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Abstract— Despite more than three decades of grasping
research, many tools in our everyday life still pose a
serious challenge for a robotic hand to grip. The level of
dexterity for such a maneuver is surprisingly “high” that
its execution may require a combination of closed loop
controls and finger gaits. This paper studies the task of an
anthropomorphic hand driven by a robotic arm to pick
up and firmly hold a kitchen knife initially resting on the
cutting board. In the first phase, the hand grasps the knife’s
handle at two antipodal points and then pivots it about
the knife’s point in contact with the board to leverage the
latter’s support. Desired contact forces exerted by the two
holding soft fingers are calculated and used for dynamic
control of both the hand and the arm. In the second phase,
a sequence of gaits for all the five fingers is performed
quasi-statically to reach a power grasp on the knife’s
handle, which remains still during the period. Simulation
has been performed using models of the Shadow Hand and
the UR10 Arm.

I. INTRODUCTION

Human-level dexterity has long been a grand chal-
lenge and a lofty objective to drive robotics research.
One convincing evidence would be robots having the
ability to manipulate tools that are used in everyday
life. Preliminary progress has been made on robotic
manipulation of hand tools to accomplish tasks such
as drilling and pencil drawing [1], sausage pickup and
bottle opening [2], bolt unscrewing with a wrench [3].
These works, carried out with visual guidance, nev-
ertheless, did not leverage task mechanics to consider
for factors such as compliance, friction, contact modes.
Gripping of a kitchen knife is a highly contact-based task
in which force feedback and control can be important
for achieving a robust performance [4].

In this paper, we study how a pair of robotic arm
and hand pick up a kitchen knife resting on the cutting
board and hold its handle tightly to be ready for food
cutting. We assume the hand is anthropomorphic, and the
arm has at least six degrees of freedom (DOFs). Every
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finger of the hand is modeled as a soft finger [5], which
can exert a moment about its contact. Knife gripping
can be decomposed into a sequence of primitive actions
such as pivoting, finger gaiting [6], caging [7], and
power grasping [8], either executed quasi-statically or
dynamically. An analysis of the mechanics of pivoting
a block object using a parallel jaw gripper is provided
in [9]. In [10], a dynamic maneuver is described to
reorient a pinched object to a desired pose through wrist
swing motion and grip force regulation.

Fig. 1: Antipodal grasp.

Fig. 1 illustrates the start
of the action. The hand first
places two fingers at antipodal
positions on the knife’s handle.
Next, leveraging the board’s
support as “extrinsic dexter-
ity” [11], the hand raises the
handle to let the knife pivot un-
der gravity about the two finger
contacts (Fig. 2(a)). The amount of squeeze during this
lift needs to be kept at a proper level to allow the knife’s
rotation about the pivot and yet prevent a loss of either
finger contact on the handle. The arm’s movement, in the
meantime, is controlled to coordinate with the knife’s
rotation about the pivot. The dynamics of the knife,
hand, and arm are combined, while control of the arm
is decoupled from that of the hand via the use of a force
sensor connecting them.

Keeping the knife in balance with the palm involved,
finger gaits and palm movements are then carried out
quasi-statically on the handle to form a power grasp.
This is shown in Fig. 2(b) and (c).

(a) Knife pivoting. (b) Finger gaiting. (c) Power grasp.

Fig. 2: Steps for gripping a resting kitchen knife.

II. PIVOTING OF THE KNIFE

A kitchen knife with known geometry and mass prop-
erty lies on the cutting board. The knife has a plane Π
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Fig. 3: (a) Kitchen knife shown with (dashed) contour inter-
sected by its plane Π of symmetry, and two antipodal points p1

and p2 on the contour. (b) and (c) Knife’s initial, intermediate,
and final poses K0,K1, K2 during pivoting, where K2 results
from antipodal line ` in K1.

of symmetry intersecting it at a planar region bounded
by a contour γ and containing the knife’s point p0 and
center c of mass.

The robotic hand will start with placing its thumb and
index finger at a pair of antipodal points p1 and p2 (see
Fig. 3(a)) on the handle portion of the contour γ.1 More
specifically, the inward normals n̂1 and n̂2 of γ at p1
and p2 are opposite to each other, and collinear with
the line ` through these two points, referred to as the
antipodal line. Since γ is in the plane of symmetry, the
two points must also be antipodal on the knife’s handle.
A body frame {B} of the knife is located at c with its
x-axis, referred to as the xB-axis, in the direction from
p2 to p1, and its xByB-plane coinciding with Π.

