Batting Flying Objects to the Target in 2D
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Abstract— This paper presents a planning algorithm for a 2- an impact model that extends to arbitrary shapes as well
DOF robotic arm to bat a flying 2D object to a targeted location  as frictional impact. Additionally, significant work hasédre

Impact dynamics are combined with trajectory_ kinematics ard done on ping-pong playing robots, most notably recent work
manipulator dynamics to compute the evolving set of states for h id robots with a 7-DOF 15
(poses and velocities) of the arm able to achieve the task as or humanaoid robots with a 7- arm [15].

the object is flying. Planning is conducted under the arm’s i
dynamic and kinematic constraints. At the time of hit, the T T T
robot executes an action to minimize its total energy. Simaition N (N
and Experiments have been conducted using a Whole Arm
Manipulator (WAM) from Barrett Technology, Inc.

. INTRODUCTION T
Impact happens when two or more bodies collide. Its
short duration € 0.1 second) yields a high impulsive force. Fig. 1: Batting a flying object to a target dt
Kinetic energy is first stored and then released or trans-
ferred among the involved bodies. The resulting impulsive We start with a simple version of the batting problem. A
force possesses an efficiency edge over a static or dynarsaf-actuated bat shown in Fig. 1 is controlled to hit a 2D
force. On many occasions, we take advantage of impact tbject in order to alter its trajectory to reach a destimatio
accomplish tasks that would otherwise be difficult, if nopointd. We assume that there is no contact friction between
impossible. Sports, for instance, is an area where impaitte bat and the object, which is achievable by choosing their
is used often in actions like serving a topspin in tablenaterials to have a high coefficient of friction.
tennis, batting a baseball, making a pool shot, etc. InsteadSection Il presents impact dynamics and energy-based
of avoiding a collision, the robot should try to utilize it to restitution, and then describes how to obtain the bat's pre-
accomplish a manipulation task more efficiently. impact motion to drive the object to the destination, when
In this paper, we consider the task of batting a flyingprescribed a hitting configuration. Section IIl considers a
object to a target point in 2D. The object and bat have knowrealistic setting of the bat driven by a 2-DOF robotic arm.
geometries, inertia, and coefficient of restitution. Thgotls  Combining inverse kinematics, impact dynamics, and motion
position and velocity just before impact is estimated. Iotpa trajectory, we describe a two-dimensional set of the arm’s
planning is performed to determine where to strike the dbje@int angles and velocities to achieve the batting task. & pr
using a two-link robot with a bat fixed to the end, as well agmpact arm state from the set is selected via minimizing the
at what time and velocity to strike in order to perform thetotal energy of the arm and the bat. Section IV describes
task. a batting algorithm that plans the arm’s motion during the
Relatively little work exists on impact planning, despiteobject’s flight, and offers some examples. Section V present
some noticeable efforts on impulsive manipulation [7],][14 results from experiments performed using a robot arm, and
[3], [5], and [13]. Impact-based modeling was also used tthe final section discusses immediate and future extensions
determine the orientation of an object after bring dropped Vectors in the paper are by default column vectors. Since
on a surface [10]. Related to batting, the work [2] focusedll vectors are planar, the cross product of any two is tceate
on the swing trajectory and the force/torque required tas a scalar (as a coordinate along the orthogonal axis). A
generate it, applying Newton’s kinematic restitution Ia&8}.[ tuple is written as a row vector. The subscript@andy of
A high-speed robot system [11] was designed for batting letter (not bolded) represent the and y-coordinates (or
the baseball using a hybrid trajectory. The work was thecomponents) of a point (or a vector) named by the same
extended to control the direction of the post-impact baletter (bolded), respectively. For instangg, denotes thex-
motion [12], though not the entire trajectory. Ball-baftin coordinate of the poinp, while V,, the z-component of a
was also achieved with reasonable accuracy using a 4-D®@Elocity V',. The superscripts—’ and ‘+’ refer to quantities
robot and paddle [4], where the ball’s trajectory after ictpa before and after the impact, respectively. The subsdripf
was considered. Although, both of these approaches laekvectorv = (v,,v,)” rotates it counterclockwise by/2,



that is,v; = (—wvy,v;) such thatv x u = vlu for any where
vectorw. My +m 1 0 1 1

All units are from the metric system. In particular, we W = —— (0 1)4'0—07’@7’&4‘0—1)7"&7"& (4)
use second (s) for time, meter (m) for length, radian (rad
for angle, kilogram (kg) for mass, kilogram square mete
(kg - m?) for moment of inertia, Newton (N) for force, and B. Energy-based Restitution
Joule (J) for work and energy. Units will be omitted from
now on.

memy
positive definite.

