity [29], manipulationof
deformable objects has remained an underdeveloped research
area. This is in part due to the lack of a geometric framework
to characterize this type of manipulation, and in part due to
the high computational cost of modeling the physic process
itself.

There are two methods of dealing with deformability in
solid mechanics: the energy model based on Castigliano’s
theorem [11, p. 375] and the dynamic model described by
Navier’s equations [14, pp. 203-205]. Both methods are
based on the strain-displacement relations (i.e., kinematics)
and the strain-stress relations (Hooke’s law). Castigliano’s
theorem views deformation as energy minimization. Assum-
ing linear elasticity of isotropic and homogeneous material,
the theorem states that the partial derivatives of the total
strain energy with respect to a generalized displacement
(force, respectively) is the corresponding generalized force
(displacement, respectively). Navier’s equations generate a
dynamic deformable model describing shape evolution over
time, which is valuable for analysis and interaction.
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A shell is a thin body enclosed between two closely spaced
and curved surfaces. In this paper, we will apply the energy
method to compute the deformed shape of a parametrized
shell under the contact force exerted by a robot finger. The
strain energy of a linear object can be described using the
tangent, curvature, and torsion functions along the shape [10,
pp. 425,447;373,383]. With constraints at the endpoints, the
shape of such an object can be solved for minimum potential
energy by the technique of calculus of variations, or more
often, by the Ritz’s method which uses a linear combination
of basis functions [18], [31].

Deformations of 2-1
2
D objects, in particular, shells and

plates, have been studied based on the geometry of their
middle surfaces [38], [16], [33]. To our knowledge, all the
treatments from the mechanics of materials have assumed the
middle surface of a shell to be parametrized along the lines of
curvature. The expressions of extensional and shear strains,
and strain energy, though derived in a local frame at every
point, are still dependent on the specific parametrization
rather than on geometric properties only. More specifically,
the parametrization dependent features in the formulation
include the magnitudes of the two partial derivatives of the
surface function and the change rates of these magnitudes.

Most surfaces (including the Bézier and B-spline sur-
faces, and NURBS used in geometric modeling) are not
parametrized along the lines of curvatures. Transformation
into such a parametrization can be very difficult if not
impossible. This fact has prevented direct application of the
strain energy form to computing deformations of general
parametric surfaces.

In Section III, we will establish that the strains and strain
energy of a shell under a displacement field are decided by
geometric invariants including the two principal curvatures
and two principal vectors. Section IV and the Appendix will
outline the strain energy computation for a general paramet-
ric shell. Using a B-spline representation of the displacement
field, Section V will solve for shell deformations under an
applied load via energy minimization. Section VI presents
simulation results on four algebraic surfaces. Experiments on
a deformed soda can and a framed cloth screen are conducted
in Section VII.

II. RELATED WORK

Based on Castigliano’s theorem, the Finite Element
Method (FEM) [35], [3] can determine the stress, strain,
and displacement everywhere inside a body represented as a
mesh structure. FEMs are used to model the deformations of
a wide range of shapes: fabric [8], a human hand interacting



with a deformable object [17], human tissue deformation in a
surgery [5], etc. An FEM [7] is described for the analysis of
thin shells based on the Kirchhoff-Love theory and smooth
interpolation of displacement fields. Subdivision surfaces
are used and results are shown for planar, cylindrical, and
spherical shells only.

However, FEMs require extensive computation and often
have to be simulated off-line, and do not work well on
modeling large deformations. The boundary element method
(BEM) [19] solves for boundary displacement and forces
through a conversion of Navier’s equations to one defined
on the shape boundary. It is more efficient and accurate for
computing contact force. The skeleton-based method [22]
achieves efficiency of deformable modeling by computing
the stresses/strains at contact points and geometrically salient
points and then by interpolating over the entire surface.

