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Abstract

Thequality of a graspcanoftenbe measuedasthe magni-
tudewithin which anyexternalwrend is resistibleby “unit

graspforce”. In this paper we presenta numericalalgo-
rithm to computethe optimal graspon a simplepolygon,
given contactforcesof unit total magnitude Forcesare
compaed with torquesover the radius of gyration of the
polygon. We also addressa graspoptimality criterion for
resistingan advessaryfinger locatedpossiblyanywhee on
the polygonboundary The disparity betweenthesetwo
grasp optimality criteria are demonstated by simulation
with resultsadvocatingthat graspsshould be measued
task-dependentlyThe paperassumeson-frictional con-
tacts.

1 Introduction

In this paper we are concernedwith finding the optimal
graspson planarshapesparticularly polygons,undertwo
differentgraspmetrics. Thefirst metric, called M,,, mea-
suresthe quality of a graspby the magnitudeof the mini-
mum,overall directions of themaximumwrenchresistible
by the fingersexertingforcesof unit total magnitude.This
metricinvolvescomparinga force with a torque,which is
feasibleby dividing the latter by the radiusof gyrationof
the shape. The secondmetric, called My, measuresun-
derthe samefingerforce constraintthe maximumexternal
force applicableat the worstlocationon the shapebound-
ary without breakingthe grasp.

It is known thata graspoptimalunderonemetricis usu-
ally not very goodunderanother([8], [5]). In arealtask,
the spaceof possibleexternal wrenchesis often reduced
dueto the taskspecificationor the working ervironmental
constraintsFor instancegonsiderthe taskof hammeringa
nail into wood. Thereactionforceto the hammeractsonly
on the headof the hammer;so the externalwrencheson-
stitutearayif pointcontacts assumedln anothelinstance,
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a basletballplayerkeepsthe ball in the bestpossessionf
his handgo preventhis defendefrom knocking(andsteal-
ing) it away; herethe externalwrenchwould mostly result
from a quick hit at somepartof the ball by the defenders
hand. Thefull externalwrenchspacas oftentoo strongto
assumdor mary realtasksandit is thusmoreadequatéo
seekgraspsoptimalfor the (reduced)wrenchspacespec-
ified by individual tasks. The metric M reflectssucha
philosophy

Throughouthepapemwe assumeaon-frictionalcontacts.
We will focuson how to computethe optimalgraspsunder
metrics M, and M. We will seethat the optimization
turnsout to be difficult underboth metrics. Section2 re-
duceghe optimalgraspproblemundermetric M., to con-
strainednon-linearprogrammingandthensolvesit numer
ically; Section3 analyzeshe structureof graspoptimiza-
tion undermetric M ¢, urveiling thedifficulty in thesearch
for an efficient algorithm; Section4 discussesimulation
resultson bothmetrics;and Section5 concludeghe paper
by outlining the future work.

1.1 PreviousWork

A graspon an objectis force (form) closuee if and only
if arbitraryforce andtorquecanbe exertedon the object
throughthe setof contacts.Salishury andRoth [19] iden-
tified acceptablédanddesignsaasthosewhich couldimmo-
bilize a graspedbjectwith the finger joints locked while
alsohaving the ability to impart arbitrary graspingforces
anddisplacementto the object.

Mishraetal. [13] gave upperboundson the numbersof
frictionlessfingersthat are sufficient for equilibrium and
force-closurgraspgespectiely onobjectswith piecavise
smoothboundariesTighterboundswerelater obtainedby
Markenscof etal. [10] for force-closurgraspsonary 2-D
or 3-D object,for frictional aswell asfrictionlesscontacts.

Basedonthework of [17], Nguyen[16] viewedaforce-
closuregraspasthevectorclosureof its contactwrenches.
He offeredsimplealgorithmsfor synthesizingheindepen-
dentgraspregionsfor polygons(with/withoutfriction) and
for polyhedra(without friction). This work was later ex-
tendedn [18] to anumericalcell-decompositioralgorithm



assumindrictional contactdor 2-D objectswith piecavise
polynomialparametridooundaries.

One early optimality measurewas introducedin [7]
which considersthe optimal selectionof internal grasp
forcesto betheonefurthestfrom violatingany of theforce-
closure,friction andjoint torquelimit constraints. Trin-
kle [20] formulatedthetestof forceclosureasalinearpro-
gram whoseoptimal objective value measureiow far a
graspis from losingtheclosure.

