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Abstract— This paper gives an in-depth analysis of two-
finger squeeze grasping of deformable objects introduced
in our previous work [6] with a focus on two special classes:
stable squeezes, which minimize the potential energy of the
system among squeezes of the same magnitude, and pure
squeezes, which eliminate all possible Euclidean motions
from the resulting deformations. Next, the paper char-
acterizes the best resistance by a grasp to an adversary
finger under known translation, as the one that minimizes
the work done by the grasping fingers. An optimization
scheme is offered to deal with the general case of frictional
segment contact. Simulation and experimental results are
presented.

I. INTRODUCTION

Robot grasping of deformable objects is an under-

researched area, for reasons that come from both me-

chanics and computation. First, during a grasp operation,

an object’s global geometry changes, so do the torques

even if the exerted forces stay the same. Second, the

initial contact points grow into areas, and the contact

mode could switch between stick and slip at every point

inside such an area.

The focus on force balance in rigid body grasping

is no longer justified for deformable body grasping, be-

cause the prescribed forces cannot guarantee equilibrium

on an initially free object. However, under the classical

elasticity theory, during a deformation the applied load

and the constraint force balance each other, and the

angular momentum is conserved [1, pp. 49–52]. For this

reason, our recent work [6] proposed a new paradigm

which specifies desired finger displacements instead. In

practice, it is also much easier to command a finger to

move to a designated position than to control it to exert

a prescribed force. After all, force magnitudes are not

much of our concern as long as the object can be grasped

without causing any irreversible deformation.
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In this paper, we will investigate how to characterize

the quality of a squeeze grasp proposed in [6]. A

successful rigid body grasp must not cause any move-

ment of the contact points. Existing metrics for rigid

body grasps are force-centered, either to minimize the

possibility of violating some hard constraints [7], [8], to

maximize the worst-case adversary force resistible by a

“unit” total grasping force [9], [10], or to minimize the

maximum finger contact force to resist such an adversary

force [2], [3]. We refer to [11] for a comprehensive

summary on various grasp metrics.

On a deformable object, the grasping fingers perform

some work, most of which is converted into the object’s

strain energy via deformation. It therefore makes sense

to use an energy-based grasp metric. The deformation-

space (D-space) approach [5] characterized the optimal

grasp as the one from which the potential energy needed

for a release equals the amount at the object’s elastic

limit. In this paper, we present two measures: one in

terms of stability from the energy point of view, and the

other by the amount of work performed by a grasp to

resist a disturbing finger under known movement.

The paper uses meter for length, Newton for force,

Pascal for pressure, and Joule for work and energy.

These units are omitted from now on. In both simulation

and experiment, we use Young’s modulus E = 5× 104

Pascal and Poisson’s ratio ν = 0.3.

II. FOUNDATION OF SQUEEZING

We begin with a quick review of our recent work [6]

on squeeze grasping of thin 2- 12D objects with two

fingers. Plane stress is assumed in an object’s cross sec-

tion, which is discretized into small uniform triangular

elements with n vertices pl = (xl, yl)
T , 1 ≤ l ≤ n. The

origin is placed at the centroid
∑n

l=1 pl.

Under deformation, every node pl is displaced by

δl = (δlx, δly)
T . Displacement of a point inside a

triangular element is interpolated over those of the three

nodes of the element. The deformed shape of the object

is thus described by δ = (δT1 , . . . , δ
T
n )

T , referred to



as the displacement field. We gather the external forces

f l exerted on pl, 1 ≤ l ≤ n, into a 2n-vector f .

Minimization of the total potential energy yields the

familiar constitutive equation: Kδ = f , where K is

the shape’s stiffness matrix that is positive semi-definite

with rank 2n− 3.

The matrix assumes a spectral decomposition K =
V ΛV T with the orthogonal matrix V = (vst) =
(v1,v2, . . . ,v2n) and the diagonal matrix Λ defined by

the positive eigenvalues λ1, . . . , λ2n−3 of K . The null

space of K is spanned by the following three vectors

that represent translations and pure rotation: v2n−2 =
(1, 0, . . . , 1, 0)T/

√
n, v2n−1 = (0, 1, . . . 0, 1)T /

√
n,

and v2n = r/‖r‖, where r is the component of

(−y1, x1, . . ., −yn, xn)
T that is orthogonal to v2n−2 and

v2n−1.

