
Batting Flying Objects to the Target in 2D

Matthew Gardner Yan-Bin Jia
Department of Computer Science

Iowa State University
Ames, IA 50011, USA

mattga, jia@iastate.edu

Huan Lin
Research and Development Center

Yi Jia He Technology Co., Ltd.
Nanjing, Jiangsu, China

linhuanmars@gmail.com

Abstract— This paper presents a planning algorithm for a 2-
DOF robotic arm to bat a flying 2D object to a targeted location.
Impact dynamics are combined with trajectory kinematics and
manipulator dynamics to compute the evolving set of states
(poses and velocities) of the arm able to achieve the task as
the object is flying. Planning is conducted under the arm’s
dynamic and kinematic constraints. At the time of hit, the
robot executes an action to minimize its total energy. Simulation
and Experiments have been conducted using a Whole Arm
Manipulator (WAM) from Barrett Technology, Inc.

I. I NTRODUCTION

Impact happens when two or more bodies collide. Its
short duration (< 0.1 second) yields a high impulsive force.
Kinetic energy is first stored and then released or trans-
ferred among the involved bodies. The resulting impulsive
force possesses an efficiency edge over a static or dynamic
force. On many occasions, we take advantage of impact to
accomplish tasks that would otherwise be difficult, if not
impossible. Sports, for instance, is an area where impact
is used often in actions like serving a topspin in table
tennis, batting a baseball, making a pool shot, etc. Instead
of avoiding a collision, the robot should try to utilize it to
accomplish a manipulation task more efficiently.

In this paper, we consider the task of batting a flying
object to a target point in 2D. The object and bat have known
geometries, inertia, and coefficient of restitution. The object’s
position and velocity just before impact is estimated. Impact
planning is performed to determine where to strike the object
using a two-link robot with a bat fixed to the end, as well as
at what time and velocity to strike in order to perform the
task.

Relatively little work exists on impact planning, despite
some noticeable efforts on impulsive manipulation [7], [14],
[3], [5], and [13]. Impact-based modeling was also used to
determine the orientation of an object after bring dropped
on a surface [10]. Related to batting, the work [2] focused
on the swing trajectory and the force/torque required to
generate it, applying Newton’s kinematic restitution law [8].
A high-speed robot system [11] was designed for batting
the baseball using a hybrid trajectory. The work was then
extended to control the direction of the post-impact ball
motion [12], though not the entire trajectory. Ball-batting
was also achieved with reasonable accuracy using a 4-DOF
robot and paddle [4], where the ball’s trajectory after impact
was considered. Although, both of these approaches lack

an impact model that extends to arbitrary shapes as well
as frictional impact. Additionally, significant work has been
done on ping-pong playing robots, most notably recent work
for humanoid robots with a 7-DOF arm [15].
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Fig. 1: Batting a flying object to a target atd.

We start with a simple version of the batting problem. A
self-actuated bat shown in Fig. 1 is controlled to hit a 2D
object in order to alter its trajectory to reach a destination
pointd. We assume that there is no contact friction between
the bat and the object, which is achievable by choosing their
materials to have a high coefficient of friction.

Section II presents impact dynamics and energy-based
restitution, and then describes how to obtain the bat’s pre-
impact motion to drive the object to the destination, when
prescribed a hitting configuration. Section III considers a
realistic setting of the bat driven by a 2-DOF robotic arm.
Combining inverse kinematics, impact dynamics, and motion
trajectory, we describe a two-dimensional set of the arm’s
joint angles and velocities to achieve the batting task. A pre-
impact arm state from the set is selected via minimizing the
total energy of the arm and the bat. Section IV describes
a batting algorithm that plans the arm’s motion during the
object’s flight, and offers some examples. Section V presents
results from experiments performed using a robot arm, and
the final section discusses immediate and future extensions.

Vectors in the paper are by default column vectors. Since
all vectors are planar, the cross product of any two is treated
as a scalar (as a coordinate along the orthogonal axis). A
tuple is written as a row vector. The subscriptsx and y of
a letter (not bolded) represent thex- and y-coordinates (or
components) of a point (or a vector) named by the same
letter (bolded), respectively. For instance,px denotes thex-
coordinate of the pointp, while Vox the x-component of a
velocityV o. The superscripts ‘−’ and ‘+’ refer to quantities
before and after the impact, respectively. The subscript⊥ of
a vectorv = (vx, vy)

T rotates it counterclockwise byπ/2,



that is, v⊥ = (−vy, vx) such thatv × u = vT
⊥
u for any

vectoru.
All units are from the metric system. In particular, we

use second (s) for time, meter (m) for length, radian (rad)
for angle, kilogram (kg) for mass, kilogram square meter
(kg ·m2) for moment of inertia, Newton (N) for force, and
Joule (J) for work and energy. Units will be omitted from
now on.