Impact is divided into two phases [9, p. 212]: compression
and restitution. During compression, the kinetic energy is
1. TwWO-DIMENSIONAL FRICTIONLESSIMPACT transformed into the potential enerdystored at the contact.

Fig. 2 shows the impact con- The phase end_s with zero velocity and maximum energy
figuration, where the object was Erax. Th.e elastic portloq of the stored.energy,.of .the amount
flying towards the left just before €% Erax, 1S rele_ased during the following _restltut|9r_1 phase.
impact. We assume the position Her_ee_e [0,1] is referred to as thenergetic coe_fflment of
and orientation of the bat and 'estitution The energy loss by the factor of- e? is due to

object are known at this moment, deformation, heat, etc. _ _
as well as the linear and angular Absence of friction means that there is no impulse or

Fig. 2: Impact configura- velocity of the object. The vectors EN€rdy €xchange along the tangent direction. Hdneeln,
tion. r, andr,, locate the contact point wherel is the impulse magnitude. It is convenientto describe
p relative to the centers of mass the impact process in terms éfinstead of time. The energy

0, and o, of the object and the bat, respectively. Withoufunction E is differentiable during each impact phase:

loss of generality, the target lies to the right of the point dE A [ A

of impactp. The contact normak = (n,,n,)” hasn, > 0, ar v Av) = e —nt Rl ®)

which is a necessary condition for successful batting. where v~ is the pre-impact contact velocity, ang, =
Let m; be the mass of the bat, and, that of the 57— jts normal component.

object. Denote byV', and V, the velocities of the bat At the end of compression,E/dI = 0, which, after sub-

and the object, respectively, and by andw, their angular  stjtution of (5), yields the impulse value = —v;; /(R S7).

velocities. The impact changes the object’s velocity inYa  |ntegrate (5) from 0 td, to obtain the energy at.:
to V' =V, + AV,. The object will perform a free flying

—\2
motion under gravity. Our task here is to plan the bat's pre- Epax = (1;#) (6)
impact velocitiesV,” andw, so the object's trajectory is 2n° Wn
altered to pass through the destinatidn Restitution begins with the energy E,,.. and decreases it

A. Impact Dynamics to zero when the phase ends with the impulse vdjuaVe

have
Let I be the impulse exerted by the bat on the object. An ) Ir
opposite impulse-1 is exerted on the bat by the object under —€" Emax = / dE, ()
Newton’s third law. By Newton’s second law, the velocity ‘

changes during the impact are from which we solve for the total impulse:

1 1 1+e)(nfv 1+e)v,
AVy=——I, Awp,=-——ry x1I, IT:—( AT)( - ):_(AT )A . (8)
mp op 1) n Wn n Wn
AV, = LI Aw, — i,, I C. Bat Motion
Mo o ’ With the impact outcome derived, we are now ready to

whereo, ando, are the moments of inertia of the bat andplan the motion of the bat. Substitute (8) into (1):
object, respectively. Lat, andv, be the velocities of the two

points on the bat and the object coinciding at the conpact AV, = iﬁ = —% n
We have Mo mon Wn
1+ on — Upn) -
vy =Vi+wry, and v, =V, +wero. 2 = { e)(AUg?n Avbn) n, 9
men- Wn

Here, v, is referred to as théatting velocity The contact T

wherev,, = n'v, andv, = n'wv, are the pre-impact

velocity is . .
normal components ob, and v, respectively. Notice that
V=v,—Vy,=V,o+weror — Vp—wprpL. the tangential component af, will not affect the motion of
After plugging in (1), it changes by the amount the o_bject in the Qbs_enf:e of _frlctlon. From (9), the object’s
post-impact velocity is linear iw,
Av = Av,— Avy . _
1 ro X I 1 ry x I Vi(v,) = V,+AV,
= —TI+ rol +—I+ Tyl 1 _ _
mO o mb Ub V* _ ( + e)(von B vbn)ﬁ (10)