The grasp strategy introduced in [6] works by speci-

fying the displacements δt of m boundary contact nodes

pt, t ∈ I. Here, m = |I|. At any node pl, l 6∈ I, f l = 0.

Denote by v̄l, 1 ≤ l ≤ 2m, the 2m-vector that

aggregates v2t−1,l and v2t,l, for all t ∈ I, in the

increasing index order. Introduce the matrix

M =

(

A B
BT

0

)

, (1)

where A =
∑2n−3

l=1
1
λl

v̄lv̄
T
l and B = (v̄2n−2, v̄2n−1,

v̄2n). It was shown in [6] that the (2m+3)× (2m+3)
matrix M has an inverse when m ≥ 2:

M−1 =

(

C E
ET −ETAE

)

, (2)

where C is symmetric and of dimension 2m× 2m.

Deformation is unique for m ≥ 2 under specified δt,

t ∈ I, and f l = 0, l 6∈ I. Apply the same bar notation

to select entries with indices i ∈ I from the force vector

f and the displacement field δ. We have derived

f̄ = Cδ̄ and δ = H δ̄, (3)

for some 2n×2m matrix H . The submatrix C is referred

to as the reduced stiffness matrix. The strain energy is

U =
1

2
δ̄
T
Cδ̄, (4)

Let ⊕ be the direct sum operator over subspaces.

Theorem 1: Suppose m ≥ 2. The following hold for

the submatrices of M in (1) and M−1 in (2):

(i) R2m = col(B)⊕ col(C) where rank(B) = 3.

(ii) R2m = col(AC) ⊕ col(E) where rank(E) = 3.

Proof: The proof makes use of MM−1 = I2n+3

concerning the values of product matrix’s four blocks,

which involve matrices A,B,C, and E. Details are

omitted for lack of space.

III. STABLE AND PURE SQUEEZES

Denoted by G(pi,pj) the placement of two fingers

F1 and F2 at the nodes pi and pj . Here I = {i, j}. For

clarity of description, in this section we assume that F1

and F2 are point fingers, and pi and pj will always stay

as the only contact points during a grasp operation by

the fingers.

For stability reason we want to determine the unit

displacement δ̄ that minimizes the potential energy

Π = U − δTf = U − δ̄T f̄ = −1

2
δ̄
T
Cδ̄,

by (3) and (4). Because m = 2, rank(C) = 4 −
rank(B) = 1 following Theorem 1. It is clear that Π
is minimized by a unit vector orthogonal to col(B). We

can easily show that

û =
1√

2‖pi − pj‖

(

pj − pi
pi − pj

)

(5)

is such a unit vector. Indeed, it is the only one corre-

sponding to a grasp because −û pulls at the contacts.

Theorem 2: The matrix C has the form

C =
1

ûTAû
ûûT . (6)

Proof: Writing C = ûcT , for some 4-vector c,

we show c = λû by symmetry of C. Substitute it into

AC + BET = I2m from MM−1 = I2m+3, and left

multiply both sides to arrive at (5). Details omitted.

We refer to a movement of F1 and F2 specified by

δ̄ = ρû, ρ > 0, as a stable squeeze, so called because

it minimizes the system’s potential energy among all

squeezes of magnitude ρ. Substituting δ̄ = ρû and (6)

into (4), we obtain the strain energy Us = ρ2/(2ûTAû).
Nevertheless, a stable squeeze does not guarantee that

the resulting displacement field δ has no rigid body

motion component. Since linear elasticity cannot model

large rotation, it is sometimes desirable to avoid rotation.

A pure squeeze at pi and pj yields no rigid body motion.

This is equivalent to ET δ̄ = 0 as we can establish

using (3).

By Theorem 1, the set col(AC) includes all pure

squeezes. Since AC = AûûT /(ûTAû) following The-

orem 2, we infer that col(AC) is spanned by Aû. Let

v̂ = Aû/‖Aû‖.

We refer to ρ in a squeeze ρû or ρv̂ as the squeeze

depth. It is different from the relative distance by which

one finger moves toward the other during the squeeze.

