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Abstract— A shell is a body enclosed between two closely
spaced and curved surfaces. Classical theory of shells [38]
[33], [16] assumes a parametrization along the lines of prin
cipal curvature on the middle surface of a shell. Such a
parametrization, while always existing locally, is not knavn
for many surfaces, and deriving one can be very difficult
if not impossible. This paper generalizes the classical sin-
displacement equations and strain energy formula to a shell
with an arbitrary parametric middle surface. We show that
extensional and shearing strains can all be represented in
terms of geometric invariants including principal curvatures,
principal vectors, and the related directional and covariat
derivatives. Computation of strains and strain energy is ao
described for a general parametrization.

The displacement field on a shell is represented as a B-
spline surface. By minimization of potential energy, we hag
simulated deformations of algebraic surfaces under applié
loads, and performed experiments on an aluminum soda can
and a stretched cloth using a three-fingered Barrett Hand.
The measured deformations on each object match those in the
simulation with good accuracy. The presented work is an inigal
step in our research on robot grasping of deformable objects

. INTRODUCTION
Deformable objects are ubiquitous in our daily life. Th

robot’s intelligence and dexterity. Such skill expects tit n

only exert impact on medical robotics but also open the do%1
for the development of home robots. Despite the rich litera-

ture on robot grasping [4] and dexterity [29], manipulatadn
deformable objects has remained an underdeveloped rbse

area. This is in part due to the lack of a geometric framewo

to characterize this type of manipulation, and in part due

the high computational cost of modeling the physic proce

itself.

There are two methods of dealing with deformability in
solid mechanics: the energy model based on Castigliancgs

theorem [11, p. 375] and the dynamic model described

Navier's equations [14, pp. 203-205]. Both methods ar

based on the strain-displacement relations (i.e., kiniesjat
and the strain-stress relations (Hooke’s law). Castiglian

Fheorem VIEWS .dgformgtlon as energy minimization. Assu.msimulation results on four algebraic surfaces. Experirment
ing linear elasticity of isotropic and homogeneous malgria
the theorem states that the partial derivatives of the tot

strain energy with respect to a generalized displaceme

(force, respectively) is the corresponding generalizedeo
(displacement, respectively). Navier's equations geeesa

dynamic deformable model describing shape evolution oven

time, which is valuable for analysis and interaction.
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ability to manipulate them is an important measure of th
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A shell is a thin body enclosed between two closely spaced
and curved surfaces. In this paper, we will apply the energy
method to compute the deformed shape of a parametrized
shell under the contact force exerted by a robot finger. The
strain energy of a linear object can be described using the
tangent, curvature, and torsion functions along the shape [
pp. 425,447;373,383]. With constraints at the endpoities, t
shape of such an object can be solved for minimum potential
energy by the technique of calculus of variations, or more
often, by the Ritz's method which uses a linear combination
of basis functions [18], [31].

Deformations of Z%D objects, in particular, shells and
plates, have been studied based on the geometry of their
middle surfaces [38], [16], [33]. To our knowledge, all the
treatments from the mechanics of materials have assumed the
middle surface of a shell to be parametrized along the lifies o
curvature. The expressions of extensional and shear strain
and strain energy, though derived in a local frame at every
point, are still dependent on the specific parametrization
rather than on geometric properties only. More specifically
the parametrization dependent features in the formulation
include the magnitudes of the two partial derivatives of the

urface function and the change rates of these magnitudes.
Most surfaces (including the Bézier and B-spline sur-
ces, and NURBS used in geometric modeling) are not
parametrized along the lines of curvatures. Transformatio
into such a parametrization can be very difficult if not

?ﬁ%possible. This fact has prevented direct applicationhef t

strain energy form to computing deformations of general

t .
58arametr|c surfaces.