Work on robotic manipulation of deformable objects has
been mostly limited to linear and meshed objects [41], [26].
Most of the developed models are energy-based and some
are not experimentally verified. Picking up a highly flexible
linear object such as a wire or rope can be easily done with
a vision system [32]. Knotting [34], [24], unknotting [20],
and both [40] are the typical manipulation operations on this
type of linear objects.

In graphics, the primary focus of deformable modeling
is on efficient computation of effects that look like real,
rather than on accurate modeling of the physical world.
Discrepancies with the theory of elasticity are tolerated,
and experiments with real objects need not be conducted.
For instance, the widely used formulation [36] on surface
strain energy1 does not follow from solid mechanics. In
this field, there are generally two approaches of modeling
deformable objects: geometry-based and physics-based [15].
In a geometry-based approach, splines and spline surfaces
such as Bézier curves, B-splines, non-uniform rational B-
splines (NURBS), are often used as representations [2], [12].

Physics-based modeling [27] of deformation takes into
account the mechanics of materials and dynamics to a
certain degree. Mass-spring systems, though inaccurate and
slow for simulating material with high stiffness, are used
extensively in animation [6], facial modeling [42], [37], and
simulations of cloth [1], animals [39], and surgery [9]. The
“snake model”, meanwhile, is widely used in medical image
analysis [25].

III. SHELL DEFORMATIONS

Throughout the paper, we adopt the notationfu for the
partial derivative of a functionf(u, v) with respect tou.

A. Some Background in Surface Geometry

Let σ(u, v) be a surface patch in 3D such that the
tangent plane at every pointp is spanned by the two partial
derivativesσu andσv with respect tou andv, respectively.
The unit normal to the surface isn = σu ×σv/‖σu ×σv‖.

1defined to be the integral sum of the squares of the norms of thechanges
in the first and second fundamental forms.

The first fundamental formof σ is defined asEdu2 +
2Fdudv +Gdv2, where

E = σu · σu, F = σu · σv, G = σv · σv; (1)

and thesecond fundamental formas Ldu2 + 2Mdudv +
Ndv2, where

L = σuu · n, M = σuv · n, N = σvv · n. (2)

A compact representation of the two fundamental forms use
the following two symmetric matrices:

FI =

(

E F
F G

)

and FII =

(

L M
M N

)

. (3)

The two principal curvaturesκ1 andκ2 at a pointp are
the eigenvalues ofF−1

I FII . They represent the maximum
and minimum rates of the change of geometry when passing
throughp at unit speed on the patch, and are achieved in two
orthogonal velocity directions, respectively, unlessκ1 = κ2.
These two directions, represented by unit vectorst1 andt2,
are referred to as theprincipal vectors. The two principal
vectors and the unit normaln = t1 × t2 define theDarboux
frameat the point.

The patch isorthogonal if F = 0 everywhere. It is
principal if F = M = 0 everywhere. On a principal
patch, the principal curvatures are simplyκ1 = L/E and
κ2 = N/G, respectively, and the corresponding principal
vectors aret1 = σu/

√
E andt2 = σv/

√
G.

B. Middle Surface as a Principal Patch

This section reviews some known results on deformations
and strain energy from the theory of shells in solid mechan-
ics, which, to our knowledge, have treated principal patches
only. In Section III-C, we will transform these results to
make them independent of a specific parametrization. but
rather dependent on geometric invariants including principal
curvatures and vectors.

Our treatment is from [16] with some changes of notation.
We look at a section of the shell and let its middle surface
before deformation be described by a principal patchσ(u, v),
as shown in Fig. 1(a). Every pointp in the shell is along the
normal direction of some pointq = σ(u, v) on the middle
surface (see Fig. 1(b)). In other words,q is the projection of
p onto σ.

The displacementδ(u, v) of q is best described in its
Darboux frame:

δ(u, v) = α(u, v)t1 + β(u, v)t2 + γ(u, v)n.

We refer to the vector fieldδ(u, v) as thedisplacement field
of the shell, which yields the new positionq′ of q:

q′ = σ′(u, v) = σ(u, v) + δ(u, v).