— WL (3) o mon’ Wi



Letq = d— p+r,. For the object to pass through the High-Speed Image
ollowi ki i i 4s o b tisfied: Camera Processing Extended
ollowing kinematic equation needs to be satisfied: P (@150s Tosy | Frame Z| (feature  [op > | Kalman Filter
. . extraction)
q= Vo t— (Oa 059) , (11) . State
Impact Planning Estimate

for some flight timet, whereg is the gravitational acceler-

ation. Next, we eliminate by solving the above system of & |Choose batting Determine Obtain valid |
! time and <«——| optimal joint |€——— batting h

. . I , ‘ ;

twq equatlons from t_he;-. and y—coordlnftes oV} andgq. || exceute plan Ve{;)l?:ies velocities AJ:T;S configurations| |

This yields an equation in terms qf V', andr,, I A L
vaof - VOZ‘QZ% + 0.5gq§ —0. (12) Fig. 3: Block diagram of impact planning and computer vision

Knowing g, we substitute (10) into (12) to obtain a Bat
quadratic equation in the normal batting velocity . Such
a velocity exists if and only if the following two conditions
are satisfied:

(n.Vy x q+Vynxq)’
—4n,(g X n) (0.59(15 +V,. V. x q) > 0, (13)
Uy, — U, > 0. (14)

3 on

(b)

The first condition, independent of the masses and my,

and the restitution coefficient, ensures that a real root Fig. 4: Inverse kinematics: (a) actual configuration and t{)

of (12) exists. The second condition, on the root found undeossible configuration$f:,6-) in which the second link has the

the first condition, ensures batting in the positive dimeti normaln and is incident orp.

of the normal. Together they are calleask conditionsThe

task conditions guarantee the object to reach the destinati ) _

d. respectively. Let, be the length of the bat. We would like
Supposes; exists. Then by (Z)izT(V;—i—w;rbL) =, to determlr_le _the joint anglels and 1_92.

which implies that all the bat velocitigd’;, w,) to generate _ 1he origin is placed aff;. The unit vectors along the two

v, constitute a plane in the velocity space. The set will binks are

reduced under kinematic and dynamic constraints when a i cos f and i — cos(6y + 02) (15)
manipulator is used to move the bat, as will be discussed in ~ \sin#, 2 sin(6y +63) )
Section llI. ) ] R
A detailed analysis (omitted for lack of space) has beehNUS: /2 Is at the locationiyl;, and we set up three
performed to characterize the region(gf, ¢,)” that admits conditions:
a solution to equation (12). The region is rather large, Wwhic all, = o, (16)
means that the bat is capable of sending the object to a wide T 5
ran i n (p—hl) = 0, (17)
ge of locations. o .
ly (p— llll) S (lg,lg +lb]. (18)
1. 1 MPACT PLANNING ] o T T3
Equation (17) implies thatn'p/l;| = [n' 1] < 1.

In a real situation, the bat is attached to a robotic maniprhus batting ap can be performed only if theeachability
ulator. This section plans the motion of a two-link arm tocondi’tion below is satisfied:

carry out the batting task during the flight of an object. We

will first work out the arm’s inverse kinematics to attain a ~l <a'p <. (19)
specific batting configuration. Then we will describe a two-
dimensional set of joint angles and velocities with Whichs
batting can send an object, at a fixed moment during ifS
flight, to the target. Next, optimization will be introduced 01 = a8, (20)
to minimize the total energy of the arm and the bat (which ) ) ) ) )
measures the work done by the arm). Fig. 3 outlines thorresponding to two possible configurations of link 1.
procedure along with the vision system used in experiments. Substitute (15) fol, into (16) and rewrite it as

Let o be the polar angle of, and3 = cos~(n’p/l,).
ee Fig. 4(b). Then we have

ST G
A. Inverse Kinematics cos 02 (ll ") +sinbz(ly x 1) =0.