S In Section Ill, we will establish that the strains and strain

energy of a shell under a displacement field are decided by
eometric invariants including the two principal curvatsir
and two principal vectors. Section IV and the Appendix will
Jutline the strain energy computation for a general paramet

fic shell. Using a B-spline representation of the displagetn
field, Section V will solve for shell deformations under an

applied load via energy minimization. Section VI presents

a]deformed soda can and a framed cloth screen are conducted
|r} Section VII.

n

Il. RELATED WORK

Based on Castigliano’s theorem, the Finite Element
ethod (FEM) [35], [3] can determine the stress, strain,

and displacement everywhere inside a body represented as a

mesh structure. FEMs are used to model the deformations of

a wide range of shapes: fabric [8], a human hand interacting



with a deformable object [17], human tissue deformation in &he first fundamental formof o is defined asEdu? +
surgery [5], etc. An FEM [7] is described for the analysis o2 Fdudv + Gdv?, where

thin shells based on the Kirchhoff-Love theory and smooth
interpolation of displacement fields. Subdivision surface

are used and results are shown for planar, cylindrical, anghq thesecond fundamental forras Ldu2 + 2Mdudv +

E=0,-04, F=04-0,, G=0, 0y (1)

spherical shells only. Ndv?, where
However, FEMs require extensive computation and often
have to be simulated off-line, and do not work well on L=ow-n M=0u'n N=o, n (2)

modeling large deformations. The boundary element methc'),g
(BEM) [19] solves for boundary displacement and force§h
through a conversion of Navier’'s equations to one defined
on the shape boundary. It is more efficient and accurate for o E F and Frr — L M 3)
computing contact force. The skeleton-based method [22] ! F G H M N J°
achieves efficiency of deformable modeling by computing
the stresses/strains at contact points and geometricdigns
points and then by interpolating over the entire surface.

Work on robotic manipulation of deformable objects ha
been mostly limited to linear and meshed objects [41], [26 rthogonal velocity directions, respectively, unless— rs.
Most of the dgveloped quels are _energy-bqsed and.sor:f‘ﬁese two directions, represented by unit vectarandio,
are not experimentally verified. Picking up a highly flexible re referred to as therincipal vectors The two principal
linear object such as a wire or rope can be easily done wib ctors and the unit normai — ¢, x ¢, define theDarboux
a vision system [32]. Knotting [34], [24], unknotting [20]’.frameat the point.

and both [40] are the typical manipulation operations on thi The patch isorthogonal if F = 0 everywhere. It is

type of linear objects. L . L
: _ . principal if F = M = 0 everywhere. On a principal
In graphics, the primary focus of deformable mOde“nggatch, the principal curvatures are simply — L/E and

'Stﬁn ethlment computatltlon O; ?ﬁeCtSf ttr;]at Iohok.hkle reall, o = N/G, respectively, and the corresponding principal
rather than on accurate modeling of the physical world,. ., ary — o, /VE andts — o /v/G.

Discrepancies with the theory of elasticity are tolerated,
and experiments with real objects need not be conducteB, Middle Surface as a Principal Patch
For instance, the widely used formulation [36] on surface
strain energy does not follow from solid mechanics. In
this field, there are generally two approaches of modelin

deformable objects: geometry-based and physics-baséd [1 nly. In Section I1I-C, we will transform these results to

In & geometry-based approach, splines and spline Surfa‘f'ﬁﬁke them independent of a specific parametrization. but

suqh as Bezier curves, B-splines, non-umform rational B'ather dependent on geometric invariants including ppaki
splines (NURBS), are often used as representations [2], [1 urvatures and vectors

Physics-based modeling [27] of deformation takes into Our treatment is from [16] with some changes of notation.

accoynt the mechanics .Of materials and dY”am'CS 10 \fe look at a section of the shell and let its middle surface
certain degree. Mass-spring systems, though inaccurate fore deformation be described by a principal pat¢h, v),

slow for simulating material with high stiffness, are use s shown in Fig. 1(a). Every poiptin the shell is along the
extensively in animation [6], facial modeling [42], [37ha& normal direction of some poin = o(u,v) on the middle
simulations of cloth [1], animals [39], and surgery [9]. Theg ¢ .o (see Fig. 1(b)). In other Wordzsl:s the projection of
“snake model”, meanwhile, is widely used in medical imag% ontoo.

analysis [25] The displacemend(u,v) of ¢ is best described in its
Darboux frame:

compact representation of the two fundamental forms use
e following two symmetric matrices:

The two principal curvaturesk; and k, at a pointp are

the eigenvalues oﬂ‘;l}‘n. They represent the maximum
and minimum rates of the change of geometry when passing
hroughp at unit speed on the patch, and are achieved in two

This section reviews some known results on deformations
and strain energy from the theory of shells in solid mechan-
s, which, to our knowledge, have treated principal paiche

IIl. SHELL DEFORMATIONS

Throughout the paper, we adopt the notatignfor the d(u,v) = a(u,v)ty + B(u, v)tz + y(u,v)n.