The new positionp′ of the point p may not be along the
normal direction ofq′, due to atransverse shear strainthat
acts on the surface throughp and parallel to the middle
surface. This type of strain tends to be much smaller than
other types of strains on a shell and is neglected by classical
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Fig. 1. Deformation of a shell: (a) before; (b) pointsp and q and their
displace locationsp′ andq′; (c) rotation of the surface normal.

solution techniques like [21], [38]. It is also not considered
in this paper.

At q there areextensional strainsε1 andε2, which are the
relative increases in lengths along the two principal directions
t1 andt2, respectively. There is also thein-plane shear strain
ω defined as the change of the angle betweent1 andt2 under
deformation. As shown in Fig. 1(b),t′1 and t′2 are the unit
tangents along the two partial derivatives ofσ′, respectively.
The angle betweent′1 andt′2 is no longerπ/2, andω is the
negative change. We have from [16, p. 219]:

ε1 =
αu√
E

+
(
√
E)v√
EG

· β − κ1γ, (4)

ε2 =
βv√
G

+
(
√
G)u√
EG

· α− κ2γ, (5)

ω =
βu√
E

− (
√
E)v√
EG

· α− (
√
G)u√
EG

· β +
αv√
G
, (6)

The extensional and in-plane shear strains atp will also
include some components due to the rotation of the normal
n (see Figure 1(c)). Under the assumption of small deforma-
tion, we alignt1 with t′1 and view along them. Letψ be the
amount of rotation of the normaln about thet1 axis toward
t2. Similarly, let φ be the amount of rotation of the normal
about thet2 axis towardt1. We have [16, pp.209–213]

φ = − γu√
E

− ακ1, (7)

ψ = − γv√
G

− βκ2. (8)

Let z be the (signed) distance from the middle surface to
p (along the normaln). It is shown that2 the extensional
strains atp areε1 +zζ1 andε2 +zζ2, and the shearing strain

2by dropping all terms of orderhκ1 or hκ2 when compared to 1.

is ω + zτ , where, from [16, p. 219],

ζ1 =
φu√
E

+
(
√
E)v√
EG

· ψ, (9)

ζ2 =
ψv√
G

+
(
√
G)u√
EG

· φ, (10)

τ =
φv√
G

− (
√
G)u√
EG

· ψ +
ψu√
E

− (
√
E)v√
EG

· φ. (11)

The geometric meanings of these terms will be revealed in
Section III-C.

Let e be the modulus of elasticity andµ the Poisson’s
constant of the shell material. The strain energy of the shell
with middle surfaceS and thicknessh, after the integration
of z over [−h

2
, h

2
], is modified over [16, p. 274]3:

Uε =
e

2(1 − µ2)

∫

S

{

h

(

ε21 + ε22 + 2µε1ε2 +
1 − µ

2
ω2

)

+
h3

12

(

ζ2
1 + ζ2

2 + 2µζ1ζ2 +
1 − µ

2
τ2

)}√
EGdudv. (12)

The linear term inh is due to extension and shear, the cubic
term due to bending and torsion.

C. Deformations of a General Patch

The energy formulation (12) is applicable to a surface
consisting of principal patches only. Though in theory there
exists a principal patch surrounding every point with unequal
principal curvatures, most surfaces (except planes, cylinders,
spheres, etc.) do not assume such parameterizations. Classi-
cal deformation results presented in Section III-B need to be
generalized to arbitrary parametric surfaces to widen their
applications.

The first step in the generalization is to rewrite the
strains (4)–(11) in terms of geometric invariants such as
principal curvatures and vectors that are independent of a
specific parametrization. These forms are currently for a
principal patch whose partial derivatives are not unit vectors
(neitherE = 1 norG = 1 must hold).