Li and Sastry[8] alsoarguedthatthe choiceof a grasp
shouldbe basedn its capacityto generatéoodywrenches
that are relevant to the task. They were amongthe first
to formulate this idea by introducing the notion of task
ellipsoid basedon which a task-orientedquality measure
wasthendefined.The optimal graspproblemwasalsoad-
dressedut no algorithmwasdescribed.

[11] presentsan O(n?) algorithmto computethe op-
timal three-fingerequilibrium graspon an n-gon to bal-
ancethroughfriction its weightalongthethird dimension,
as well as an O(n*) algorithm to computethe optimal
graspagainstary worst-caseaunit force throughthe center
of gravity of the polygon. Both algorithmshave assumed
zeroexternaltorquewhile the secondone can be viewed
asa simplificationof the optimizationunderM ¢. Assum-
ing non-frictional contacts[14] offersan O(n? logn) al-
gorithmto find a three-fingergraspon an n-gon to resist
the maximumexternal force acting throughthe centerof
gravity in ary direction.

Note the definition of grasp metric M,, also appear
in [5] and[12] wherethe normalizationof finger forces
under L., andothermetricsare alsoaddressedOptimal
graspalgorithmsare given in the first paperfor two-jaw
and three-jav grippersto grasppolygons,in which case
only finite numberof good graspsneedto be considered.
By decouplingorceandtorque theseconcbaperis ableto
developaneasilycomputableoptimality measure.

The paper[15] summarizeyvariousexisting graspmet-
rics with extensie discussioron the trade-ofs amongthe
goodnessf agraspthegeometryof theobject,thenumber
of fingers,andthe computationacomplexity of the grasp
synthesisalgorithms.

Graspmetricsalsoapply to the designof modularfix-
tureswhere round locatorsand clampsact as fingersto
constrainparts. [3] describesan algorithmthat, given an
arbitrarypolygonalpart,enumerateall force-closuranod-
ular fixturesandthenranksthemaccordingto someuser
specifiedquality measure.

Thegraspoptimizationalgorithmsto be presentedh this
paperhowever, do notmake ary assumptioron forcesand
torques,nor on the setof graspsto be considered.So the
optimizationsjnherentlyharder areperformedovera4-D
configurationspaceof force-closurggraspgassumingour
fingers)with respecto the 3-D wrenchspace.

2 TheMetric M,

Let D beanon-circular2-D objectwith smoothboundary
0D. Letw(p) = (n(p),p x fn(p)) bethewrenchgener
atedby unit force at somepointp € 0D, wheren(p) is
the inward normalat p, andlet W (D) be the setof such
wrenches:

W(D) ={w(p) |p€oD}. 1)

It is shavn in [1Q] that, without friction, four fingers
are sufficient and necessanto achieve force-closureon
D. Letp,,py,p3,ps € 0D denotethe finger positions
of a force-closuregraspG on D. Then the wrenches
w(p,),--.,w(p,) Mustpositivelyspanthe wrenchspace
3 [16], thatis,

4
> Xw(p;) =0,  for some); > 0. (2)
i=1

Geometrically the origin O is in the interior of
the corvex hull of w(p,),...,w(p,), thatis, 0 €
Int conv(w(p,), ..., w(p,)). Mechanically for ary ex-
ternalwrenchw, graspg is ableto generatdts negative
wrench—w by exertingadequatdorcesatp;,s.

For1 < i < 4 let f; bethemagnitudeof force by finger
i. Thequality s(G) of G undermetric M,, is definedto be
theminimummagnitudeof any externalwrenchthatbreaks
the grasp,given that the fingersapply unit magnitudeof
force,thatis, 335, fi = 1. More preciselywe define

s{G , P2, D3, = max K
( ({pl P2 Ps p4})) kBCconv(w(pi),...,w(pa))
whereB is theunit ball centeredattheorigin. Theproblem
of finding the optimal graspundermetric M,,, canthusbe
formulatedas

max _§ , Do,y D3, .
), max (G({p1 P2, D3 p4}))

Note a subtlety occursat defining the norm of a wrench
since forces and torqueshave different units. To cope
with this issue,we borrov anideafrom [4] which com-
paresaforcewith atorqueovertheradiusof gyration p of
D. Hencewe redefinew(p) = (n(p),p x n(p)/p). If
0D is notsmooth,anothersubtletyarisesfor the boundary
pointswherethe normalsare undefined. If D is a poly-
gon, we regard a finger at somevertex asthatfingerat a
pointinfinitesimally closeto the vertex on oneof its adja-
centedges?