partial derivative of a functiorf (u, v) with respect tou. We refer to the vector field(u,v) as thedisplacement field

A. Some Background in Surface Geometry of the shell, which yields the new positiagp of ¢:

Let o(u,v) be a surface patch in 3D such that the q =o' (u,v) = a(u,v) + 6(u,v).
tangent plane at every poiptis spanned by the two partial
derivativeso,, ando,, with respect tou andv, respectively.
The unit normal to the surface is = o, x 0, /|0y X 04|

The new positionp’ of the pointp may not be along the
normal direction ofg’, due to atransverse shear straithat
acts on the surface through and parallel to the middle
1defined to be the integral sum of the squares of the norms afitarges surface. This type_ of strain tends to_ be much smaller th.an
in the first and second fundamental forms. other types of strains on a shell and is neglected by cldssica



p' ) iS w + z7, where, from [16, p. 219],

6 (VB
G = NG + e 1, 9)
b (VO
T= vl 6. (11)
middle surfaces (v ) before \/6 \ E VE \/EG .
The geometric meanings of these terms will be revealed in
Section IlI-C.

Let ¢ be the modulus of elasticity and the Poisson’s
constant of the shell material. The strain energy of thelshel
with middle surfaceS and thickness, after the integration

@ (b)
n n n n'
m ®
Y]
b oty to h
t © th

of z over [—%, 2], is modified over [16, p. 274]
_ € 2, .2 L—p o
R T AUCEESCEEREey
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Fig. 1. Deformation of a shell: (a) before; (b) pointsand ¢ and their +ﬁ <<12 + <22 + 2#(1(2 + THTQ)} VEG dudv. (12)

displace locationg’ and¢’; (c) rotation of the surface normal.
The linear term ink is due to extension and shear, the cubic

term due to bending and torsion.

solution techniques like [21], [38]. It is also not consieer
in this paper.

At ¢ there areextensional strains; andes, which are the
relative increases in lengths along the two principal dicets
t1 andt,, respectively. There is also tle-plane shear strain
w defined as the change of the angle betwigeandt, under
deformation. As shown in Fig. 1(b}; andt), are the unit
tangents along the two partial derivativesadf respectively.
The angle betweet] andt, is no longerr/2, andw is the
negative change. We have from [16, p. 219]:

C. Deformations of a General Patch

The energy formulation (12) is applicable to a surface
consisting of principal patches only. Though in theory ¢her
exists a principal patch surrounding every point with uraqu
principal curvatures, most surfaces (except planes, dglis,
spheres, etc.) do not assume such parameterizationsi-Class
cal deformation results presented in Section IlI-B needego b
generalized to arbitrary parametric surfaces to widenrthei
applications.

The first step in the generalization is to rewrite the
strains (4)—(11) in terms of geometric invariants such as

Oy

(VE),

£, = — B — K17, (4) principal curvatures and vectors that are independent of a
VE = VEG specific parametrization. These forms are currently for a
B (VG). o ) principal patch whose partial derivatives are not unit gest
=T Ve VEG ‘™Y (neither £ = 1 nor G = 1 must hold).
B (VE), (VG)u o Let us start with the extensional strain (4). We have that
w = N o Nioe B+ ek (6) 0 — Ahmo a(a(u—f—Au,Z)) — a(o(u,v))
uU— u
The extensional and in-plane shear straing atill also . alo(u,v) + oy - Au) — a(o(u,v))
include some components due to the rotation of the normal AI}BO Au
n (see Figure 1(c)). Under the assumption of small deforma- def oala]. (13)

tion, we alignt; with ¢} and view along them. Lep be the _ . o o
amount of rotation of the normai about thet; axis toward Here o, [a] is defined to be the directional derivative of
t,. Similarly, let ¢ be the amount of rotation of the normal« with respect too,,. By the linearity of the directional

about thet, axis towardt,. We have [16, pp.209-213] derivative operator, we rewrite the first summand in (4)
Qy Ou

w — = —|a] = t1]a]. (14)
o = U @ Ve~ vl il
5 To examine the second summand in (4), we make use of the
= v _ 8 P ;
¥ Ve Brio (8)  following identity
: _ _ (VE)w
Let z be the (signed) distance from the middle surface to (t2)u = Ne t, (15)

p (along the normaln). It is shown that the extensional
strains atp aree; + 21 ande, + z(s, and the shearing strain 3The original energy formulation in [16] erroneously incksda quadratic
term in k2, which would result from integrating over [—ﬁ, %}, which
would be zero. The disappearance of the linear term is alsotiomed