Let us start with the extensional strain (4). We have that

αu = lim
∆u→0

α(σ(u + ∆u, v)) − α(σ(u, v))

∆u

= lim
∆u→0

α(σ(u, v) + σu · ∆u) − α(σ(u, v))

∆u
def
= σu[α]. (13)

Here σu[α] is defined to be the directional derivative of
α with respect toσu. By the linearity of the directional
derivative operator, we rewrite the first summand in (4)

αu√
E

=
σu√
E

[α] = t1[α]. (14)

To examine the second summand in (4), we make use of the
following identity

(t2)u =
(
√
E)v√
G

t1, (15)

3The original energy formulation in [16] erroneously includes a quadratic
term in h2, which would result from integratingz over [−h

2
, h

2
], which

would be zero. The disappearance of the linear term is also mentioned
in [28, p. 45].



which can be derived through differentiating the equations
t1 · t2 = 0 and σu · σv = 0 with respect toα. From
identity (15) we have

(t2)u√
E

= lim
∆u→0

t2(p+ σu · ∆u) − t2(p)

∆u
· 1√

E

= lim
∆u

√
E→0

t2

(

p+ (σu/
√
E) · ∆u

√
E

)

− t2(p)

∆u
√
E

= lim
∆u→0

t2(p+ t1 · ∆u) − t2(p)

∆u
def
= ∇t1t2. (16)

The covariant derivative∇t1t2 measures the initial rate of
change of the principal vectort2 as the pointp moves in the
t1 direction at unit speed. Combine equations (15) and (16):

(
√
E)v√
EG

t1 = ∇t1t2, and hence

(
√
E)v√
EG

= ∇t1t2 · t1. (17)

Substitutions of equations (14) and (17) into (4) gives
a formulation of the extensional strainε1 independent of
parametrization:

ε1 = t1[α] + (∇t1t2 · t1)β − κ1γ (18)

= t1[α] + (∇t1t2 · t1)β + (∇t1n · t1)γ.

The last step uses an equivalent definition:κi
def
= −∇ti

n ·ti.
From (18) the extensional strain in a principal direction
consists of three components: the change rate of the displace-
ment in that direction, and the shearing effects caused by the
displacements along the other two orthogonal directions.

Similarly, parametrization independent formulations can
be derived for strain components (5)–(11):

ε2 = t2[β] + (∇t2t1 · t2)α+ (∇t2n · t2)γ, (19)

ω = t1[β] − (∇t1t2 · t1)α+ t2[α] − (∇t2t1 · t2)β, (20)

φ = −t1[γ] + (∇t1n · t1)α, (21)

ψ = −t2[γ] + (∇t2n · t2)β, (22)

ζ1 = t1[φ] + (∇t1t2 · t1)ψ, (23)

ζ2 = t2[ψ] + (∇t2t1 · t2)φ, (24)

τ = t1[ψ] − (∇t1t2 · t1)φ+ t2[φ] − (∇t2t1 · t2)ψ. (25)

The anglesφ and ψ represent the rotations of the normal
about the two principal directions as a result of the defor-
mation.

The geometric meanings ofζ1, ζ2, and τ now become
clear. The termζ1 (ζ2, respectively), referred to aschange
in curvature, accounts for the change rate of the angleφ (ψ,
resp.) along the principal directiont1 (t2, resp.), plus the
effect of the angleψ (φ, resp.) due to the change oft2 (t1,
resp.) alongt1 (t2, resp.). Together,ζ1 and ζ2 measure the
bending of the surfaces. The termτ , referred to aschange
in torsion, measures the twising of the surface due to the
deformation.

In the energy integral (12), the area element
√
EGdudv

now needs to be replaced by
√
EG− F 2 dudv sinceσu and

σv are no longer necessarily orthogonal.
Theorem 1:The strain energy of a shell under a displace-

ment field depends on the principal curvatures and the princi-
pal directions of its middle surface. More specifically, it is the
integral (12) with

√
EGdudv replaced by

√
EG− F 2 dudv

and all strains given in (18)–(25).