A. The Pivoting Path

A world frame {W} is located on the cutting board at
the point p0 in contact with the knife’s point, as shown in
Fig. 3(b). Its xy-plane is aligned with the board surface.

Denote by K0 the knife’s initial pose. Fig. 3(b) also
shows an intermediate pose K1 in which the knife’s
point stays at p0 but its handle is raised such that 1)
its center of mass c stays in the same vertical plane
as that in the pose K0, and 2) the antipodal line ` is
parallel to the board surface. The angle φ of rotation by
the vector c−p0 from its initial position is set to a small
value. The xW -axis is in the direction from p2 to p1,
i.e., that of the xB-axis in the pose K1. Denote by x̂, ŷ,
and ẑ the unit vectors on the xW -, yW -, and zW -axes.

1We refer to [12] for computation of all antipodal points on a closed
plane curve.

Fig. 3(c) displays the final pose K2 of pivoting,
which results from rotating the knife in the pose K1

about the xW -axis until the handle’s end is in contact
with the palm. The angle ψ of this rotation can be
calculated in advance based on the knife’s geometry.
Linear interpolations are used for constructing a path
of the knife from K0 to K1 as a screw motion and
another path from K1 to K2 as a rotation in terms
of ψ. The two paths are then parameterized with time to
become a single motion trajectory. The knife’s position
and orientation at time t are c(t) and R(t), respectively.
They will be used as the desired position and orientation
for control purpose later on, and from now on denoted
as cd(t) and Rd(t).

B. Initial Finger Placement

For convenience, we also refer to the thumb, and the
index, middle, ring, and little fingers as finger 1, 2, 3, 4,
5, respectively. Finger i has joint angle vector θi. Its tip
is modeled by a smooth curved (e.g., ellipsoidal) surface
σi(ui, vi) in its local frame. In the world frame {W},
the surface of finger i’s tip in its current pose results
from a rigid transformation of σi(ui, vi) determined by
θi and θa, the joint angle vector of the arm. Denote the
surface by σi[θi,θa](ui, vi).

The thumb and index finger are to be placed at p1 and
p2 where their outward surface normals must coincide
with the normals n̂1 and n̂2 on the handle, respectively.
This reduces to finding the values of θa,θi, ui, vi, i =
1, 2 to satisfy the following ten equations:

σi[θi,θa](ui, vi) = pi, t̂ij ·
(
∂σi

∂ui
× ∂σi

∂vi

)
= 0,

where t̂ij , j = 1, 2, are two orthogonal tangent vectors
to σi at pi.

A subspace of solutions exists given that the total
number of DOFs of the arm and two fingers far exceeds
ten. To visualize one process finding a solution, we can
keep the palm stationary while letting the two fingers
close in until their distance reaches ‖p1 − p2‖. The
distance is achieved at the closest pair of points on
different fingertips. The outward normals at these two
points are colinear, which directly follows from vanish-
ing of the partial derivatives of ‖p1−p2‖2 with respect
to u1, v1, u2, and v2. The arm then moves the hand until
these two points and their outward normals coincide with
p1,p2 and their inward normals, respectively.

C. Knife Dynamics

As shown in Fig. 2(a), the hand, with its thumb
and index finger placed on the handle, pivots the knife
around its tip p0. The tip receives a supporting force f0



from the cutting board. Negligible frictional force on the
tip implies f0 = f0ẑ, for some f0 ≥ 0.

Let m be knife’s mass and Q be its inertia tensor
expressed in {W}.2 The knife dynamics are given as

2∑
i=0

f i +mg = mc̈, (1)

where g is the gravitational acceleration. Each finger is
a soft finger which exerts a moment about the contact
normal with a magnitude upper-bounded by a ratio η
times the normal contact force [13, p. 219]. This ratio
is referred to as the torsional torque coefficient. Both
fingers exert moments that achieve this ratio when the
knife’s handle is rotating about the antipodal line `. In
this situation, Euler’s equation is given as

2∑
i=0

ri × f i − η
2∑

j=1

(f>j n̂j)n̂j = Qω̇ + ω ×Qω, (2)

where ω is the knife’s angular velocity in {W}.