2py dropping all terms of ordehx; or hxa when compared to 1. in [28, p. 45].



which can be derived through differentiating the equations In the energy integral (12), the area elemefEG dudv
ti-t, = 0 ando, - o, = 0 with respect too. From now needs to be replaced RWEG — F2 dudv sinceo,, and

identity (15) we have o, are no longer necessarily orthogonal.
_ Theorem 1:The strain energy of a shell under a displace-
(t2)u = lim top + 0w - Au) — t2(p) L ment field depends on the principal curvatures and the princi

vE Au=0 Au vE pal directions of its middle surface. More specificallysithe
ts (p + (ou/VE) - Au\/F) —ty(p) integral (12) withv/EG dudv replaced by/EG — F2 dudv

= lim and all strains given in (18)—(25).

AuvVE—0 AuvE g (18)(25)

y ta(p+t1 - Au) — ta2(p) IV. A PATCH WITH GENERAL PARAMETRIZATION
= 1m

Au—0 Au To obtain the strains according to equations (18)—(25), we
def Yy, to. (16) need to be able to compute the directional derivatives of

the principal curvatures;, x and the displacements, 3,
The covariant derivativeV,, to measures the initial rate of with respect to the principal vectots andt., as well as the
change of the principal vectds as the poinp moves in the covariant derivative&/;,t;, i,j = 1,2 andi # j. All these
t, direction at unit speed. Combine equations (15) and (16gerivatives should be expressed in terms of the parameters

andv.
VE)w,
JVEG ti = Vut;, andhence A. Differentiation of Principal Curvatures

(VE), The Gaussianand mean curvaturesire respectively the

VEG = Vutz-ti. (17) " determinant and half the trace of the mat#x ' Fi
Substitutions of equations (14) and (17) into (4) gives - _ . . _ LN — M? (26)
a formulation of the extensional straiy independent of EG - F?’
parametrization: _ kit hke 1 EN —2FM + GL
" 2 2 EG — F? (27)
e = tfo]+(Vata - 41)8 —r1y 18)  The principal curvatures can thus be expressed in terms of
tifa] + (Vi ta - t1)B + (Vium - 1)y the Gaussian and mean curvatures (choosing «-) :
The last step uses an equivalent definiti@[ﬁi:Cf —Vyn-t;. k1 = H++VH?-K, (28)

From_ (18) the extensional strain in a principal direption ke = H—-VH?2—K. (29)
consists of three components: the change rate of the désplac _ _ o _

ment in that direction, and the shearing effects causeddy th To obtain the partial derivatives afi andr, with respect
displacements along the other two orthogonal directions. 0 w and v, we first differentiate the fundamental form

Similarly, parametrization independent formulations cagoefficients £, F, G, L, M, N defined in (1) and (2). The
be derived for strain components (5)—(11): partial derivatives of and H are then computed using (26)

and (27). Finally, we differentiate the equations (28) a2@) (

= t[8] + (Vi1 - ta)a + (Vim - ta)y, 19 - ivati inci
€2 2081+ Vit - ta)a+ (Viym - ta)y (19) B. Covariant Derivatives of Principal Vectors
w = t1[B] = (Vi ta - t1)a + tafa) — (Vi,ty - t2)03, (20) inci i inati
_ o \ 21 The principal vectors are linear combinationsef and
¢ = i+ (Vyn-t)a, (21) o, which span the tangent plane jat
b = —toly] + (Vium - £), (22) ¢ €10+ (30)
= Oy Oy,
G o= ta[d] + (Vata - 1), (23) t = Gourt ” (31)
G = t2[f] + (Vi t1 - t2)0, (24) C nQ?-U. 1
7T = t[p] — (Vi ta - t1)d + t2[g] — (Vi,t1 - t2)9. (25) Here (&1, m)" and(&,72)" are the eigenvectors of; * Fir

corresponding tox; and ko, respectively [30, p. 133].