IV. A PATCH WITH GENERAL PARAMETRIZATION

To obtain the strains according to equations (18)–(25), we
need to be able to compute the directional derivatives of
the principal curvaturesκ1, κ2 and the displacementsα, β, γ
with respect to the principal vectorst1 andt2, as well as the
covariant derivatives∇ti

tj , i, j = 1, 2 and i 6= j. All these
derivatives should be expressed in terms of the parametersu
andv.

A. Differentiation of Principal Curvatures

The Gaussianand mean curvaturesare respectively the
determinant and half the trace of the matrixF−1

I FII :

K = κ1 · κ2 =
LN −M2

EG− F 2
, (26)

H =
κ1 + κ2

2
=

1

2
· EN − 2FM +GL

EG− F 2
. (27)

The principal curvatures can thus be expressed in terms of
the Gaussian and mean curvatures (choosingκ1 ≥ κ2) :

κ1 = H +
√

H2 −K, (28)

κ2 = H −
√

H2 −K. (29)

To obtain the partial derivatives ofκ1 andκ2 with respect
to u and v, we first differentiate the fundamental form
coefficientsE,F,G,L,M,N defined in (1) and (2). The
partial derivatives ofK andH are then computed using (26)
and (27). Finally, we differentiate the equations (28) and (29).

B. Covariant Derivatives of Principal Vectors

The principal vectors are linear combinations ofσu and
σv which span the tangent plane atp:

t1 = ξ1σu + η1σv, (30)

t2 = ξ2σu + η2σv. (31)

Here(ξ1, η1)
T and(ξ2, η2)

T are the eigenvectors ofF−1
I FII

corresponding toκ1 and κ2, respectively [30, p. 133].
Namely, fori = 1, 2, we have

(FII − κiFI)

(

ξi
ηi

)

= 0. (32)

The four coefficientsξi, ηi will be derived in the Appendix.
Using (30)-(31), all the derivatives with respect to the

principal vectorst1, t2 in equations (18)–(25), repetitive or
not, can now be obtained. For instance,

t1[α] = (ξ1σu + η1σv)[α]

= ξ1 · σu[α] + η1 · σv[α]

= ξ1αu + η1αv by (13).



We also have, fori, j = 1, 2,

∇ti
tj= ∇ξiσu+ηiσv

tj

= ξi∇σu
tj + ηi∇σv

tj

= ξi∇σu
(ξjσu + ηjσv)+ηi∇σv

(ξjσu + ηjσv).(33)

We work on the first summand in the last equation above:

ξi∇σu
(ξjσu + ηjσv)

= ξi(σu[ξj ]σu + ξj∇σu
σu + σu[ηj ]σv + ηj∇σu

σv)

= ξi

(

∂ξj
∂u

σu + ξjσuu +
∂ηj

∂u
σv + ηjσuv

)

.

The first step above uses a fact about covariant derivatives:
∇a(fb) = a[f ] · b + f · ∇ab. The second step uses the fact
shown in (13). Namely, the directional derivatives of a scalar
alongσu andσv, respectively, are just its partial derivatives
with respect tou and v. The same rule applies to the
covariant derivatives of a vector with respect toσu andσv.
Similarly, we express the second summand in equation (33)
in terms of partial derivatives with respect tou andv. Merge
the resulting terms from the two summands:

∇ti
tj =

(

ξi
∂ξj
∂u

+ ηi

∂ξj
∂v

)

σu +

(

ξi
∂ηj

∂u
+ ηi

∂ηj

∂v

)

σv

+ ξiξjσuu + (ξiηj + ξjηi)σuv + ηiηjσvv. (34)

V. ENERGY BASED SOLUTION OF DISPLACEMENT FIELD

The displacement fieldδ(u, v) = (α, β, γ) of the middle
surface of a shell describes the deformations completely.
By minimizing the total potential energy, we can obtain the
displacement field and thus determine the deformed shape.