D. Desired Finger Forces for Pivoting

Let us now calculate the desired contact forces f i, i =
0, 1, 2, provided by the board and two fingers to carry out
the pivoting about p0 as described in section II-A. They
will be used as desired values for control shortly. Let r0
and Br0 be the vector from the knife’s center c of mass
to its tip in frames {W} and {B}, respectively. Hence
r0 = R(t) Br0. Zero motion of the tip implies c(t) =
p0 − R Br0, Differentiating the previous equation and
applying the identity Ṙ Br0 = (ṘR>)(Rr0) = ω× r0,
we have ċ = −ω×r0 and c̈ = −ω̇×r0−ω×

(
ω×r0

)
.

Substituting for c̈ in (1), we obtain

f0ẑ +

2∑
i=1

f i +mg = −m
(
ω̇ × r0 + ω ×

(
ω × r0

))
Combine the above equation with (2):[

ẑ I3×3 I3×3
[r0]× [r1]× − ηn̂1n̂

>
1 [r2]× − ηn̂2n̂

>
2

]f0f1

f2


=

[
−mg −m

(
ω̇ × r0 + ω × (ω × r0)

)
Qω̇ + ω ×Qω

]
, (3)

where I3×3 is the 3×3 identity matrix, and [ri]× is the
anti-symmetric matrix which, when multiplied with any
vector, yields the cross product of ri with that vector.
The linear system (3) has a one-dimensional subspace

2Q = RkQkR
>
k , where Qk is the diagonalized inertia tensor in

the frame defined by the knife’s principal axes, and Rk is the matrix
describing the rotation of this frame from {W}.

of solutions
[
f0 f>1 f>2

]>
= f∗ + λf̂ , where f∗ is

the least-square solution and f̂ is a vector in the null
space of the 6× 7 coefficient matrix.

Every solution (f0,f1,f2) is subject to three types
of constraints. First, the board contact force must be
positive for the knife’s tip to become a pivot: f0 >
0. Under this condition, the contact force generates a
torque about the antipodal line `, which implies that the
maximum moments generated by the two soft fingers are
not enough to balance the torque due to the gravitational
force on the knife. Thus, the knife’s handle must be
rotating about `, which ensures the form (2) for Euler’s
equation. Second, to prevent slip on the knife’s handle,
the finger forces f1 and f2 must stay inside their
respective contact friction cones, namely, for i = 1, 2,

f i · n̂i > 0, ‖f i − (f i · n̂i)n̂i‖ < µ|f i · n̂i|,
where µ is the coefficient of friction. If the solution set is
not empty, we choose one with f0 closest to half of the
magnitude of the knife’s gravitational force. Otherwise,
we reparameterize the knife’s pose path in section II-A
with time to yield smaller angular acceleration ω̇.

E. Finger and Arm Dynamics

For knife pivoting, the middle, ring, and little fingers
are not used and hence not considered. Denote by θh =
(θ>1 ,θ

>
2 )> the hand configuration. The dynamics of the

thumb, index finger, and arm are combined:[
τ a

τh

]
=

[
M11 M12

M21 M22

] [
θ̈a
θ̈h

]
+

[
N1 + J>1 w
N2 + J>2 w

]
(4)

where τ a and τh are the joint torques by the arm and
hand, N1 and N2 includes the gravitational, centrifugal
and Coriolis terms,w =

(
w>1 ,w

>
2

)>
stacks the external

wrenches applied to the two fingers, and (J1, J2) ∈
R12×(ka+k′

h), with ka and k′h being the DOFs of the
arm and the two fingers, represents the robot’s Jacobian
evaluated at the two contact points.

Some anthropomorphic hands are tendon driven and
the joints are coupled under linear holonomic constraints
h(θh) = 0. In this situation, the hand dynamics need
to be rewritten in terms of independent generalized
coordinates qh, based on the relationship θ̇h = V q̇h,
for some matrix V . In the rest of the paper, we will use
qa = θa and qh to denote the robot configuration.