As shown in Fig. 4, we first determine the pose of a twog
link robot arm enabling the bat to hit the flying objectzat
Suppose that the contact nornralis known. The two links X R
attached to the arm joint$; and.; have lengthg; andl,, Oy =+ atan2(ﬁTl1, n xly). (22)

ince the vecto(ifﬁ,ik X ﬁ)AT is unit, the above yields
(cosf,sinby) = +(n x I, n" 1), from which we obtain



In the above, the sign is uniquely chosen under condi- The velocitywv, of the contact point on the object is still
tion (18) becausd, must be in the direction op — J,.  given in (2). The change in the contact velocy assumes
Thus, for eachd; value, at most ond, value exists. In the same form as (3), except from (24) we now have
summary, conditions (16)—(18) induce at most two possible 1 /1 0

values of(6y, 62), for which the configurations are drawn in W = — (0 1>

1 lq » T T
+ —rourty + -l (bl +aly, )
Fig. 4(b). Mo o1

UO
2
S =Y .
B. Configuration Space of Contact 02+ 0y
For simplicity we assume convexity of the object. At For the pre-impact normal velocity,, = 7" v, to exist,
the time of impact, its center of mass, is at p — r, the task conditions (13) and (14) must be satisfied by the
(cf. Fig. 2), where its body frame has a rotation from theéormaln andq = d — p + r,. After substitutions of (22)
world frame described by the matrik. Let the curvey(s) = and (23), the conditions are on the parametéscating the
(72(s),7y(s))T describe the object’s boundary in the bodycontact point. Meanwhile, ever{p,, 02) satisfying condi-
frame such that the parameteincreases counterclockwise. tions (16)—(18) and lying in the joint angle ranges deteesin
By a slight abuse of notation, we latlocate the contact ans value. Namelys is a function off;. The task conditions
point p on~, i.e., Rv(s) = r,. The contact normal is thus are thus imposed ofi;, though their forms in terms of;
cannot be written out compactly
A(s) = R(—=y,72)" /1Y Il (22) The task conditions (13) and (14) further reduce those
. . (61, 02) segments from Section 11I-B, which already ensures
Below we describe the set @61, 0>) values that satisfy yhe pars contact with the object and that the joint ran@es
the consiraints (16)—(18) as the contact point and©, are not exceeded. Every pdity, 62) on a resulting
_ segment is called &easible pose
p(s) = 00 + Rr(s) (23) The arm will be based on a 4-DOF WAM arm, wheie
varies along the object’s boundary under the conditiony (1@ndds refer to the angles of its joints 2 and 4, and the other
andn, > 0. two joints are not used. Table | gives the values of physical
Sincen and p depend ons, so do the angles and 3. Parameters related to the two links, the bat, and the object.

Equation (20) defines; as a function ofs, where the sign
‘+" or ‘—'" is chosen over different intervals d@f;,. In the li =055, di =0.3426, mq = 5.6772, o1 = 0.2929,
joint angle space, as varies, all(61,6-) that result in the 52 = 822&, 32 = 8-3;1? ma = é-gﬁg?l’, o2 =8~8%i

H H H b =Y. ; b = U. ; my = U. ; op = U. )
bat mqklng contact with the object form curve segments on e = 0.0175, o0 — 0.0000355,
the object’s boundary. These segments are further reducedo, — [-0.420,3.571], Q1 = [~0.85,0.85], ®; = [-8,8],

by the joint range®; of §; and©, of 6. ©2 = [F0.9,£3.1], Q2 = [-5,5], &y = [—60, 60].

C. Configurations for Batting TABLE I: Values of physical parameters. The first four rowspday
) ) the lengths, masses, and moments of inertia of the two lities,
Consider an arm pos@:, f2(6,)) allowing the bat to be bat, and the elliptic object in Figs. 5. The last two rows tiggthe
in contact with the object at the current time instant. Foranges®;, Q;, and®;, i = 1,2, of joint i's angle, velocity, and

convenience, the contact point on the balis +al,, where ~acceleration. Joint angle ranges are relative to the zesttigo
T A . The rangeO; is either[—0.9, 3.1] or [-3.1, 0.9] by controlling the
a = 1, (p — lily) depends ort; and 6,. The velocity of \yams third joint.