II. T WO-DIMENSIONAL FRICTIONLESS IMPACT
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Fig. 2: Impact configura-
tion.

Fig. 2 shows the impact con-
figuration, where the object was
flying towards the left just before
impact. We assume the position
and orientation of the bat and
object are known at this moment,
as well as the linear and angular
velocity of the object. The vectors
ro andrb locate the contact point
p relative to the centers of mass

oo and ob of the object and the bat, respectively. Without
loss of generality, the targetd lies to the right of the point
of impactp. The contact normal̂n = (nx, ny)

T hasnx > 0,
which is a necessary condition for successful batting.

Let mb be the mass of the bat, andmo that of the
object. Denote byV b and V o the velocities of the bat
and the object, respectively, and byωb andωo their angular
velocities. The impact changes the object’s velocity instantly
to V +

o = V −

o +∆V o. The object will perform a free flying
motion under gravity. Our task here is to plan the bat’s pre-
impact velocitiesV −

b and ω−

b so the object’s trajectory is
altered to pass through the destinationd.

A. Impact Dynamics

Let I be the impulse exerted by the bat on the object. An
opposite impulse−I is exerted on the bat by the object under
Newton’s third law. By Newton’s second law, the velocity
changes during the impact are

∆V b = −
1

mb

I, ∆ωb = −
1

σb

rb × I,

∆V o =
1

mo

I, ∆ωo =
1

σo

ro × I,
(1)

whereσb andσo are the moments of inertia of the bat and
object, respectively. Letvb andvo be the velocities of the two
points on the bat and the object coinciding at the contactp.
We have

vb = V b + ωbrb⊥ and vo = V o + ωoro⊥. (2)

Here,vb is referred to as thebatting velocity. The contact
velocity is

v = vo − vb = V o + ωoro⊥ − V b − ωbrb⊥.

After plugging in (1), it changes by the amount

∆v = ∆vo −∆vb

=
1

mo

I +
ro × I

σo

ro⊥ +
1

mb

I +
rb × I

σb

rb⊥

= WI, (3)

where

W =
mo +mb

momb

(

1 0
0 1

)

+
1

σo

ro⊥r
T
o⊥+

1

σb

rb⊥r
T
b⊥ (4)

is positive definite.

B. Energy-based Restitution

Impact is divided into two phases [9, p. 212]: compression
and restitution. During compression, the kinetic energy is
transformed into the potential energyE stored at the contact.
The phase ends with zero velocity and maximum energy
Emax. The elastic portion of the stored energy, of the amount
e2Emax, is released during the following restitution phase.
Here e ∈ [0, 1] is referred to as theenergetic coefficient of
restitution. The energy loss by the factor of1− e2 is due to
deformation, heat, etc.

Absence of friction means that there is no impulse or
energy exchange along the tangent direction. HenceI = In̂,
whereI is the impulse magnitude. It is convenient to describe
the impact process in terms ofI instead of time. The energy
functionE is differentiable during each impact phase:

dE

dI
= −n̂T (v− +∆v) = −v−n − n̂

TW n̂I, (5)

where v− is the pre-impact contact velocity, andv−n =
n̂

T
v− its normal component.

At the end of compression,dE/dI = 0, which, after sub-
stitution of (5), yields the impulse valueIc = −v−n /(n̂

TSn̂).
Integrate (5) from 0 toIc to obtain the energy atIc:

Emax =
(v−n )2

2n̂TW n̂
. (6)

Restitution begins with the energye2Emax and decreases it
to zero when the phase ends with the impulse valueIr. We
have

−e2Emax =

∫ Ir

Ic

dE, (7)

from which we solve for the total impulse:

Ir = −
(1 + e)(n̂T

v−)

n̂
TW n̂

= −
(1 + e)v−n

n̂
TW n̂

. (8)

C. Bat Motion

With the impact outcome derived, we are now ready to
plan the motion of the bat. Substitute (8) into (1):

∆V o =
Ir
mo

n̂ = −
(1 + e)v−n

mon̂
TW n̂

n̂

= −
(1 + e)(v−on − v−bn)

mon̂
TW n̂

n̂, (9)

wherev−on = n̂
T
v−

o and v−bn = n̂
T
v−

b are the pre-impact
normal components ofvo andvb, respectively. Notice that
the tangential component ofvb will not affect the motion of
the object in the absence of friction. From (9), the object’s
post-impact velocity is linear inv−bn:

V +
o (v

−

bn) = V −

o +∆V o

= V −

o −
(1 + e)(v−on − v−bn)

mon̂
TW n̂

n̂. (10)