Fig. 1 compares the effects of the unit stable squeeze

û and the unit pure squeeze v̂ on an object1. While

1meshed with 517 nodes, including 112 on the boundary
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Fig. 1. Comparison between unit stable and pure squeezes:
(a) original shape shown with a stable squeeze û = (0.65923,
0.25577,−0.65923,−0.25577)T (solid black arrowheads) and a
pure squeeze v̂ = (0.79644,−0.49167,−0.20702,−0.28477)T

(empty black arrowheads); (b) deformed shape under û with re-
sulting contact forces f i = (0.90772, 0.35218)T and f j =

(−0.90772,−0.35218)T ; (c) deformed shape under v̂ with f i =
(0.55243, 0.21433)T and fj = (−0.55243,−0.21433)T .

under û the fingers drive the two contact points toward

each other, under v̂ they bend the object to prevent any

Euclidean motion, in a “clever” way by exerting smaller

contact forces.

Translating two fingers F1 and F2 by δi and δj ,

respectively, is equivalent to fixing one finger, say F1,

while translating F2 by δj − δi. The two resulting

configurations are identical except for a translation by

δi. Thus, we call a squeeze stable if it is the same as

ρû up to translation and rotation.

IV. RESISTING AN ADVERSARY FINGER — THE

CASE OF FIXED CONTACTS

Consider a grasp G(pi,pj). Suppose that an adversary

finger A makes contact with the object at pk, and tries

to break the grasp via a translation a. To resist A, the

two grasping fingers F1 and F2 translate by d1 and d2,

respectively. We would like to determine d1 and d2 that

result in the minimum efforts by F1 and F2 in such

resistance. This effort is best characterized by the total

work done by these two grasping fingers.

The general scenario is depicted in Fig. 2, in which the

pi

pj

pk

d2

A

F2

F1

a

d1

Fig. 2. Resisting a translating adversary finger.

finger contacts have evolved from the nodes pi,pj ,pk
into segments as F1,F2,A translate. Every contact

segment is uniquely represented by a sequence of nodes

on it2. At an instant during the resistance, F1 makes

contact with the set of nodes {pt | t ∈ I}, F2 with

{pt | t ∈ J}, and A with {pt | t ∈ K}. We can partition

the scenario into small periods, within each of which the

contact sets I, J,K do not change.

In this section, we will look at fixed point contacts

during the resistance, and then generalize to fixed seg-

ment contacts. In Section V, we will tackle the general

situation with varying I, J, K and contact modes at

individual nodes under Coulomb friction.

For clarity of analysis, this section assumes that the

three fingers touch the object simultaneously.

A. Fixed Point Contacts

The nodes pi,pj , and pk will stay as the only

contact points. Deformation of the object is due to their

displacements: δ̄ = (δTi , δ
T
j , δ

T
k )

T = (dT1 ,d
T
2 ,a

T )T .

By (3) the work performed by F1 and F2 is

‘WF =
1

2
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0





T

f̄ =
1

2
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0





T

C





d1
d2
a



 . (7)

Similarly, for the three fingers, δ̄ is a stable squeeze if

δ̄ ∈ col(C), and a pure squeeze if δ̄ ∈ col(AC). Since

m = 3, both col(C) and col(AC) have three dimensions

by Theorem 1.

We first look at the best resistance via a sta-

ble squeeze. Consider all d1 and d2 such that

δ̄ ∈ col(C), or equivalently, δ̄ ⊥ col(B), which

is spanned by (1, 0, 1, 0, 1, 0)T , (0, 1, 0, 1, 0, 1)T , and

(−yi, xi,−yj, xj ,−yk, xk)
T . Equivalently, we require

d1 + d2 + a = 0, (8)

pi × d1 + pj × d2 + pk × a = 0. (9)

We substitute (8) into (7) for d2, and rewrite

WF =
1

2
dT1 Hd1 + c

Td1 + ω, (10)

where H , c, and ω are constant matrix and vectors

depending on a and C. It is easy to show that H is

positive semi-definite.

Denote by t̂ the unit vector in the direction of pi−pj ,

and n̂ the unit vector such that t̂ · n̂ = 0 and t̂× n̂ = 1.

Write d1 = τ t̂ + ηn̂. Substituting it and (8) into (9),

we obtain η ≡ d1 · n̂ = (pj − pk)× a/‖pi − pj‖.

Meanwhile, τ can take on any value.