A. B-spline Based Displacement Field

The standard FEM discretizes the shell domain and ap-
proximates the displacement values via interpolation. The
generated surface often has a large number of degrees of free-
dom (DOFs) and may become unnecessarily complicated. To
reduce the number of DOFs, we use a B-spline surface to
approximate the displacement field.

A B-spline curve is a linear combination of a number of
control points, each scaled by a basis functionBi,k(t). These
functions are determined by a knot vector(t0, · · · , tm), t0 <
t1 < · · · < tm, and constructed over polynomials of degree
k. Each basis functionBi,k(t) is defined over the interval
[ti, ti+k], and has local control of the B-spline: moving one
control point only alters the curve locally [23, p. 182]. The
values ofBi,k(t), i = 1, · · · , n, are non-negative and satisfy
the property

∑n
i=0

Bi,k(t) = 1.
A B-spline surface is defined over a(n1 + 1) × (n2 + 1)

grid of control pointspi,j using two B-spline curves:

S(u, v) =

n1
∑

i=0

n2
∑

j=0

pi,jBi,k1
(u)B̃j,k2

(v).

Every basis function of the surface is a product of two basis
functions, one for each B-spline curve. The properties of a

B-spline surface are similar to those of a B-spline curve,
which include local control and

n1
∑

i=0

n2
∑

j=0

Bi,k1
(u)B̃j,k2

(v) = 1. (35)

We represent the displacement fieldδ(u, v) as a B-spline
surface:

δ(u, v) =

n1
∑

i=0

n2
∑

j=0

δi,jBi,k1
(u)B̃j,k2

(v), (36)

whereδi,j is the displacement of the(i, j)-th control point in
the grid domain. Property (35) ensures that the displacement
field is invariant under affine transformations, and can be ex-
actly reproduced by interpolation. For given parameter values
(u, v), the displacementδ(u, v) is only decided byk1 × k2

nodal displacements, which ensures a sparse discretization
of the displacement field.

B. Energy Minimization

Let us get back and look at the direct relationship between
the elastic potential energyUε and the displacements. Let∆

be the collection of3m unknowns describing the displace-
ments at them control points, we rewrite the strain energy
Uε in Theorem 1 into a form as

Uε = ∆
TKs∆, (37)

whereKs is the (symmetric) stiffness matrix.
Let Uq be the work done by applied loads, andq(u, v)

the load vector. We have

Uq =

∫

S

q(u, v) · δ(u, v) dA = ∆
TQ, (38)

whereQ is the vector of all nodal forces. The total potential
energy of a shell is

U = Uε − Uq = ∆
TKs∆ − ∆

TQ. (39)

The equilibrium state of an elastic shell has minimum total
potential energy [13, p. 260]. We need tofind a displacement
field which minimizesU and satisfies the boundary condi-
tions.

The boundary constraints are formulated as an integral
over the boundary curve. Letr(u, v) be the position describ-
ing the boundaryΩ of the middle surfaceσ(u, v) of a shell,
we minimize

∫

Ω

(

σ(u, v) − r(u, v)
)2

dℓ. (40)

At the minimum of this integral, the vanishing of its partial
derivatives with respect to all nodal displacements yieldsa
system of linear equations

P∆ = R. (41)

Each equation represents a single linear constraint generated
by differentiating the integral with respect to one component
of ∆.



To obtain the displacement field, we need to minimize the
energy function defined in (39) while satisfying the linear
equations in (41), that is

min ∆
TKs∆ − ∆

TQ where P∆ = R.

By introducing a vectorλ of Lagrange multipliers, the
problem is equivalent to:

min ∆
TKs∆ − ∆

TQ+ (P∆ −R)T λ.

Differentiating the objective function above with respectto
∆, we obtain

2Ks∆ + PT λ = Q, (42)

So we have a system of linear equations (41) and (42)
in terms of the nodal displacements and the Lagrange
multipliers. They are solved efficiently by singular value
decomposition (SVD).