The anglesp and ) represent the rotations of the normalNamely, fori = 1,2, we have
about the two principal directions as a result of the defor- _
mation. (Frr — k:iFr) (§> =0. (32)

The geometric meanings df;, ¢, and 7 now become i
clear. The tern¢; ({2, respectively), referred to ashange The four coefficients;, n; will be derived in the Appendix.
in curvature accounts for the change rate of the angl@), Using (30)-(31), all the derivatives with respect to the
resp.) along the principal directioty (¢», resp.), plus the principal vectorst;, ¢, in equations (18)—(25), repetitive or
effect of the angle) (¢, resp.) due to the change tf (¢;, not, can now be obtained. For instance,
resp.) alongt; (to, resp.). Together;; and(, measure the
bending of the surfaces. The term referred to ashange tile] = (Goutmaoy)a]
in torsion, measures the twising of the surface due to the = & -oule]+m ol
deformation. = Loy +may by (13)



We also have, foi,j =1, 2, B-spline surface are similar to those of a B-spline curve,

which include local control and
Vtitj: V&i0u+m0vtj

=&V, tj + iV, t; > Biky (w)Bj g, (v) = 1. (35)
= &Vo, (§jou +0j00) +1i Ve, ({00 + 10, )(33) =07=0
We work on the first summand in the last equation above:Su\r/;/aec:fpresent the displacement fiéii., v) as a B-spline
iV, (Eou +n00) o2 -
= gz (o'u [é.j]o'u + é.jvau oy + Uu[nj]o'v + njvdu Uv) 6(’&, U) - Z Z 6i7jBi.’k1 (U)Bj.'h (U), (36)
_ (% , On; | . e -
= & 250 §iOuu + 5y, 70 TN | - whered; ; is the displacement of thg, j)-th control point in

] . ~ the grid domain. Property (35) ensures that the displacemen
Va(fb) = a[f]- b+ f-Va.b. The second step uses the factctly reproduced by interpolation. For given parameteuesl
shown in (13). Namely, the directional derivatives of aacal (,, 4, the displacemeni(u, v) is only decided byk; x ks

alongo, ando,, respectively, are just its partial derivativesygqa| displacements, which ensures a sparse discretizatio
with respect tou and v. The same rule applies to the of the displacement field.

covariant derivatives of a vector with respecta¢q ando,.
Similarly, we express the second summand in equation (38) Energy Minimization

in terms of partial derivatives with respect@ndv. Merge Let us get back and look at the direct relationship between
the resulting terms from the two summands: the elastic potential enerdy. and the displacements. LAt
OE - OE - on. On. be the collection of3m unknowns describing the displace-
- & & 5 UE . . .
Vit = &g tmigl)out (&g i | ov  ments at then control points, we rewrite the strain energy

U, in Theorem 1 into a form as
+ &i&iouu + (& + £Mi) O uw + 110 1y (34) ¢

U.=ATK,A, (37)
V. ENERGY BASED SOLUTION OF DISPLACEMENT FIELD

where K is the (symmetric) stiffness matrix.
Let U, be the work done by applied loads, ag¢h,v)
ie load vector. We have

The displacement field(u,v) = («, 3,7) of the middle
surface of a shell describes the deformations completel
By minimizing the total potential energy, we can obtain th
displacement field and thus determine the deformed shape. U, = / a(u,v) - 8(u,v) dA = ATQ, (38)

A. B-spline Based Displacement Field where( is the vector of all nodal forces. The total potential

The standard FEM discretizes the shell domain and agnergy of a shell is
proximates the displacement values via interpolation. The - .
generated surface often has a large number of degrees of free U=U-Uy=A"K,A-AQ. (39)

dom (DOFs) and may become unnecessarily complicated. ToTpg equilibrium state of an elastic shell has minimum total

reduce the number of DOFs, we use a B-spline surface Hbtential energy [13, p. 260]. We needfind a displacement

approximate the displacement field. field which minimize€/ and satisfies the boundary condi-
A B-spline curve is a linear combination of a number of;5,4

control points, each scaled by a basis functién.(¢). These  The poundary constraints are formulated as an integral
functions are determined by a knot vectés, - -, tm), to < gyer the boundary curve. Le{(u, v) be the position describ-

ty <--- <tpn, and constructed over polynomials of degreg,q the poundary? of the middle surfacer(u, v) of a shell,
k. Each basis functiorB; ;(t) is defined over the interval we minimize

[t:, ti+x], and has local control of the B-spline: moving one )
control point only alters the curve locally [23, p. 182]. The /(o’(u7v) —r(u, v)) dr. (40)
values ofB; ;(t),i = 1,---,n, are non-negative and satisfy
the property> """ | B; x(t) = 1.