Substitute d1 = τ t̂ + ηn̂ into (10), we obtain WF =
1
2b2τ

2 + b1τ + b0, for some b0, b1, b2, such that b2 > 0.

2under an implicit assumption, consistent with the use of FEM, that
a segment always ends at two nodes.



As long as pk 6= 1
2 (pi + pj),

3 the minimum work

is W ∗
F = b0 − b21/(2b2), achieved at τ = −b1/b2

by (dT1 ,d
T
2 )

T = ‖a‖(ψT
1 ,ψ

T
2 )

T , where ψ1 and ψ2

depend on pi,pj ,pk and â, the unit direction of a,

only. As A further translates along â, F1 and F2 just

need to translate along the directions of ψ1 and ψ2

proportionally.

Next, we find a pure squeeze that minimizes WF ,

considering only d1 and d2 such that δ̄ ∈ col(AC).
Represent δ̄ = τ1û1 + τ2û2 + τ3û3, where û1, û2, û3

are the orthogonal unit vectors that span col(AC). From

these two equivalent representations of δ̄, we infer that

a = (0, I2)(û1, û2, û3)(τ1, τ2, τ3)
T .

In the general case rank(Q) = 2, τ2 and τ3 are linear

in τ1, yielding WF as a quadratic function of τ1. The

optimal grasping finger displacements can be obtained

from dWF/dτ1 = 0. This solution also works for

rank(Q) = 1 and a ∈ col(Q), after proper permutation

of τ1, τ2, τ3 to set the latter two to zero.

If rank(Q) = 1 and δ̄ 6∈ col(AC), the adversary

finger cannot be resisted.

B. Fixed Segment Contacts

The displacement δt of a contact node pt is d1 if

t ∈ I, or d2 if t ∈ J, or a if t ∈ K . The vector δ̄ now

gathers δt, for all t ∈ I, then for all t ∈ J, and finally,

for all t ∈ K. Rearrange the rows and columns of the

reduced stiffness matrix C introduced in (2) in the same

index order as in δ̄.

Again, we first consider stable squeezes, for which

the following generalizations of (8) and (9) hold:
∑

t∈I∪J∪K

δt = 0 and
∑

t∈I∪J∪K

pt × δt = 0.

The first condition above yields d2 in terms of d1 and

a. Substitute it into the second condition to yield

|I|(p̆− q̆)× d1 + |K|(r̆ − q̆)× a = 0, (11)

where p̆ = 1
|I|

∑

t∈I
pt, q̆ = 1

|J|

∑

t∈J
pt, and r̆ =

1
|K|

∑

t∈K
pt are referred to as the contact centroids of

the fingers F1,F2,A, respectively.

As in Section IV-A, we can write the work done by

F1 and F2 into the form of (10), where H , c, and

ω assume new expressions. Minimization parallels that

in Section IV-A with a decomposition of d1 along the

direction t̂ of p̆− q̆, and its orthogonal direction n̂.

The case of a pure squeeze with fixed segment

contacts also generalizes that of fixed point contacts

3In the degenerate case pk = 1

2
(pi + pj), W ∗

F
is achieved by

a one-dimensional set of displacements. We may simply let τ =
−b1/b2.

in Section IV-A. We will end up with a very similar

optimization problem. Aside from a different form of

WF and different variables τ ′1, τ
′
2, τ

′
3, over which the

constraint is a = (0, I2)(û
′
1, û

′
2, û

′
3)(τ1, τ

′
2, τ

′
3)

T .

V. FRICTIONAL SEGMENT CONTACTS

We are finally ready to consider optimal resistance

with segment contacts under friction. All three fingers,

with semicircular tips with radius r, make initial point

contacts with the object that will grow into segments as

the fingers translate. A contact node may be sticking or

sliding on the fingertip. A finger slips on the object if

all of its contact nodes are sliding in the same direction.

Otherwise, it sticks.

In a realistic scenario, the grasping fingers F1 and

F2 first perform a squeeze on the object by translating

toward each other via s(pj − pi) and s(pi − pj), for

some s > 0. Then the adversary finger A makes contact

at the node pk and begins a translation a to try to

break the grasp. The system configuration right before

this disturbance, including the object’s deformed shape

and the contact index sets I and J for F1 and F2, can

be determined using the event-based squeeze grasping

algorithm from our recent work [6].