the contact point just before the impact is obtained through

differentiation while treating: as a constant: Consider an example where a solid, elliptic obfect

is thrown from the location(1.5,0.7), with velocity
(—2.8,1.2), and rotating at a constant rate of 10. Fig. 5
plots the evolution of feasible arm posg4 , 62) over 0.53
seconds of flight. At time 0.29, the feasible poses form the
red curve in the plot, and the red segment of contact points
on the corresponding ellipse. The cross on the red curve at
(0.559,0.621) produces the batting configuration drawn out.
At time 0.45, the object is within reach of two feasible
oses that form the green curve segments marked land
cs. The curve segmeiat includes poses where only a smaller
b, value can reach the object, while the curve segmgnt

v, = (llilj_ + ngj_) 6‘1 + aiQJ_éQ- (24)

Fork = 1,2 letm,, be the mass of link, o, its moment of
inertia about the joint/y, anddy, the distance from its center
of mass to the joint/,. Let d;, be the distance from the bat's
center of mass to the joinf,. Then the bat's moment of
inertia aboutJ; is 7, = oy + ||l + dyla|?.

At the moment of impact, we consider the arm to be rigidl
connected with the bat, which exerts an impulsive force o
the flying object, as well as links 1 and 2 of the arm [1, p
18]. From dynamics, we have

1In computation it is easier to first find thevalues, each corresponding
I, x I, to up to twod; values.
02 + 0p 2The object has its semi-major and semi-minor axes of lendii®and
0.05 aligned, under no rotation, with the and y-axes, respectively. Its
where the inertia of link 2 about; is 55 = o + mal}. physical parameters are shown in Table I.

a

. Iy - .
Aby =Ll xT and Aby = —
01



40 which, under (26) and (27), ensure only> 71 /2,72 /2. So,
ca 0.45's we must also enforce the constraints> 7, 7. Subtracting
3¢ by the two equations in (27) and combining it with > 7
ol » yields a second constraint omn:
1
1r 6‘1 0
X S T>7’1+2(.——.—). (28)
| @ 6 b
4l The arm must also be able to acceleratedtoand 6
within 71 and 3, respectively. Le®;,d> > 0 be the maxi-
25 mum acceleratiorisfor joints 1 and 2. Then, the following
3l 0.29's e T conditions must be satisfied:
Cc3
- w s s w w L0 ) =
Y05 0 05 1 15 2 25 ' Th0k 2 |0k], k=12 (29)

Fig. 5: (a) Regions of the arm poses for batting an object tedn Additionally, enough time must be provided for planning and
by an ellipse. Batting configurations are superimposedifiee 0.29 transmission of data over the network (to the WAM arm):
when the object is located &1.688, 0.636)” with a rotation of 2.9,

and at time 0.45 when &0.433, 0.881) with a rotation of 4.5. T < Tmax — Tp (30)

where 1. IS the period between the time that planning

includes those with a larget,. The resulting segment of Starts and the time of impact, ang is the worst-case time
contact points are drawn on the corresponding ellipse alofg’ Planning and data transmission to finish.

with two batting configurations that reach the same contact Equation (27) allows us to convert any constraint involving
point. The cross om, at (—0.178,2.62) produces the arm 72 into one involvingr, (as done with inequality (28)). We
poseP,, while the cross oms at (1.921, —2.62) produces then obtain the upper and lower boundsgfthat satisfy

the poseP;. constraints (26) and (28)-(30) when the following holds:
D. Feasible Arm Motions | i {@7 162 5 <% 3 %)} (31)
We now consider how to find the joint velociti®s and 01 02 01 02

)

0, for batting. Given a feasible pog#,,62(61)), the pre- . 2A0, 4A60,  2A0, A,
impact normal velocityv;. exists to complete the batting = mm{ ) 0 6, 2 (T““”‘ — T ?)}
task. It is solved from the quadratic equation resultingrfro
a substitution of (10) into (12). Up to two roots exist. It
follows from equation (24) that

Once the inequality holds, there exists one valuerpf
between its left and right hand sides, and one value each of
7o and 7 as determined from (27). The original constraints

vy, = —(l1 cos Oz + )by — aby (26) and (28)—(30) can be easily realized from (31) (proof
. . e omitted for space).
where we make use of = —ls andn’l = 1, = Furthermore, this interval defines the space(éf,0;)
—cost. Sincen, 1,1, andly, all depend orv,, the above splutions that can successfully accomplish the batting. tas
equation defineg, as a function of); andd;: Given 6; (and thus#y), constraints (26) and (31) when