Let q = d−p+ ro. For the object to pass throughd, the
following kinematic equation needs to be satisfied:

q = V +
o t− (0, 0.5g)T t2, (11)

for some flight timet, whereg is the gravitational acceler-
ation. Next, we eliminatet by solving the above system of
two equations from thex- andy-coordinates ofV +

o andq.
This yields an equation in terms ofq, V +

o , andro,

qyV
+2
ox − V +

oxV
+
oyqx + 0.5gq2x = 0. (12)

Knowing q, we substitute (10) into (12) to obtain a
quadratic equation in the normal batting velocityv−bn. Such
a velocity exists if and only if the following two conditions
are satisfied:

(

nxV
−

o × q + V −

oxn̂× q
)2

− 4nx(q × n̂)
(

0.5gq2x + V −

oxV
−

o × q
)

≥ 0, (13)

v−bn − v−on > 0. (14)

The first condition, independent of the massesmo andmb,
and the restitution coefficiente, ensures that a real root
of (12) exists. The second condition, on the root found under
the first condition, ensures batting in the positive direction
of the normal. Together they are calledtask conditions. The
task conditions guarantee the object to reach the destination
d.

Supposev−bn exists. Then by (2),̂nT (V −

b +ω−

b rb⊥) = v−bn,
which implies that all the bat velocities(V b, ωb) to generate
v−bn constitute a plane in the velocity space. The set will be
reduced under kinematic and dynamic constraints when a
manipulator is used to move the bat, as will be discussed in
Section III.

A detailed analysis (omitted for lack of space) has been
performed to characterize the region of(qx, qy)

T that admits
a solution to equation (12). The region is rather large, which
means that the bat is capable of sending the object to a wide
range of locations.

III. I MPACT PLANNING

In a real situation, the bat is attached to a robotic manip-
ulator. This section plans the motion of a two-link arm to
carry out the batting task during the flight of an object. We
will first work out the arm’s inverse kinematics to attain a
specific batting configuration. Then we will describe a two-
dimensional set of joint angles and velocities with which
batting can send an object, at a fixed moment during its
flight, to the target. Next, optimization will be introduced
to minimize the total energy of the arm and the bat (which
measures the work done by the arm). Fig. 3 outlines this
procedure along with the vision system used in experiments.

A. Inverse Kinematics

As shown in Fig. 4, we first determine the pose of a two-
link robot arm enabling the bat to hit the flying object atp.
Suppose that the contact normaln̂ is known. The two links
attached to the arm jointsJ1 andJ2 have lengthsl1 and l2,
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Fig. 3: Block diagram of impact planning and computer vision.
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Fig. 4: Inverse kinematics: (a) actual configuration and (b)two
possible configurations(θ1, θ2) in which the second link has the
normal n̂ and is incident onp.

respectively. Letlb be the length of the bat. We would like
to determine the joint anglesθ1 andθ2.

The origin is placed atJ1. The unit vectors along the two
links are

l̂1 =

(

cos θ1
sin θ1

)

and l̂2 =

(

cos(θ1 + θ2)

sin(θ1 + θ2)

)

. (15)

Thus, J2 is at the locationl1l̂1, and we set up three
conditions:

n̂
T
l̂2 = 0, (16)

n̂
T (p− l1l̂1) = 0, (17)

l̂
T

2 (p− l1l̂1) ∈ (l2, l2 + lb]. (18)

Equation (17) implies that|n̂T
p/l1| = |n̂T

l̂1| ≤ 1.
Thus, batting atp can be performed only if thereachability
conditionbelow is satisfied:

−l1 ≤ n̂
T
p ≤ l1. (19)

Let α be the polar angle of̂n, andβ = cos−1(n̂T
p/l1).

See Fig. 4(b). Then we have

θ1 = α± β, (20)

corresponding to two possible configurations of link 1.
Substitute (15) for̂l2 into (16) and rewrite it as

cos θ2

(

l̂
T

1 n̂
)

+ sin θ2 (̂l1 × n̂) = 0.

Since the vector(̂l
T

1 n̂, l̂1 × n̂)T is unit, the above yields
(cos θ2, sin θ2) = ±(n̂× l̂1, n̂

T
l̂1), from which we obtain

θ2 = π ± atan2(n̂T
l̂1, n̂× l̂1). (21)



In the above, the sign is uniquely chosen under condi-
tion (18) becausêl2 must be in the direction ofp − J2.
Thus, for eachθ1 value, at most oneθ2 value exists. In
summary, conditions (16)–(18) induce at most two possible
values of(θ1, θ2), for which the configurations are drawn in
Fig. 4(b).