VI. SIMULATION

We start with a fixed rectangular plate with thickness
1.25mm. Fig. 2 displays the plate before and after defor-
mation. We set the values of the Young’s moduluse =
0.007GPa and the Poisson’s ratioµ = 0.33. Under a point
load of 11.12N perpendicular to the plate, the calculated
maximum displacement is2.39mm.

Fig. 2. A fixed plate before (left) and after (right) deformation.

Simulation tests are also conducted on three other fixed
surfaces including a half cylinder, a half ellipsoid, and a mon-
key saddle. The results are shown in Fig. 3. Table I lists their
mechanical properties, and the maximum displacements.

Fig. 3. Three more deformed shapes in simulation: a half cylinder, a half
ellipsoid, and a monkey saddle.

object cylinder ellipsoid monkey saddle
e (GPa) 0.007 0.007 0.007

µ 0.33 0.33 0.33
thickness (mm) 1.25 1.25 1.25
max disp. (mm) 2.16 13.48 8.32

point load (N) 4.0 22.24 8.9

TABLE I

MECHANICAL PROPERTIES AND MAXIMUM DISPLACEMENTS OF THE

OBJECTS USED IN SIMULATION.

Fingertip
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Adept Robot Open End


BarrettHand
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Fig. 4. Experimental setup with a screen and a cylinder.

VII. EXPERIMENT

The system setup is shown in Fig. 4. A three-fingered
Barrett Hand is mounted on an Adept Cobra 600 robot. Every
finger has a strain gauge sensor that measures contact force.
A mesh model for the deformed surface due to finger contact
is generated4 by the NextEngine’s desktop 3D scanner,
which has an accuracy of0.127mm. Two fixed objects with
thickness1.0mm are used in our experiments, a screen and
a soda can. The values of Young’s moduluse are set as
0.000007GPa and 68.9GPa, the values of Poisson’s ratio
µ are set as0.3 and 0.33 for the screen and the cylinder,
respectively.

We measure the accuracy by matching the computed
deformed surfaces against the corresponding triangular mesh
models. The visibly deformed areas have approximate sizes
of 60mm×80mm on the screen and50mm×80mm on the
cylinder. As far as the number of control points is concerned,
we create several B-spline surfaces with different numbersof
control points and compare the results. We find the results are
similar when there are more than100 control points, which
means that as the B-spline surface is refined, the solution
converges to the real deformation result. When there are
more than100 control points, adding more control points
does not increase the accuracy dramatically but increase the
computational cost. The test result agrees with the standard
FEM convergence property. In our experiments, we use121
control points. The computation time is less than10 seconds.

Table II lists, for each object, the maximum measured

4Due to occlusions, the deformed surface is scanned at different orienta-
tions and the resulting patches are combined.



displacement, the corresponding computed displacement, the
average and the maximum errors of all points. In this table,
the average errors are relatively small. Since there is no strict
border between small deformations and large deformations,
and the linear elastic theory is only appropriate for small
deformations, the maximum errors are relatively large. We
expect to decrease the maximum errors by incorporating
nonlinear theory. In the experiments, we also find that the
measured deformations on each object and the simulated
ones are close.

measured
max disp.

computed
disp.

average
error

max
error

screen 9.78 7.80 0.91 4.95
cylinder 1.42 1.19 0.35 1.32

TABLE II

MAXIMUM DISPLACEMENTS AND ERRORS(MILLIMETERS).

VIII. D ISCUSSION ANDFUTURE WORK

This paper transforms the classical formulations of defor-
mations and strain energy of a shell so that they depend only
on geometric invariants including principal curvatures and
directions not on a specific parametrization. It then describes
a procedure that computes the strain energy of a shell whose
middle surface is arbitrarily parametrized. The B-spline rep-
resentation of the displacement field allows us to efficiently
compute deformations on a parametric surface under applied
loads through the minimization of total potential energy.
Simulation results are shown on various algebraic surfaces,
a couple of which are experimentally verified with a Barrett
Hand for verification.