Here we modify the above algorithm, which works

for two grasping fingers only, by letting the translation

distance ρ of A drive all events. The distance will be

sequenced into ρ0 = 0 < ρ1 < · · · < ‖a‖ such that

at every ρl, one of the following four contact events

happens: contact establishment (A), contact break (B),

stick-to-slip transition (C), and slip-to-stick transition

(D). Between two events, the contact sets I, J,K do not

change.

Consider the moment when A has translated by the

distance ρl. For a contact node pt, we use δ
(l)
t , f

(l)
t ,

and θ
(l)
t to refer to its current displacement, contact

force, and polar angle (with respect to the center of the

contacting fingertip), respectively.

Next, A will continue moving by an extra distance ǫ
in the direction of a. Suppose ǫ is small enough such

that all contacts and their modes will not change. We

determine the extra translations ∆d1 by F1 and ∆d2 by

F2 to resist this extra movement of A, via minimizing

the extra work done by F1 and F2:

∆WF =
∑

t∈I∪J

∆δTt f
(l)
t +

1

2

∑

t∈I∪J

∆δTt ∆f t. (12)

In the above, ∆δt is the extra displacement of the

contact node pt from δ
(l)
t , and ∆f t the change in its

contact force from f
(l)
t .

During this extra translation period, if a node pt, t ∈
I∪ J, sticks, then ∆δt = ∆d1 or ∆d2. If it slides, then



∆δt will be the sum of ∆d1 or ∆d2, and the node’s

movement r
(cos θt−cos θ

(l)
t

sin θt−sin θ
(l)
t

)

on the tip of F1 or F2 that it

is in contact with. Minimization of ∆WF would be over

∆δ1 and ∆δ2, and the polar angle θt of every sliding

contact pt. It can get too inefficient.

We stipulate that the work done on pt, t ∈ I ∪ J,

due to its sliding, by the contacting finger F1 or F2

will be significantly less than the amount due to its

translation with the finger. Instead of minimizing ∆WF ,

we minimize its approximation ∆W̃F by treating every

sliding node in contact with F1, F2, or A as if it would

be sticking during the period of the extra resistance

period.

In short, whether a contact node pt sticks or slips,

its extra displacement ∆δt will be set as ∆d1 if t ∈ I,

∆d2 if t ∈ J, and ǫ a‖a‖ if t ∈ K. Then ∆d1 = ǫd′1 and

∆d2 = ǫd′2, where d′1 and d′2 are determined like d1
and d2 in Section IV-B with ǫa replacing a.

The extra translation distance ǫ ends by the occurrence

of the next contact event. The four contact events are

tested, with every increment of ǫ, using a subroutine

from [6]. Such tests must take into account sliding

of contact nodes. Once an event occurs, the overall

translation distance for A is updated as ρl+1 = ρl + ǫ.
In addition to the index sets I, J,K, update the set P of

sliding contacts and the set T of sticking contacts (with

any of F1,F2, and A).

If the adversary finger A begins to slide after an event,

it has been successfully resisted. If either F1 or F2 starts

to slide, the grasp fails to resist A. If none of the above

two cases happens, A will complete its translation a

while being resisted.

Fig. 3(a) shows a convex shape first grasped un-

der a stable squeeze by two fingertips F1 (translating

via (−0.00068, 0.002)T from pi to pj) and F2 (mo-

tionless). The fingertip’s radius is 0.02. An adversary

finger A starts pushing the object through translation

a = (0.0024, 0.0044)T , as shown in (b). The resis-

tance algorithm generates two trajectories for F1 and

F2 for a stable squeeze shown in (c). Their overall

displacements are d1 = (−0.0008,−0.0019)T and d2 =
(−0.0007,−0.0005)T . Table I displays the components

of the finger forces exerted along the translation direc-

tions, at the start and the end of resistance, and the work

the fingers have performed. A negative force reading

indicates that the contact force influenced by friction

was “pulling” away from the translation direction of the

finger. Contact events A, B, C, D occurred 7, 0, 3, and 2

times, respectively, during the resistance. The coefficient

of contact friction is 0.5.

pj pj
pi

pi F1 F1

A

F2 F2

pk

(a) (b)

d2

d1

a

δ1

(c)

Fig. 3. Resisting an adversary circular fingertip under friction: (a) a
convex shape grasped via a stable squeeze; (b) successful resistance to
an adversary finger A; and (c) trajectories of three fingers during the
resistance, translated so their starting points coincide with the origin,
and initial trajectory δ1 of F1 before the resistance. Sticking contacts
are drawn as solid black circles, while the only sliding contact as a
hollow black circle.