B. Configuration Space of Contact

For simplicity we assume convexity of the object. At
the time of impact, its center of massoo is at p − ro
(cf. Fig. 2), where its body frame has a rotation from the
world frame described by the matrixR. Let the curveγ(s) =
(γx(s), γy(s))

T describe the object’s boundary in the body
frame such that the parameters increases counterclockwise.
By a slight abuse of notation, we lets locate the contact
point p on γ, i.e.,Rγ(s) = ro. The contact normal is thus

n̂(s) = R(−γ′

y, γ
′

x)
T /‖γ′‖. (22)

Below we describe the set of(θ1, θ2) values that satisfy
the constraints (16)–(18) as the contact point

p(s) = oo +Rγ(s) (23)

varies along the object’s boundary under the conditions (19)
andnx > 0.

Since n̂ andp depend ons, so do the anglesα and β.
Equation (20) definesθ1 as a function ofs, where the sign
‘+’ or ‘−’ is chosen over different intervals ofθ1. In the
joint angle space, ass varies, all(θ1, θ2) that result in the
bat making contact with the object form curve segments on
the object’s boundary. These segments are further reduced
by the joint rangesΘ1 of θ1 andΘ2 of θ2.

C. Configurations for Batting

Consider an arm pose(θ1, θ2(θ1)) allowing the bat to be
in contact with the object at the current time instant. For
convenience, the contact point on the bat isl1l̂1+al̂2, where

a = l̂
T

2 (p − l1l̂1) depends onθ1 and θ2. The velocity of
the contact point just before the impact is obtained through
differentiation while treatinga as a constant:

v−

b =
(

l1l̂1⊥ + al̂2⊥

)

θ̇1 + al̂2⊥θ̇2. (24)

Fork = 1, 2 letmk be the mass of linkk, σk its moment of
inertia about the jointJk, anddk the distance from its center
of mass to the jointJk. Let db be the distance from the bat’s
center of mass to the jointJ2. Then the bat’s moment of
inertia aboutJ1 is σ̄b = σb +mb‖l1l̂1 + db l̂2‖

2.
At the moment of impact, we consider the arm to be rigidly

connected with the bat, which exerts an impulsive force on
the flying object, as well as links 1 and 2 of the arm [1, p.
18]. From dynamics, we have

∆θ̇1 = −
l1
σ1

l̂1 × I and ∆θ̇2 = −
a

σ̄2 + σ̄b

l̂2 × I,

where the inertia of link 2 aboutJ1 is σ̄2 = σ2 +m2l
2
1.

The velocityvo of the contact point on the object is still
given in (2). The change in the contact velocity∆v assumes
the same form as (3), except from (24) we now have

W =
1

mo

(

1 0
0 1

)

+
1

σo

ro⊥r
T
o⊥ +

l1
σ1

l̂1⊥

(

l1l̂
T

1⊥ + al̂
T

2⊥

)

+
a2

σ̄2 + σ̄b

l̂2⊥l̂
T

2⊥.

For the pre-impact normal velocityv−bn = n̂
T
v−

b to exist,
the task conditions (13) and (14) must be satisfied by the
normal n̂ and q = d − p + ro. After substitutions of (22)
and (23), the conditions are on the parameters locating the
contact point. Meanwhile, every(θ1, θ2) satisfying condi-
tions (16)–(18) and lying in the joint angle ranges determines
ans value. Namely,s is a function ofθ1. The task conditions
are thus imposed onθ1, though their forms in terms ofθ1
cannot be written out compactly1.

The task conditions (13) and (14) further reduce those
(θ1, θ2) segments from Section III-B, which already ensures
the bat’s contact with the object and that the joint rangesΘ1

andΘ2 are not exceeded. Every pair(θ1, θ2) on a resulting
segment is called afeasible pose.

The arm will be based on a 4-DOF WAM arm, whereθ1
andθ2 refer to the angles of its joints 2 and 4, and the other
two joints are not used. Table I gives the values of physical
parameters related to the two links, the bat, and the object.

l1 = 0.55, d1 = 0.3426, m1 = 5.6772, σ1 = 0.2929,
l2 = 0.35, d2 = 0.1446, m2 = 1.0651, σ2 = 0.0412,
lb = 0.265, db = 0.4423, mb = 0.3433, σb = 0.0704,

mo = 0.0175, σo = 0.0000355,
Θ1 = [−0.429, 3.571], Ω1 = [−0.85, 0.85], Φ1 = [−8, 8],
Θ2 = [∓0.9,±3.1], Ω2 = [−5, 5], Φ2 = [−60, 60].