Left multiplying M21M
−1
11 to the first row of (4) and

then subtracting it from the second row, we obtain the
hand dynamics in the following form:

τh = Mhq̈h +Nh + J>h w, (5)

where Mh = V >
(
M22 − M21M

−1
11 M12

)
V , Nh =

V >
(
N2 − M21M

−1
11 N1 + M21M

−1
11 τ a

)
, and Jh =



V >
(
J2−J1M−111 M12

)
. The hand dynamics (5) contain

the arm’s state (joint angles qa and velocities q̇a) as
well as its torques τ a due to a coupling between the
arm and hand. The arm’s joint accelerations q̈a have
been eliminated, which means we can have the full hand
dynamics once knowing the arm and hand’s states and
the former’s joint torques τ a.

F. Arm Trajectory and Control

To the arm, the hand can be treated as an external
workload measurable by a force/torque sensor mounted
between the arm’s end-effector and the hand. With the
sensor reading ws ∈ R6, the arm’s dynamics become

τ a = Maq̈a +Na(qa, q̇a) + J>s fs, (6)

where Ma is the arm’s mass matrix, Na includes the
nonlinear terms, and Js is the arm’s Jacobian matrix at
the reference point of the sensor.

The arm is responsible for moving the palm along its
desired trajectory to realize pivoting performed by the
thumb and index finger. Denote by xa ∈ R6 the pose of
the arm’s end-effector as determined by its location pa
and orientation matrix Ra,3 where

pa(t) =

{
R(t)R(0)>pa(0), t ∈ [0, t1],
pa(t1) + p1(t)− p1(t1) t ∈ (t1, t2],

Ra(t) =

{
R(t)R(0)>Ra(0), t ∈ [0, t1],
Ra(t1), t ∈ (t1, t2].

The desired trajectory xa,d of the arm can be constructed
eventually from that of the knife.

Let Ja be the Jacobian matrix of the arm for xa. We
have ẋa = Jaq̇a and ẍa = J̇aq̇a + Jaq̈a. Assuming
that the arm is not at a singular configuration, we obtain
q̈a = J†a(ẍa − J̇aq̇a), where J†a is the Penrose-Moore
inverse of Ja. To control the arm, we make use of the
error xa,e = xa,d − xa. From the arm dynamics (6),
a task space position controller is then employed as
follows:

τ a,ctrl = MaJ
†
a

(
α− J̇aq̇a

)
+Na + J>s fs,

where α = ẍa,d +Ka,dẋa,e +Ka,pxa,e +Ka,i

∫
xa,edt,

and Ka,d,Ka,p,Ka,i are the damping, proportional and
integral gains, respectively.

G. Finger Control

The knife’s desired trajectory (cd(t), Rd(t)) is deter-
mined in section II-A. For i = 1, 2, at time t along the
trajectory there is a desired contact frame {Fid} on the
tip of finger i that is located at pi as determined from

3We explicitly represent xa by the coordinates of pa and three
Euler angles.

(cd(t), Rd(t)) with its z-axis aligned with the contact
normal n̂i and y-axis parallel to Rd(t)>ẑ.

The actual trajectory of pi is described by

pi(t) = R(t)
(
Bri − Br0

)
, t ∈ [0, t2], i = 1, 2,

during the pivoting action, where Bri is the vector from
c to pi in the knife’s body frame. The actual contact
frame on the fingertip {Fi} coincides with the desired
frame {Fid} at t = 0.

In order to let the knife track the desired pivoting
trajectory, the forces exerted by the fingers should be
exactly the same as obtained from section II-D. Instead
of controlling all the contact forces directly, we let the
index finger follow its desired trajectory under position
control, and the thumb apply the desired normal contact
force while following the trajectory in other dimensions.
When all the contacts with the knife are maintained with
no slip, it can be verified from the dynamics that its
translational and rotational accelerations will stay the
same as their desired values. In a sense, the normal
contact force by the thumb determines the other two
contact forces by the index finger and the board.