A B-spline surface is defined over(a; + 1) x (n2 + 1)
grid of control pointsp, ; using two B-spline curves:

Q

At the minimum of this integral, the vanishing of its partial
derivatives with respect to all nodal displacements yialds
system of linear equations

niy N2

S(uv 1)) = Z Zpi,jBiykl (U)Bj-,k2 (’U) PA =R (41)
=0=0 Each equation represents a single linear constraint getkera

Every basis function of the surface is a product of two basigy differentiating the integral with respect to one compune
functions, one for each B-spline curve. The properties of af A.



. . . P object cylinder | ellipsoid | monkey saddle
To obtain the displacement field, we need to minimize the - (CJ}Pa) 5007 o St
energy function defined in (39) while satisfying the linear m 0.33 0.33 0.33
equations in (41), that is thickness (mm) 1.25 1.25 1.25
max disp. (mm) 2.16 13.48 8.32
min ATKSA . ATQ where PA — R. point load (N) 4.0 22.24 8.9
TABLE |

By introducing a vectorA of Lagrange multipliers, the
problem is equivalent to:

MECHANICAL PROPERTIES AND MAXIMUM DISPLACEMENTS OF THE
OBJECTS USED IN SIMULATION

min ATK,A - ATQ + (PA - R)TA.
Differentiating the objective function above with respést * - Adept Robot Open End
A, we obtain
2K, A+ PTA=Q, (42)
So we have a system of linear equations (41) and (42)
in terms of the nodal displacements and the Lagrange

multipliers. They are solved efficiently by singular value
decomposition (SVD).

VI. SIMULATION

We start with a fixed rectangular plate with thickness
1.25mm. Fig. 2 displays the plate before and after defor- Fig. 4. Experimental setup with a screen and a cylinder.
mation. We set the values of the Young’s modukis=
0.007GPa and the Poisson’s ratip = 0.33. Under a point
load of 11.12N perpendicular to the plate, the calculated
maximum displacement i8.39mm. The system setup is shown in Fig. 4. A three-fingered
Barrett Hand is mounted on an Adept Cobra 600 robot. Every
finger has a strain gauge sensor that measures contact force.
A mesh model for the deformed surface due to finger contact
is generatetl by the NextEngine’s desktop 3D scanner,
which has an accuracy of127mm. Two fixed objects with
thicknessl.0mm are used in our experiments, a screen and
a soda can. The values of Young’s modulusre set as
0.000007GPa and 68.9GPa, the values of Poisson’s ratio
w1 are set a®).3 and 0.33 for the screen and the cylinder,
respectively.
We measure the accuracy by matching the computed
Fig. 2. A fixed plate before (left) and after (right) deforioat deformed surfaces against the corresponding triangulahme
models. The visibly deformed areas have approximate sizes
Simulation tests are also conducted on three other fixeaf 60mm x 80mm on the screen and0mm x 80mm on the
surfaces including a half cylinder, a half ellipsoid, andamn  cylinder. As far as the number of control points is concerned
key saddle. The results are shown in Fig. 3. Table | listg thewe create several B-spline surfaces with different numbérs
mechanical properties, and the maximum displacements. control points and compare the results. We find the resudts ar
similar when there are more thdf0 control points, which
means that as the B-spline surface is refined, the solution
converges to the real deformation result. When there are
more than100 control points, adding more control points
does not increase the accuracy dramatically but increase th
computational cost. The test result agrees with the standar
FEM convergence property. In our experiments, we L&k
control points. The computation time is less tHanseconds.
Table II lists, for each object, the maximum measured

VIl. EXPERIMENT

Fig. 3. Three more deformed shapes in simulation: a halhdgl, a half

ellipsoid, and a monkey saddle. ) ] o
4Due to occlusions, the deformed surface is scanned at efifferienta-
tions and the resulting patches are combined.



displacement, the corresponding computed displacentent, t IX. ACKNOWLEDGMENT
average and the maximum errors of all points. In this table
the average errors are relatively small. Since there is mgt st
border between small deformations and large deformatio
and the linear elastic theory is only appropriate for small
deformations, the maximum errors are relatively large. We APPENDIX

expect to decrease the maximum errors by incorporating _ ) -

nonlinear theory. In the experiments, we also find that the In the appendix, we derive the four coefficiegis 11, &2,

measured deformations on each object and the simulatée @S Well as their partial derivatives with respectuand
ones are close. v. Since the principal curvatures, : = 1, 2, are eigenvalues

of the matrix F; ' F;7, we have

' Support for this research has been provided in part by
lowa State University, and in part by the National Science
bundation through the grant 11S-0742334.