TABLE I: Values of physical parameters. The first four rows display
the lengths, masses, and moments of inertia of the two links,the
bat, and the elliptic object in Figs. 5. The last two rows display the
rangesΘi, Ωi, andΦi, i = 1, 2, of joint i’s angle, velocity, and
acceleration. Joint angle ranges are relative to the zero position.
The rangeΘ2 is either[−0.9, 3.1] or [−3.1, 0.9] by controlling the
WAM’s third joint.

Consider an example where a solid, elliptic object2

is thrown from the location (1.5, 0.7), with velocity
(−2.8, 1.2), and rotating at a constant rate of 10. Fig. 5
plots the evolution of feasible arm poses(θ1, θ2) over 0.53
seconds of flight. At time 0.29, the feasible poses form the
red curve in the plot, and the red segment of contact points
on the corresponding ellipse. The cross on the red curve at
(0.559, 0.621) produces the batting configuration drawn out.

At time 0.45, the object is within reach of two feasible
poses that form the green curve segments marked byc2 and
c3. The curve segmentc1 includes poses where only a smaller
θ1 value can reach the object, while the curve segmentc4

1In computation it is easier to first find thes values, each corresponding
to up to twoθ1 values.

2The object has its semi-major and semi-minor axes of length 0.075 and
0.05 aligned, under no rotation, with thex- and y-axes, respectively. Its
physical parameters are shown in Table I.



Fig. 5: (a) Regions of the arm poses for batting an object bounded
by an ellipse. Batting configurations are superimposed for time 0.29
when the object is located at(0.688, 0.636)T with a rotation of 2.9,
and at time 0.45 when at(0.433, 0.881) with a rotation of 4.5.

includes those with a largerθ1. The resulting segment of
contact points are drawn on the corresponding ellipse along
with two batting configurations that reach the same contact
point. The cross onc2 at (−0.178, 2.62) produces the arm
poseP2, while the cross onc3 at (1.921,−2.62) produces
the poseP1.

D. Feasible Arm Motions

We now consider how to find the joint velocitiesθ̇1 and
θ̇2 for batting. Given a feasible pose(θ1, θ2(θ1)), the pre-
impact normal velocityv−bn exists to complete the batting
task. It is solved from the quadratic equation resulting from
a substitution of (10) into (12). Up to two roots exist. It
follows from equation (24) that

v−bn = −(l1 cos θ2 + a)θ̇1 − aθ̇2

where we make use of̂n = −l̂2⊥ and n̂T
l̂1⊥ = −l̂

T

2 l̂1⊥ =
− cos θ2. Sincen̂, l̂1⊥, and l̂2⊥ all depend onθ1, the above
equation defineṡθ2 as a function ofθ1 and θ̇1:

θ̇2(θ1, θ̇1) = −v
−

bn − (l1 cos θ2 + a) θ̇1. (25)

Thus, the two variablesθ1 and θ̇1 completely characterize
the arm’sstate(configuration and velocity).

Next, we determine the range ofθ̇1 given θ1. Suppose
that the robot starts moving at timeτ ahead of when the
object reaches the impact configuration. We let every joint
k, k = 1, 2, accelerate at a constant rate for some initial time
period τk to reach θ̇k, and then maintain the velocity for
the remaining periodτ − τk until the joint angle reachesθk.
Under this acceleration scheme, the following two conditions
hold:

θ̇k · θk > 0, k = 1, 2. (26)

Both conditions above are imposed onθ1 and θ̇1. It is easy
to derive that

θ̇k

(

τ −
τk
2

)

= θk, k = 1, 2, (27)

which, under (26) and (27), ensure onlyτ > τ1/2, τ2/2. So,
we must also enforce the constraintsτ > τ1, τ2. Subtracting
the two equations in (27) and combining it withτ > τ2
yields a second constraint onτ1:

τ > τ1 + 2

(

θ1

θ̇1
−

θ2

θ̇2

)

. (28)

The arm must also be able to accelerate toθ̇1 and θ̇2
within τ1 and τ2, respectively. Letδ1, δ2 > 0 be the maxi-
mum accelerations3 for joints 1 and 2. Then, the following
conditions must be satisfied:

τkδk ≥ |θ̇k|, k = 1, 2. (29)

Additionally, enough time must be provided for planning and
transmission of data over the network (to the WAM arm):

τ ≤ τmax − τp (30)

where τmax is the period between the time that planning
starts and the time of impact, andτp is the worst-case time
for planning and data transmission to finish.