. R . combined with (25) break down into eight inequalifies
02(01,61) = —vy,, — (L cos bz +a) b1 (25 These are applied together with the raigyefor 6;, i = 1,2,
Thus, the two variableg; andé; completely characterize 0 obtain an intervaly, (61),7,(61)]. After choosingd, from
the arm’sstate (configuration and velocity). this interval (see Section IlI-E}, and 0, are calculated
Next, we determine the range éf given ¢;. Suppose from (21) and (25), and- is chosen to be the average
that the robot starts moving at time ahead of when the ©Of the left and right hand sides of (31). The choicerof
object reaches the impact configuration. We let every joirl® for robystness to qontrol uncertainties and measurement
period 7 to reachdy, and then maintain the velocity for Poundaries.
the remaining period — 7, until the joint angle reaches;.
Under this acceleration scheme, the following two condgio
hold: Our next step is to minimize the batting effort, which is
O, - 05, > 0, k=1,2. (26) characterized as the total mechanical energy of the bat and
the two-link arm. This ensures that both arm joints exert

Bo;cjh gondri:ions above are imposed 6nand6;. It is easy minimal work in order to achieve the batting task. The kigeti
to derive that

E. Batting with Minimum Effort

. Tk 3Namely, the acceleration rangeds = [—d;,d;], i = 1, 2.
O (T - ?) = Ok, k=12, (27) 4two of the inequalities are linear, four are quadratic, dméé are cubic



energies of the two links and the bat can be derived dmtting operation (lines 10-16). In the case that no good set

follows: of feasible states are found, it looks for a later hittingejm
1 and repeats so until the object is out of reach (lines 5-19).
I = 019 The outer while loop of lines 3—22 iterates at the next time
2
1 . instant of the object’s flight.
T = m%+an+mﬂmm%@ﬁw@) : g
2
for i = 2, b. Meanwhile, their potential energies are Algorithm 1 Batting a flying object
Uy = migd sin, 1: while the objgct is fIying at time dlo . _
. . _ 2:  a Kalman filter continues to estimate its motion
U = mg (ll sinf + d; sin(61 + 92)), i=2,b. 3 if the motion estimate converges enoufan
The total energy of the arm is thus 4: (r::;c(::l::ate the timet, when the object is beyond

E(01,0)) =Ty + Ty + Ty + Uy + Uy + Uy,

Minimization of E is carried out in two steps: first
over #; given #;, and then over all discretize@h values.
We first discretize the subdomain of the object’s boundary_
curve v(s) with inward normaln satisfyingn, > 0. Let )
s1,82,...,5, be the discretized values that also satisfy theloj
reachab|I|ty (19), and the task conditions (13) and (14). Fo

11
every s, we substitute in (23) fop, and solve for up to

while mp.x < t. —t do

predict the object’s state at+ 7,ax

discretize boundary points satisfying (19), (13),

(14) at timet + Tyax

computeP = {6, | (01,02(60:)) feasiblg

if P is reasonably largéhen
computen, (61),75(01)], n.(61) forall 9, € P
determine the optimal arm staté;, £(07))

N o a

two (61 (sk),02(sx)) values that satisfy conditions (16)—(18) 12 7 ¢ average of LHS and RHS in (31)
- B : : setr andTQ according to (27)
and fall within the arm’s joint angle range. For each feasibl k=12

(01(sk),02(sk)), use the method in Section IlI-D to obtain
the interval[n,(61),7,(01)] of feasible joint velocity values
0.

Tk
start movmg linki at timet+7pax—7, 1 = 1,2
return success

. . c ; 17: end if
For simplicity, rewrite (25) a®, = \; + A\20; where 18 incrementr,...
vy, B LTl 19: end while
Ai(6) = ailiy, and Az(6) = —1 - an iy, 20: end if