Compared with other FEM methods for classical shell
theory, we do not assume the middle surface of a shell
to be parametrized along lines of curvature. Therefore, our
work enlarges the scope of application to include non-trivial
algebraic surfaces as well as free form surfaces which can
be parametrized with NURBs or triangular B-splines. To
make our work to be understood as wide as possible, we
carry out deductions in the elementary differential geometry
way instead of tensor calculus which consists of complicated
symbols.

Experiments with more complex shapes need to be carried
out in order to further verify the effectiveness of this method.
In a real situation, as the object deforms, the surface regions
in contact with the robot finger usually grow larger, and
the load distribution changes. Also, the contact force as
a function of time will influence the integration of the
total energy. These factors make deformation modeling more
complex, which we hope to address in our future work.

One objective in the near future is to simulate deforma-
tions on curved solid objects in an interactive environment.
We will also work on large deformations that require appli-
cation of nonlinear theory of elasticity.
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APPENDIX

In the appendix, we derive the four coefficientsξ1, η1, ξ2,
η2 as well as their partial derivatives with respect tou and
v. Since the principal curvaturesκi, i = 1, 2, are eigenvalues
of the matrixF−1

I FII , we have

0 = det(FII − κiFI)

= (L− κiE) · (N − κiG) − (M − κiF )2. (43)

There are two cases: (a)L− κiE = N − κiG = 0 for some
i = 1, 2, and (b) eitherL − κiE 6= 0 or N − κiG 6= 0 for
both i = 1 and i = 2.

In case (a),M − κiF = 0. SoFII − κiFI = 0, i.e.,

F−1
I FII = κiI2,

whereI2 is the2×2 identity matrix. The two eigenvalues of
F−1FII , namely,κ1 and κ2, must be equal.5 Any tangent
vector is a principal vector. We let

t1 =
σu√
E
, with

(

ξ1
η1

)

=

( 1√
E

0

)

by (30).

The other principal vectort2 = ξ2σv + η2σv is orthogonal
to t1. So

(ξ2σu + η2σv) · σu = 0, i.e., ξ2E + η2F = 0. (44)

To determineξ2 andη2, we need to use one more constraint:
t2 · t2 = 1, which is rewritten as follows,

Eξ22 + 2Fξ2η2 +Gη2
2 = 1. (45)

Substituting (44) into (45) yields

ξ2 = ∓
√

F 2

E(EG− F 2)
,

η2 = ±
√

E

EG− F 2
.

In case (b),L−κiE 6= 0 orN−κiG 6= 0 for bothi = 1, 2.
Equation (32) expands into two scalar equations according
to (3):

(L− κiE)ξi + (M − κiF )ηi = 0, (46)

(M − κiF )ξi + (N − κiG)ηi = 0. (47)

Three subcases arise for eachi value.

(b1) L − κiE = 0 but N − κiG 6= 0. It follows from
equation (43) thatM−κiF = 0. Thus equation (47)
gives usηi = 0. Sinceti · ti = Eξi = 1, we obtain
ξi = ± 1√

E
.

5The point is said to beumbilic.



(b2) L − κiE 6= 0 but N − κiG = 0. This is the
symmetric case of (b1). The coefficients are

(

ξi
ηi

)

=

(

0

± 1√
G

)

.

(b3) L−κiE 6= 0 andN−κiG 6= 0. From equation (46)
we have

ξi = −M − κiF

L− κiE
ηi. (48)

Substitution of the above into (45) yields a
quadratic equation with the solution

ηi = ±
√

L− κiE

EN − 2FM + LG− 2κi(EG− F 2)
. (49)

In all expressions ofξi andηi, the signs are chosen such
that t1 × t2 = n.

The gradients∇ξi = (∂ξi

∂u
, ∂ξi

∂v
) and ∇ηi = (∂ηi

∂u
, ∂ηi

∂v
),

i = 1, 2, are obtained by differentiating appropriate forms of
ξi andηi that hold for all points in some neighborhood (but
necessarily the ones at the point).
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