At time t along the real knife trajectory, we let xi(t) ∈
SE(3) represent the transformation from the desired con-
tact frame {Fid} to the actual contact frame {Fi}. Since
finger i has ki < 6 degrees of freedom, its configuration
can be uniquely determined by a subset si = (s>iv, s

>
if )

of coordinates in xi(t), where position and force control
are applied on siv and sif , respectively. We introduce
a ki × 6 selection matrix Si = (S>iv, S

>
if )> such that

siv = Sivxi and sif = Sifxi.
The index finger is subject to position control only,

thus, s2 = s2v . The thumb has the z-component of x1(t)
selected for force control while the other k1 − 1 for
position control. Note that the directions for its motion
control and force control are orthogonal to each other,
which leads to (0, 0, 1, 0, 0, 0)S>1v = 0. By setting a large
enough gain for the index finger, we may assume that
this finger and the knife’s handle together constitute a
hard environment for the thumb to be in contact with.
Consequently, the position along the z-direction of the
task frame {Pi} is fixed and s1f = 0 always holds. In
fact, s1 is now completely determined by s1v as a result
of s1 = S1S

>
1vs1v .

Let qi be the independent generalized coordinates
of the i-th finger. For i = 1, 2, ṡi = Hiq̇i, where
Hi = SiTiJc,i, where Ti transforms linear and angular
velocities from the world frame {W} to the change rate
of xi in the task frame {Pi}, and Jc,i is the finger
Jacobian evaluated at the contact point pi. The ki × ki
matrix Hi is invertible if the finger joints are not in
a singular configuration. Differentiation of ṡi = Hiq̇i



yields, for i = 1, 2, s̈i = Ḣiq̇i +Hiq̈i , from which we
obtain q̈i = H−1i

(
s̈i − Ḣiq̇i

)
. From the last equation

and (5), the hand controller can be described as

τh,ctrl = Mh

H−11

(
S1S

>
1vα1 − Ḣ1q̇1

)
H−12

(
α2 − Ḣ2q̇2

) 
+Nh + J>h w +

[
J>1 R1ẑβ

0

]
where αi = s̈iv,d + Kf,dṡiv,e + Kf,psiv,e with siv,d
be the desired value of siv and siv,e = siv,d − siv ,
β = wb

e +Kf,i

∫
wb

e dt with wb
e be the force error along

the selected directions in the contact frame {F1d}, and
Nh is the nonlinear term calculated based on the arm
controller output τ a,ctrl.

III. POWER GRASP VIA FINGER GAITS

In this section, we introduce a manipulation strategy
that follows pivoting to achieve a power grasp, which
allows it to resist external disturbance in any directions.
The knife can be repositioned and reoriented by the arm
and hand as desired.
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Fig. 4: Finger gaiting and hand caging to generate a power
grasp. (a) End of pivoting; (b) wrapping around the knife’s
handle; (c) reorienting the hand and knife; (d) removing the
thumb and index finger; (e) moving the palm towards the knife
plane of symmetry; (f) closing in the thumb and index finger.

A. Wrapping Around Fingers

As shown in Fig. 4 (a), at time t2 when pivoting ends,
the knife’s handle has been lifted up and in contact with
the palm. From t2 to time t3 > t2, the joints of each
of the finger 3, 4, 5 close , in order to establish more
contacts with the handle. A joint stops moving as soon
as one of its descendent link collides with the handle,
the joint reaches its limit, or it is constrained by other
already fixed joints.

The knife is stabilized by the thumb and index finger
at the antipodal positions on its handle. With the palm

and the extra three fingers engaged in contact, there is
little need for torsional torques at p1 and p2 to balance
the knife’s rotation along the antipodal line `.4 Any
motion of the knife relative to the hand can be prevented.

B. Caging

Next, the thumb and the index finger will be relocated.
They are first detached from the handle. During the
action, the palm and the rest of the fingers need to
prevent the knife from sliding out of the hand. The knife
does not need to be completely caged due to assistance
from the gravity and friction.

zH

xH

yH

{H}

ph

Fig. 5: Palm frame.

As shown in Fig. 5, the palm
frame {H} is situated at the
palm’s center of mass ph with
its yH-axis aligned with the fin-
ger’s common joint axis direc-
tion when all the joint angles
are zero, and zH-axis perpendic-
ular to the palm inner plane and
pointing outward from back of
the palm. Denote by ξ the angle between the vector ph−
p0 and the table plane. For a general knife handle shape,
all the contact forces should stay inside their friction
cone if ξ < tan−1 µ. To achieve such configuration,
from time t3 to some time t4 > t3, the hand rotates about
the yW -axis of the world frame {W} with a certain angle
such that the corresponding rotation matrix Rc satisfies
the following constraint:

tan ξ(t4) =
ẑ>Rc pp(t3)

‖pp(t3)− ẑẑ>Rc pp(t3)‖
< µ

.
Since the motion of the knife in other directions is

either constrained by the palm and fingers geometrically
or prevented by gravity (conservation of the energy),
we see that without changing the finger tip position, the
knife cannot escape from the hand. We refer readers
to [7] for a through study of caging.