21: adjust clock timet
With 6; and#, treated as constants afigas a function, the 22 end while

denvatwedE/dGl vanishes at 23 return  failure

nc(ﬁl) = —((0’2 + 5'5))\1)\2 + (deQ + mbdb)llAl COS 92)
o ) Consider the same scenario of the elliptic object from
/(01 + (02 + ) A3 + (M2 + )13 Fig. 5. Impact happens at time 0.39 when the object is at
‘ the position (0.408,0.423)7, with a rotation of 3.9. Fig.
+2(mady + mydy)ly cos (1 + /\2))' 6(a) plots the region of feasible states for the WAM Arm
Then the minimum off over [, (6:),7,(61)] for a giveng, ~ @t this moment. The gray, blue, and orange curves, which
must be achieved at either of the two endpoints, o.48,) €xtend out along the dashed gray lines, are the constraints
if 1:(01) € [1a(61),m5(61)]. Denote by¢(6;) the value ofg;  from (31) that bound the solution space (in green). The
at which the minimum is achieved. constraints are labeled by their corresponding ineqgealiti
We then minimizeE over all (6;,£(6,)) that have a (On the sides where the feasible regions lie). The remaining
feasible pose(d:,60.(6;)) (from Section Ill-A) and non- constraints are easily satisfied with the equality curvegly
empty interval[n, (61), n,(61)] (from Section 111-D). Thus, outside the displayed region. The black curve cutting tgiou

the resulting optimal pose and motion(#;, £(67)). the _solutio_n space is the curve _of arm states at which the
partial derivative ofE' over #; diminishes, that isy.(6,) €
V. BATTING ALGORITHM AND SIMULATION [Ma(01),m5(02)]. For 61 values to the left and right of the

Algorithm 1 combines the components from Section Il tacurve 7.(#1), the minimal energy solutions continue along

control the arm to execute a batting operation. The algoriththe orange and blue constraints, respectively.

assumes a Kalman filter (KF) to constantly estimate the The range off; of feasible poses has been reduced
motion of the flying object. Planning starts immediatelyfrom (—0.429,2.301) (see Fig. 5), to(—0.286,—0.154)
when the estimate of the object’s motion converges enougliter removing those values that yield no feasilsle
(line 3). At this moment, it hypothesizes the hit to happen athe optimal state (green point) and a non-optimal state
time t + max (line 5) and checks for feasible states of thgred point) are selected for comparison from the feasi-
arm (lines 6-8). If the set of feasible states is big enougije region in (a). The optimal state expands #0 =

it computes the optimal arm movement and executes tmél,eg,él,ég) = (—0.286,2.182,—0.85, —2.868) with



01 16l (ﬂ N %) , at time 0.45 when the object reach@s550,0.582)” with
9 6 0, R a rotation of 4.5, velocity of —3.0,-2.91)%, and angular
<9 (me o %) e velocity of 10. The contact point0.479,0.564)” and normal
o) (0.992,0.127)" are manually chosen to avoid parameterizing
04 ’@ <y (T o Ae ) the polygon’s boundary. The arm’s expanded state is
5 mae P g (0.219,1.479,0.525, —4.884). The post-impact velocities are
0.6} / (5.493,—1.821)" and 52.455, and the object reaches the

target at time 0.623.

o8r (0LEED) A4 T ) b>-0 V. EXPERIMENT

d Experiments were performed with a standard ping-pong
// / ball (mass: 2.7g, radius: 2 cm), and24D cork hexagon of

o 03 o2 02 o5 o1 o o % mass0.086 and inertia 0.0000969. A 4-DOF WAM arm from
(@) Barrett Technology was used with an acrylic paddle attached
0s as an end effector. The paddle had a length of 0.265, mass

Q O @ ® of 0.343, and inertia of 0.0032. The bat had a coefficient of

0395 O restitution of 0.39 with the hexagon, and 0.777 with the ping

? O 0 S pong ball. Angular velocity and orientation of the ball were

ignored. Physical parameters of the WAM arm are listed in
O Table |
@) ‘
o) O To provide accurate estimation of the object's motion, a
®) @ vision system was developed using a Ximea MQ022CG-
0.734's CM high-speed camera with a Navitar NMV-6 wide-angle
(b) lens. Two line segments were marked on the object in the
Fig. 6: (a) Region of feasibl¢s,, ;). A non-optimal solution is Shape of a “T", allowing for its orientation to be uniquely
marked by the red point. The optimal stai@}, £(07)), marked determined through image processing. The choice of line
by the green point, is drawn out in (b) where the elliptic b segment features was to provide more data to be fit with
incoming trajectory is blue, and outgoing trajectory isegreValues 5 |ine for a more accurate measurement. Observed values
of relevant physical parameters are found in Table I. . .
from each frame were then input into an Extended Kalman
Filter that models air drag and lens distortion, and outputs
an estimate of the object’s position, velocity, orientatio