Equation (27) allows us to convert any constraint involving
τ2 into one involvingτ1 (as done with inequality (28)). We
then obtain the upper and lower bounds ofτ1 that satisfy
constraints (26) and (28)-(30) when the following holds:

max

{

|θ̇1|

δ1
,
|θ̇2|

δ2
− 2

(

∆θ1

θ̇1
−

∆θ2

θ̇2

)

}

(31)

≤ min

{

2∆θ1

θ̇1
,
4∆θ2

θ̇2
−

2∆θ1

θ̇1
, 2

(

τmax − τp −
∆θ1

θ̇1

)}

Once the inequality holds, there exists one value ofτ1
between its left and right hand sides, and one value each of
τ2 and τ as determined from (27). The original constraints
(26) and (28)–(30) can be easily realized from (31) (proof
omitted for space).

Furthermore, this interval defines the space of(θ1, θ̇1)
solutions that can successfully accomplish the batting task.
Given θ1 (and thusθ2), constraints (26) and (31) when
combined with (25) break down into eight inequalities4.
These are applied together with the rangeΩi for θ̇i, i = 1, 2,
to obtain an interval[ηa(θ1), ηb(θ1)]. After choosingθ̇1 from
this interval (see Section III-E),θ2 and θ̇2 are calculated
from (21) and (25), andτ1 is chosen to be the average
of the left and right hand sides of (31). The choice ofτ1
is for robustness to control uncertainties and measurement
error, which the solution is more vulnerable to towards the
boundaries.

E. Batting with Minimum Effort

Our next step is to minimize the batting effort, which is
characterized as the total mechanical energy of the bat and
the two-link arm. This ensures that both arm joints exert
minimal work in order to achieve the batting task. The kinetic

3Namely, the acceleration range isΦi = [−δi, δi], i = 1, 2.
4two of the inequalities are linear, four are quadratic, and three are cubic



energies of the two links and the bat can be derived as
follows:

T1 =
1

2
σ1θ̇

2
1 ,

Ti =
1

2
σiθ̇

2
2 +

1

2
mil

2
1θ̇

2
1 +midil1 cos θ2

(

θ̇21 + θ̇1θ̇2

)

,

for i = 2, b. Meanwhile, their potential energies are

U1 = m1gd1 sin θ1,

Ui = mig
(

l1 sin θ1 + di sin(θ1 + θ2)
)

, i = 2, b.

The total energy of the arm is thus

E(θ1, θ̇1) = T1 + T2 + Tb + U1 + U2 + Ub.

Minimization of E is carried out in two steps: first
over θ̇1 given θ1, and then over all discretizedθ1 values.
We first discretize the subdomain of the object’s boundary
curve γ(s) with inward normaln satisfyingnx > 0. Let
s1, s2, . . . , sn be the discretized values that also satisfy the
reachability (19), and the task conditions (13) and (14). For
every sk, we substitute in (23) forp, and solve for up to
two (θ1(sk), θ2(sk)) values that satisfy conditions (16)–(18)
and fall within the arm’s joint angle range. For each feasible
(θ1(sk), θ2(sk)), use the method in Section III-D to obtain
the interval[ηa(θ1), ηb(θ1)] of feasible joint velocity values
θ̇1.

For simplicity, rewrite (25) aṡθ2 = λ1 + λ2θ̇1 where

λ1(θ1) =
v−bn

an̂T
l̂2⊥

and λ2(θ1) = −1−
l1n̂

T
l̂1⊥

an̂T
l̂2⊥

.

With θ1 andθ2 treated as constants andθ̇2 as a function, the
derivativedE/dθ̇1 vanishes at

ηc(θ1) = −
(

(σ2 + σ̄b)λ1λ2 + (m2d2 +mbdb)l1λ1 cos θ2

)

/(

σ1 + (σ2 + σ̄b)λ
2
2 + (m2 +mb)l

2
1

+2(m2d2 +mbdb)l1 cos θ2(1 + λ2)
)

.

Then the minimum ofE over [ηa(θ1), ηb(θ1)] for a givenθ1
must be achieved at either of the two endpoints, or atηc(θ1)
if ηc(θ1) ∈ [ηa(θ1), ηb(θ1)]. Denote byξ(θ1) the value ofθ̇1
at which the minimum is achieved.

We then minimizeE over all (θ1, ξ(θ1)) that have a
feasible pose(θ1, θ2(θ1)) (from Section III-A) and non-
empty interval[ηa(θ1), ηb(θ1)] (from Section III-D). Thus,
the resulting optimal pose and motion is(θ∗1 , ξ(θ

∗
1)).