measured computed | average max

max disp. | disp. error error 0 = det (-7:11 - fii]:I)
screen 9.78 7.80 0.91 4.95 _ L —E)- (N — r (M — i F 9 43
cylinder | 1.42 1.19 0.35 1.32 (L= ri) - ( riG) = ( kiF)7. (43)
TABLE Il There are two cases: (&)— x;EF = N — k;G = 0 for some

1= 1,2, and (b) eitherL — x;E # 0 or N — x;G # 0 for
bothi =1 andi = 2.
In case (a)M — k;F =0. SoF;; — k;Fr =0, i.e.,

MAXIMUM DISPLACEMENTS AND ERRORS(MILLIMETERS).

Fil Fr = kilo,

VIII. DI1SCUSSION ANDFUTURE WORK wherel; is the2 x 2 identity matrix. The two eigenvalues of

F~1F;1, namely,x; and ko, must be equal. Any tangent
This paper transforms the classical formulations of defofgector is a principal vector. We let

mations and strain energy of a shell so that they depend only

on geometric invariants including principal curvaturesdan ¢ = Tu  ith &1 _ ﬁ by (30)
directions not on a specific parametrization. It then dessi VE’ m 0 '
a procedure that computes the strain energy of a shell who.?ﬁe other principal vectot, = &0, + ns0, is orthogonal

middle surface is arbitrarily parametrized. The B-splieg-r
resentation of the displacement field allows us to efficientl
compute deformations_ ona pgrametric surface u_nder applied(gQUu +120,) -0, =0, ie, &GE+mnF =0. (44)
loads through the minimization of total potential energy. _ _
Simulation results are shown on various algebraic surfacek0 determlnegg_ an_an, we need to use one more constraint:
a couple of which are experimentally verified with a Barrettz - t2 = 1, which is rewritten as follows,
Hand for verification.
) : E¢& +2F 3 =1. 45

Compared with other FEM methods for classical shell &2+ 2E&m: + Gy (45)
theory, we do not assume the middle surface of a shelubstituting (44) into (45) yields
to be parametrized along lines of curvature. Therefore, our

to t;. So

work enlarges the scope of application to include non4tivi F?

algebraic surfaces as well as free form surfaces which can 2 = F E(EG - F?)’

be parametrized with NURBs or triangular B-splines. To

make our work to be understood as wide as possible, we N = g /L_

carry out deductions in the elementary differential geagnet EG - F?

way instead of tensor calculus which consists of complitate |n case (b)L—r;E # 0 or N—x,G # 0 for bothi = 1, 2.
symbols. Equation (32) expands into two scalar equations according

Experiments with more complex shapes need to be carrigd (3):
out in order to further verify the effectiveness of this nedh
In a real situation, as the object deforms, the surface nsgio (L —riE)& + (M — ki F)n; =0, (46)
in contact with the robot finger usually grow larger, and (M -k, F); + (N — kG, = 0. 47
the load distribution changes. Also, the contact force as .
a function of time will influence the integration of the Three subcases arise for eachalue.
total energy. These factors make deformation modeling more(bl) L — x;E = 0 but N — k;G # 0. It follows from

complex, which we hope to address in our future work. equation (43) thad! —x; F' = 0. Thus equation (47)
One objective in the near future is to simulate deforma- gives usy; = 0. Sincet; -t; = E§; = 1, we obtain
tions on curved solid objects in an interactive environment &= iﬁ-

We will also work on large deformations that require appli-
cation of nonlinear theory of elasticity. 5The point is said to bembilic.



(b2) L — k;E # 0 but N — k,G = 0. This is the [19]
symmetric case of (bl). The coefficients are
()= ()
= L)
i iﬁ
(b3) L—k;E # 0andN —x;G # 0. From equation (46) [21]
e have 22
R TS ag)
N i 231
Substitution of the above into (45) vyields a
quadratic equation with the solution [24]
L— IiiE
= EN 2+ LG —2mEG —Fy 9 25
In all expressions of; andn;, the signs are chosen such
thatt; x to = n. [26]
The gradientsv¢; = (25, %) and Vi, = (%%, 9m),

i = 1,2, are obtained by differentiating appropriate forms 0&27]
&; andn; that hold for all points in some neighborhood (bu

necessarily the ones at the point).
[28]
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