—3.602 energy, while the sub-optimal state expands tQ : . . .
2 = (—0.184, 2.137, —0.588, —2.450) with —1.817 energy. and angular velocity. These estimates were then input into

Their batting outcomes result in similar outgoing trajeies, the planning algorithm. Through various optimizationss th

of which the optimal trajectory is shown in (b). The coeffi-PrOcess (.)f motion estimation, impact p"?‘””'”g’ and data
) o . : transmission took less than 5.2 ms, allowing for more than
cient of restitutione = 0.8 is used for the batting.

150 frames to be processed per second.

@ 6 G Cl 0s Missed Missed Close Success
Q Object Target (<0.3m) | (<0.1m)

045s ) Ping-pong 20 10 19 11
Ball (33.3%) | (16.7%) (31.7%) (18.3%)

Q Cork 15 4 8 4
& Hexagon | (48.4%) | (12.9%) (25.8%) (12.9%)

= @ TABLE II: Summary of batting results.
©) %0623 5
o) Objects were thrown by hand from more than 3 meters

Fig. 7: Batting a polygon tal = (1.5,.1). Initial joint angles are away so that enough data was produced for estimation.
61 = 0 and#> = 3. The inset shows the polygon with respect toResults were evaluated by the object’s distance from the
it's reference frame at the origin and with zero rotation. target point’ where within 0.1 m was considered a success,
within 0.4 m was close, and anything further was a miss.
Fig. 7 plots the batting of an incoming 6-sided poly§on Instances where the bat swung, but missed the object, were
with the same mass 0.0175 as the ellipse, and the momeit$o recorded. Table Il summarizes results from many throws
of inertia .0000267 with respect to the center of mass. A#f the ping-pong ball and hexagon, of which 60 and 31
time 0, the polygon is located &t.9,0.9)”. Impact happens throws, respectively, stayed in the 2D plane and had a
. _ _ _ ' o solution found.
Zerg‘%gfﬁg’eogqergy is obtained due to potential energy beilgve to the  5thar than human error in throwing the object, the primary
Sits six vertices about the origin aré—0.07,0.0), (—=0.05,0.06), Source of error was in predicting the location and velositie
(0.0,0.08), (0.06,0.02), (0.03,—0.04), and (—0.01, 0.0). of the object at impact, causing the bat to occasionally



miss the object. Actuation error of the arm was addressed = (—0.052,2.163,—0.352, —4.769) to the target in the

by adjusting gain values of the WAM's PID controller,
which determines how effectively the commanded values a
obtained. Errors in the robot’s joint positions were redlice
to within 0.0026 and0.016 for joints 1 and 2, respectively,

and within0.012 and0.065 for the joint velocities.

Fig. 8: Two sequences of video frames for batting (a) a pioggp
ball to a hanging target, and (b) a hexagon to a target at tbriog

of a box. The frames at which impact happens are highlighted5]

yellow. The batting configurations (from both simulationdaex-
periment) for the two scenarios are shown in (c) and (d).

Fig. 8 shows two sequences of images with each7)
object successfully reaching different targets. The ping-

pong ball in (a) was batted at the arm staie =

box atd = (2.286,—0.495). The timings werer,,x = 0.3,
re = 0.215 and» = 0.159.

V1. ONGOING AND FUTURE WORK

One improvement on Algorithm 1 will be to adjust the
planned arm motion as more accurate motion estimates are
obtained. Experiments will be improved by a mechanism
for repeatable throws, and objects constructed from more
ideal materials. We will also extend planning to consider
contact friction. The approach remains the same, but tlke tas
condition (13) does not have a clean form. A case-by-case
analysis of frictional impact is done and efficient numdrica
methods are used to obtain joint velocities.

Another extension will be to 3D batting. Technical chal-
lenges will include estimation of linear and angular magion
of the flying object, and sophisticated planning algorithm
design. Tangential compliance [6] may not be ignored as they
may play a significant role affecting the impact outcome.
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