C. Power Grasp

As shown in Fig. 4(d), the finger 1 and 2 are removed
after the ‘caging’ configuration, during time [t4, t5].

Let rotation matrix Rh represent the orientation of
the palm frame {H} and p5 be the center of mass of
the little finger’s distal link. From time t5 to t6 > t5,
the palm is reoriented around p5 to achieve a final
orientation Rh(t6) = R(t2), which is aligned with the
knife frame {B}. The palm trajectory is then represented
as Rh(t) and ph(t) = Rh(t) Hp5(t4), t ∈ (t5, t6),

4Exertion of a large amount of such torque could also exceed the
joint actuator limit.



where Hp5(t4) = Rh(t4)>[p5(t4) − ph(t4) ] is the
position of little finger tip center relative to the palm
frame {H} at time t4. In the meantime, the finger 3, 4,
5 have their tip positions maintained while joint angles
changing passively to accommodate the palm motion. It
is depicted in Fig. 4(d)–(e). Finally, the thumb and the
index finger wrap around the the knife’s handle along
some predefined trajectory for the hand to achieve a
power grasp configuration (Fig. 4(f)).

IV. DISCUSSION

The presented strategy for gripping a resting kitchen
knife is inspired by the action of a human hand, which
naturally minimizes the effort (by leveraging the cutting
board’s support) and swiftly applies finger gaits to reach
a power grasp on the knife’s handle. While raising the
handle, the human hand often eases effort by allowing
the tip to slide a little on the cutting board, and then
rotates the handle within the hand through a complex
finger movement. All the intricacies of the human
hand movements that comprise this single skill are at
present beyond full replication or automation by the
robot, because the human hand has different kinematics,
superior tactile sensing capability, and unmatched skin
elasticity. Nevertheless, close interleaving of continuous
control policies and discrete topological transitions is a
promising path to human-level dexterity.

Only simulation has been conducted due to the un-
availability of an anthropomorphic hand in our lab. The
right-hand model of the Shadow Hand E-Series and the
UR10 arm are used in the simulation to manipulate
a variety of knives in different scenarios.5 A 6-axis
force/torque sensor is mounted between the arm and
hand. All simulations are performed with the MuJoCo
physics engine [14].6 All the plots shown in the paper
and the accompanying video are generated by controllers
running at the frequency of 500Hz.

The introduced gripping strategy can be carried out
with any hand-arm pair that have considerably fewer
number of DOFs. Since the hand has the freedom to
rotate along the antipodal line, only five DOFs are
required for the arm. The initial antipodal grasp requires

5The mass densities of the knife’s blade and handle are set to be
8000 kg/m3 and 600 kg/m3. Coefficients of friction range from 0.5
to 2 for the knife-finger contact and from 0 to 0.1 for the knife-board
contact. The torsional torque coefficient ranges from 0.005 to 0.05.

6The soft finger contact is modeled as a pyramidal friction cone
coupled with a torsional torque opposing any rotation around the
contact normal. Couplings among finger joints are described by
equality constraints over their angles. The time step of simulation is
set to be 2ms. The controller gain parameters are all diagonal matrices
Ka,p,Ka,d,Ka,i,Kf,p,Kf,d,Kf,i with the same entries 1000, 20,
20, 500, 100, 20, on their diagonals, respectively.

the thumb and index finger to have at least three DOFs,
while achievement of the power grasp requires each of
the remaining fingers to have at least two DOFs.

Our strategy has overlooked several issues: slipping
at the knife’s tip, knife stabilization against horizontal
swaying, etc. For finer finger gaits, we also need to
consider kinematics of contact [15] between the fin-
gertips and the handle, and incorporate them into the
system dynamics and controller design as in [16]. We
can consider impedance control for stabilizing the knife
while it is being raised and grasped [17].
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