1 Notethisconditionsubsume!eheconditionz:?_1 fi < 1, following
(theforce-closurelondition(2). Namely aforce-closuregraspapplying
lessthanunit forcecaneasilybe shavn to beequialentto the samegrasp
applyingunit force.

2Someother paperssuchas [12] have assumeda roundedfingertip
modelto handlethis issue,in which casethe graspwrenchvariescontin-
uouslyatavertex.



In theremaindeof this sectionwe focuson the casethat
D isapolygonP. Figurel shovs aforce-closuregraspon
a5-gon.ThesetW (e) of possiblenrenchegeneratedby a

Figure 1: A force-closuregraspona5-gon.

fingerwith unit forceon anedgee is anon-deyeneratdine
segment.calledthewrend segmentin the f,- f,-r wrench
space(seeFigure 2(a)); this wrench sggmentprojectsto
the inward normalof e in the f,-f, force plane(seeFig-
ure2(b)).

W(e)

w (p,)

W (er)

Y w(p)

(@) (b)

Figure 2. The force-closure grasp in Figure 1 as illus-
trated in the wrench space. The tetrahedron7 with vertices
w(p1), - .., w(pa) consistof all wrencheghatcanbegenerated
by the graspexerting unit force. Theradiusof the largestsphere
centeredat the origin andcontainedn 7~ measureshe minimum
wrenchto breakthegrasp.

Now we canrephraseeomputingthe optimalgraspon a

polygon P asselectingfour points(wrenches)
W1, Ws, W3, Wy € U W (e)
e anedgeof P

suchthat

¢ theorigin O lies in the interior of the grasptetrahe-
dronT definedby wy, ..., w4;

o theminimumdistancefrom O to the four facetsof 7
is maximized.

To solwe this optimizationproblem, it sufficesto look at
the subproblemin which every fingeri canonly move on

oneedge,saye;, with unitnormaln;. For1l < i < 4 let

w; = n; + t;7 denotethewrenchby fingeri exertingunit

force. Thusanone-to-onecorrespondencexists between
(t1,12,t3,t4) andagraspsofrom now onweidentify them
with eachother Notethatat leastthreeof theser;s must
differ from eachother, otherwisethe graspcannotbeaclo-

sureon pureforces.

In thebelon we only look atthecasethatn,, .. ., 14 are
all different,asthe othercaseis relatively simple. Without
lossof generalitylet usassuméhroughouthis sectionthat
n4,...,74 arein clockwiseorder andviewed from +oo
onthe+ axis,T hasthetopologythatedge w; w3 is above
ede wowy.

The equationof the plane determinedby three non-
collinearpointsq,, q,, g5 is givenas

n-x=d,
where
n = ¢y Xgy+gy xXqs+4gsxq,
d = q;%Xq5-q;.

Heren is the planenormaland% is thedistancerom O

to the plane;son pointsto the planeif d > 0 andaway
from theplaneotherwise Theforce-closureonditionO €
Int 7 requiregthatO lie attheinterior sidesof all facetsof
T. Thereforethefollowing conditionshold:

w1 X W2 - w3 >

(3)

Wo X W3 - W4

e

<
w3 X Wy - W >
Wy X Wy -we <

Theaborelinearinequalities(in ¢), alongwith thosedefin-
ing thewrenchsggmentsi¥ (e;):
I <t; < uy, for i =1,2,3,4, 4

define a open corvex 4-polytopeP that consistsof all
force-closuregrasps.



Denoteby F,, thefacetof 7 with verticesw;, w2, and
w3, by Fj3 thefacetwith verticesws, w3, andwy, by F,
thefacetwith verticesws, w4, andw, andby Fs thefacet
with verticesw,, w1, andw-,. The quality of graspt is
definedby

s(t) = min(sa(t), s5(), 51(t), 55(t))- (5)

Heres, (t) is thedistancefrom O to facetF,:

do
Sa(t) = ——
@ =,
where
da = Wi XwWwsy - W3
= (tlflgx’fl3+t2’flgx’fl1+t3’fl1 X’ﬁz)'f’, (6)
Ng = W1 XWs+W XWs+ws XwW;