IV. BATTING ALGORITHM AND SIMULATION

Algorithm 1 combines the components from Section III to
control the arm to execute a batting operation. The algorithm
assumes a Kalman filter (KF) to constantly estimate the
motion of the flying object. Planning starts immediately
when the estimate of the object’s motion converges enough
(line 3). At this moment, it hypothesizes the hit to happen at
time t + τmax (line 5) and checks for feasible states of the
arm (lines 6–8). If the set of feasible states is big enough,
it computes the optimal arm movement and executes the

batting operation (lines 10-16). In the case that no good set
of feasible states are found, it looks for a later hitting time,
and repeats so until the object is out of reach (lines 5–19).
The outer while loop of lines 3–22 iterates at the next time
instant of the object’s flight.

Algorithm 1 Batting a flying object

1: while the object is flying at timet do
2: a Kalman filter continues to estimate its motion
3: if the motion estimate converges enoughthen
4: calculate the timete when the object is beyond

reach
5: while τmax ≤ te − t do
6: predict the object’s state att+ τmax

7: discretize boundary points satisfying (19), (13),
(14) at timet+ τmax

8: computeP = {θ1 | (θ1, θ2(θ1)) feasible}
9: if P is reasonably largethen

10: compute[ηa(θ1), ηb(θ1)], ηc(θ1) for all θ1 ∈ P
11: determine the optimal arm state(θ∗1 , ξ(θ

∗

1))
12: τ1 ← average of LHS and RHS in (31)
13: set τ andτ2 according to (27)
14: θ̈k ←

∆θ∗

k

τk
, k = 1, 2

15: start moving linki at timet+τmax−τ, i = 1, 2
16: return success
17: end if
18: incrementτmax

19: end while
20: end if
21: adjust clock timet
22: end while
23: return failure

Consider the same scenario of the elliptic object from
Fig. 5. Impact happens at time 0.39 when the object is at
the position (0.408, 0.423)T , with a rotation of 3.9. Fig.
6(a) plots the region of feasible states for the WAM Arm
at this moment. The gray, blue, and orange curves, which
extend out along the dashed gray lines, are the constraints
from (31) that bound the solution space (in green). The
constraints are labeled by their corresponding inequalities
(on the sides where the feasible regions lie). The remaining
constraints are easily satisfied with the equality curves lying
outside the displayed region. The black curve cutting through
the solution space is the curve of arm states at which the
partial derivative ofE over θ̇1 diminishes, that is,ηc(θ1) ∈
[ηa(θ1), ηb(θ2)]. For θ1 values to the left and right of the
curve ηc(θ1), the minimal energy solutions continue along
the orange and blue constraints, respectively.

The range ofθ1 of feasible poses has been reduced
from (−0.429, 2.301) (see Fig. 5), to(−0.286,−0.154)
after removing those values that yield no feasibleθ̇1.
The optimal state (green point) and a non-optimal state
(red point) are selected for comparison from the feasi-
ble region in (a). The optimal state expands tox =
(θ1, θ2, θ̇1, θ̇2) = (−0.286, 2.182,−0.85,−2.868) with



(a)
0 s

0.39 s

(b)

Fig. 6: (a) Region of feasible(θ1, θ̇1). A non-optimal solution is
marked by the red point. The optimal state(θ∗1 , ξ(θ

∗

1)), marked
by the green point, is drawn out in (b) where the elliptic object’s
incoming trajectory is blue, and outgoing trajectory is green. Values
of relevant physical parameters are found in Table I.

−3.602 energy, while the sub-optimal state expands to
x = (−0.184, 2.137,−0.588,−2.450) with −1.817 energy5.
Their batting outcomes result in similar outgoing trajectories,
of which the optimal trajectory is shown in (b). The coeffi-
cient of restitutione = 0.8 is used for the batting.

Fig. 7: Batting a polygon tod = (1.5, .1)T . Initial joint angles are
θ1 = 0 and θ2 = 3. The inset shows the polygon with respect to
it’s reference frame at the origin and with zero rotation.

Fig. 7 plots the batting of an incoming 6-sided polygon6

with the same mass 0.0175 as the ellipse, and the moment
of inertia .0000267 with respect to the center of mass. At
time 0, the polygon is located at(1.9, 0.9)T . Impact happens

5Negative energy is obtained due to potential energy being relative to the
zero value ofJ1

6Its six vertices about the origin are(−0.07, 0.0), (−0.05, 0.06),
(0.0, 0.08), (0.06, 0.02), (0.03,−0.04), and(−0.01, 0.0).

at time 0.45 when the object reaches(0.550, 0.582)T with
a rotation of 4.5, velocity of(−3.0,−2.91)T , and angular
velocity of10. The contact point(0.479, 0.564)T and normal
(0.992, 0.127)T are manually chosen to avoid parameterizing
the polygon’s boundary. The arm’s expanded state isx =
(0.219, 1.479, 0.525,−4.884). The post-impact velocities are
(5.493,−1.821)T and 52.455, and the object reaches the
target at time 0.623.