“optimal” resistance

F1 F2 A

force (start) 2.098 −2.566 0

force (end) 8.136 −1.23 6.57

work 0.0101 −0.0017 0.0178

TABLE I

FORCES EXERTED AND WORK PERFORMED BY THE THREE FINGERS

IN FIG. 3 UNDER TRANSLATIONS d1 , d2 , AND a.

VI. EXPERIMENT

Fig. 4 shows an experiment that implemented the

scenario in Fig. 3. Because the three fingers of our

BarrettHand could not be controlled to perform indepen-

dent translations in the same plane, human hands were

involved to hold the fingertips and translate them.

For ease of hand control, the trajectories of F1 and

F2 in Fig. 3 were straightened so they were translating

by d1 and d2, respectively, during the resistance. It is

referred as the “optimal” resistance, during which F2

retreated slightly (i.e., moved away from the object).

We attached a force meter (see Fig. 4(c)) to a finger



y

x

F2

F1 F1

F2

A

(a) (b) (c)

Fig. 4. Experiment on adversary finger resistance: (a) grasp of a
rubber foam object of the shape in Fig. 3(a); (b) its resistance to a
translating finger A; (c) force meter (from Ametek Hunter Spring)
attached to a finger for force measurement. The coefficient of contact
friction is 0.5.

such that the meter’s axis was aligned with the finger

translation. The work done by the finger was estimated

as half the product of the translation distance with the

sum of the initial and final force readings. The squeeze-

and-resistance process was repeated three times, each

time with the force meter attached to a different finger.

Guided by the trajectories plotted on the platform, the

three trials yielded outcomes with slight differences

within the acceptable range.

Columns 2 through 4 in Table II display the experi-

mental results. Small discrepancies exist in comparison

“optimal” resistance “arbitrary” resistance

F1 F2 A F1 F2 A

force (start) 2.2 −3.1 0 6.9 4.17 0

force (end) 8.3 −1.7 7.2 14.45 13.61 10

work 0.011 −0.002 0.018 0.045 0.032 0.025

TABLE II

FORCES EXERTED AND WORK PERFORMED BY THE THREE FINGERS

IN FIG. 4 UNDER d1 AND d2 COMPUTED BY THE RESISTANCE

ALGORITHM (COLUMNS 2–4) OR ARBITRARILY CHOSEN

(COLUMNS 5–7).

with Table I. They were mainly due to several factors:

trajectory straightening, measurement errors, and inac-

curacy of the human hand pushing.

We also tested an “arbitrary” resistance strategy

against the the same adversary finger disturbance. We

arbitrarily chose a translation direction d2/‖d2‖ =
(0.447,−0.894)T for F2. To obtain a stable squeeze,

we then solved the three equations induced from

(dT1 ,d
T
2 ,a

T )T ⊥ col(B) for d1 and the magnitude of

d2. The solution was d1 = (−0.004,−0.0012)T and

d2 = (0.0016,−0.0032)T . Table II shows that much

smaller work was carried out by F1 and F2 with the

“optimal” resistance.

VII. DISCUSSION

We investigate several optimality criteria for squeeze

grasping of deformable planar objects with two fingers.

A stable squeeze minimizes the potential energy for the

same amount of squeeze by moving the two fingers to-

ward each other. A pure squeeze ensures that the grasped

object undergoes no rigid body motion as it deforms

under the finger forces. It prevents large rotations that

cannot be described under linear elasticity, on which our

analysis is based.

We also look at the best strategy to resist an adversary

finger pushing against a grasped object via translation.

Our introduced metric is the amount of work performed

by the two grasping fingers. Best resistance strategies

are analyzed for fixed point and segment contacts. A

resistance strategy is developed for rounded fingers un-

der Coulomb friction, by modifying our recent squeeze

grasping algorithm [6].

Further investigation and experimental validation need

to be conducted for the introduced grasp quality mea-

sures. We would also like to explore more the stability

of grasping in the presence of disturbances.
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