= (’ﬁl X T +Ty X Meg +73 X’fbl) +

(tl(’fl3—'fl‘2)+t2(fl1—'fl3)+t3(ﬁ2—fl1)) X‘f'; (7)

andsg(t), s,(t), ands,(t) aredefinedanalogously

Before presentinga numericalalgorithm to maximize
s(t), letuslook athow s (t), s(t), s,(t), ands;(t) vary
with ¢. This would suggestwriting out the gradientsof
thesefunctions,which seemgo betoo cumbersomeHow-
ever, thereis a muchsimplerway of viewing thesegradi-
entsgeometrically

Lemmal Let¢ = (&1, &2,&3,&4) beaforce-closuegrasp,
and T the grasptetrahedon thusdefined.If at £ theline
throughthe origin O and perpendicularto facetF,, of T
intersectsF,, in its interior, then

030 05 O5a|
Ot1’ Oty Ot '

Accodingly, we have

6.9/3 6Sg 6Sg
Oty ’ Ot Oty <0

0sy Osy Osy
Ots’ Oty Oty > 0

0ss Oss 0Oss
ot ot |, <0

if the perpendiculariines through O to facetsFj, F, and
F5 passthroughtheir interior respectively

Proof. Letq beaninteriorpointof F,, suchthatOgq L F,,
asshavnin Figure3. Now look atthefacetZ, determined

by EI = (517§27§35€4)! Wheregi = 61 + Aé.l > §1- For

A+t 4
\

A1+&1T

ﬁ4+54f

Figure 3: Theproofof Lemmal.

smallenoughA¢&;, theperpendiculaline from O to F, in-
tersectsdF,, andF, in theirinterioratr andq’ respectiely.
We have

sa(§) = [Og| <|Or|
< 10¢'| = sa(¢"),

which provesthat %j‘; l¢ > 0. Therestinequalitiesin the
lemmafollow similarly. O

for someA¢&; > 0,

LetQ = {t |t € P and s(t) = s*} bethesetof
grasponpolygon P thatmaximizesfunction(5). We clas-
sify polygon P into one of the following four typesbased
onthe structureof 2:

Typel s;(t) = s* < s;(t), sx(t),s:(t), whereijkl de-
notessomepermutationof a, 3,~, andé, for all t €
O,

Type2 s;(t) = s;(t) = s* for somet € Q, but sx(t),
si1(t) > s* for all sucht;

Type3 si(t) = s;(t) = sx(t) = s* for somet € Q, but
s1(t) > s* for all sucht;

Type4d s;(t) = s;(t) = sp(t) = si(t) = s* for some
teq.

The numericalalgorithm hypothesizesvery type above,
finding its optimumwhenever it exits. Finally the optimal
graspis selectedasthe maximumof the optimaunderall
hypotheses.

2.1 TypelPolygon

Theoptimizationon atype 1 polygonturnsoutto befairly
easyasstatedn thefollowing theorem.

Theorem 2 Everyoptimalgrasponatypel polygonposi-
tionsthreefingers at somevertices;and oneoptimalgrasp
positionsall four fingers at somevertices.



Proof. Without lossof generality lett = (1,2, t3,t4)
with s (t) < sg(t),s(t), ss(t) be anoptimal grasp. It
follows that F,, mustintersectits perpendiculatine from
theorigin O in theinterior; hencet; = u;, fori = 1,2,3,
asshavn in Figure 4. For otherwise,by Lemmal, we

Arrust

fAz+ust T

Figure 4: An optimal graspon a type 1 polygon with s* =
sa(t) < sp(t), sy(t),ss(t): Fingersl, 2 and 3 mustbe at
the verticesof e;, ez, andes to generatehe maximumtorques
u17,u2? andwug7 respectiely, while finger 4 is free to move
alonges without affecting s™.

could increases, (t), hences*, by increasingti, ta, or t3
infinitesimally.

Ontheotherhand,t, mayincreas€decreasenonotoni-
callyto uy (I4) withoutdecreasing(t). Supposehisis not
true. Thenatsomet’ = (t1,t2,t3,£), oneof sa(t), s, (t),
and ss(t) mustdecreaseo s*. But this implies that the
problemis notof type 1, acontradiction. |

The above proof alsoimpliesthata type 1 polygonhas
anoptimalgraspthatpositionsall fingersto generateither
all maximumtorquesor all minimumtorques.Thusto find
theoptimum,it sufficesto evaluatetwo grasps:t; = u;, for
all 4, andt; = I;, for all 4.