V. EXPERIMENT

Experiments were performed with a standard ping-pong
ball (mass: 2.7g, radius: 2 cm), and a2 1

2
D cork hexagon of

mass 0.086 and inertia 0.0000969. A 4-DOF WAM arm from
Barrett Technology was used with an acrylic paddle attached
as an end effector. The paddle had a length of 0.265, mass
of 0.343, and inertia of 0.0032. The bat had a coefficient of
restitution of 0.39 with the hexagon, and 0.777 with the ping-
pong ball. Angular velocity and orientation of the ball were
ignored. Physical parameters of the WAM arm are listed in
Table I.

To provide accurate estimation of the object’s motion, a
vision system was developed using a Ximea MQ022CG-
CM high-speed camera with a Navitar NMV-6 wide-angle
lens. Two line segments were marked on the object in the
shape of a “T”, allowing for its orientation to be uniquely
determined through image processing. The choice of line
segment features was to provide more data to be fit with
a line for a more accurate measurement. Observed values
from each frame were then input into an Extended Kalman
Filter that models air drag and lens distortion, and outputs
an estimate of the object’s position, velocity, orientation,
and angular velocity. These estimates were then input into
the planning algorithm. Through various optimizations, the
process of motion estimation, impact planning, and data
transmission took less than 5.2 ms, allowing for more than
150 frames to be processed per second.

Missed
Object

Missed
Target

Close
(< 0.3 m)

Success
(< 0.1 m)

Ping-pong
Ball

20
(33.3%)

10
(16.7%)

19
(31.7%)

11
(18.3%)

Cork
Hexagon

15
(48.4%)

4
(12.9%)

8
(25.8%)

4
(12.9%)

TABLE II: Summary of batting results.

Objects were thrown by hand from more than 3 meters
away so that enough data was produced for estimation.
Results were evaluated by the object’s distance from the
target point, where within 0.1 m was considered a success,
within 0.4 m was close, and anything further was a miss.
Instances where the bat swung, but missed the object, were
also recorded. Table II summarizes results from many throws
of the ping-pong ball and hexagon, of which 60 and 31
throws, respectively, stayed in the 2D plane and had a
solution found.

Other than human error in throwing the object, the primary
source of error was in predicting the location and velocities
of the object at impact, causing the bat to occasionally



miss the object. Actuation error of the arm was addressed
by adjusting gain values of the WAM’s PID controller,
which determines how effectively the commanded values are
obtained. Errors in the robot’s joint positions were reduced
to within 0.0026 and0.016 for joints 1 and 2, respectively,
and within0.012 and0.065 for the joint velocities.

(a)

(b)

(c) (d)

Fig. 8: Two sequences of video frames for batting (a) a ping-pong
ball to a hanging target, and (b) a hexagon to a target at the opening
of a box. The frames at which impact happens are highlighted
yellow. The batting configurations (from both simulation and ex-
periment) for the two scenarios are shown in (c) and (d).

Fig. 8 shows two sequences of images with each
object successfully reaching different targets. The ping-
pong ball in (a) was batted at the arm statex =
(0.038, 2.262, 0.086,−3.276) to the target hanging at
d = (2.553, 1.016) (marked by a white cross on a blue
sheet). Impact planning finished at time 0.214 after receiving
33 frames of data. The time of impact was predicted to
happenτmax = 0.45 seconds later, and the timings for
acceleration were set toτ1 = 0.011 and τ2 = 0.439. A
closeup of the batting configuration is shown in (c) alongside
the drawn out solution.

In (b), a solution with the hexagon was found at time
0.449 when 64 frames had been processed. In the first
frame, the object is inset with a rotation of zero. The
hexagon was parameterized at vertices that could be batted
rightward. At each vertex, 11 discretized contact normals
were considered. The object was batted at the arm state

x = (−0.052, 2.163,−0.352,−4.769) to the target in the
box atd = (2.286,−0.495). The timings wereτmax = 0.3,
τ1 = 0.215 andτ2 = 0.159.

VI. ONGOING AND FUTURE WORK

One improvement on Algorithm 1 will be to adjust the
planned arm motion as more accurate motion estimates are
obtained. Experiments will be improved by a mechanism
for repeatable throws, and objects constructed from more
ideal materials. We will also extend planning to consider
contact friction. The approach remains the same, but the task
condition (13) does not have a clean form. A case-by-case
analysis of frictional impact is done and efficient numerical
methods are used to obtain joint velocities.

Another extension will be to 3D batting. Technical chal-
lenges will include estimation of linear and angular motions
of the flying object, and sophisticated planning algorithm
design. Tangential compliance [6] may not be ignored as they
may play a significant role affecting the impact outcome.
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