2.2 Type2 Polygon

Whenapolygonis of type 2, anoptimalgraspcanposition
two fingersat vertices. The optimizationreduceso con-
strainednon-linearprogrammingsolvable by the Newton-
Raphsomethodfor rootfinding.

Theorem 3 Everyoptimalgrasponatype2 polygonposi-
tionsat leasttwo fingers at somevertices.

Proof. Lett beanoptimalgrasponsometype 2 polygon,
and7 its grasptetrahedron.Thereare 6 casesaccording
aswhichtwo facetsdetermingheoptimalgraspquality s*.
Thefour casess, = s = s*,s3 = 5y = §%,8, = 85 =
s*, andss = s, = s* aresimilar; sowe only needto look
atone.

Suppose, = sg = s*, theperpendiculalinesfrom the
originto facetsFy, andFj of T mustpasshroughtheirin-

854 Osg 0Osg Osg

i 0sa 08a 08« 983 Osp
terior. Sowe have B B P > 0and 5t Bl B <

0 by Lemmal. Sincet is optimal,no At witht + At € P

existssuchthat
Vsa
( o ) At >0,

where Vs, = (%,%@;,%,0) and Vsg =

) Bty ) Bt ? Ota
tively. Now supposet; # wu; andty, # l4. Letting
¢=(1,0,0,—1)T, we caneasilyverify thatthedirectional
derivativesaaL; =Vsqa-€>0 andaaif =Vsg-£>0.
Namely boths,, andsg canbeincreasedtt alongl, acon-
tradictionwith theoptimality of ¢. Henceeithert; = u, or
ty = l4. (SeeFigure5.)

(0 Bsp Dsp aﬁ) arethe gradientsof s, andsg respec-

A+t 1fT

Figure 5. An optimal graspon a type 2 polygon with s* =
sa(t) = sp(t) < s,(t),ss(t): Eithert; = uj orts = I (as
shawvn) holds. If t; # w1, thent; = [; fori = 2,3,4; if t4 # la,
thent; = u; fori =1,2,3.

If t4 = Iy, thenVs, = (8= %% 052) and Vs, =

Ot1 7 8tz Ots

Osp 0Ospg _ T
0, 50 702). Let = (@1,0,—-1)" for somea; >
98a ) 08a 98a Sg i i i
e E Hence P B, 0, which implies that

t1 = ui Vt3 = I3, by the optimality of t£. Now let

by = (az,—1,0)T for someay > Zt= /%= HenceZse,

‘Z%j > 0, whichimpliesthatt; = u; V t2 = l>. Sowecan
infer thefollowing from ¢4 = I4:

(t1=wVia=BL)A(t1 =u1 Vi3 =13)
= t1:U1V(t2:lzf\t3:l3).

Similarly, ty = l4V(t2 = U Ntz = U3) holdsif t1 = up.
Combiningtheabove two conditions we have shovn

(tit =ugr Aty =1y) \V (t1 =uy ANts = us Atz = ug)
V (t2 :l2/\t3 :l3/\t4 214),
unders, = sg = s*.
Finally, it is easyto shaw that

t1=U1/\t3=U3/\(t2=U2Vt4ZU4);
tgzlz/\t4:l4/\(t1:ll\v/t3:l3)



hold unders, = sy = s* andsg = s5 = s* respectiely.
O

With Theorem3 we areableto reducethe optimalgrasp
problemto anonlineamprogrammingproblem.For thecase
sq = 8g = s* With t; = u; andt4 = I, theproblemtakes
theform

max sa(ul , tz, t3)
to,t3

subjectto

sp(ta,t3,l4), (8)

in addition to the force closure constraints(3) and (4)
which now define a polygon P. This problem can be
numerically solved by introducinga Lagrangemultiplier
[9], but we offer a simplermethodhere. Note that equa-
tion (8) definests as an implicit function of ¢, so that
Sa(ta,t3) = sal(te,ts(t2)) attainsits maximumonly if

ds, __ H
e = 0. The Newton-Raphsommethodcan be applied

to find the zerosof 4=
1

Sa(u1,t2,t3) =

Thedirectivesneededn theiteration, %%= and d;fa ,can
be solved from differentiatingequation(8) and eprressed
in terms of the first and secondorder partial derivatives
of s, andsg. Theiterationstartsat an interior point on
the monotoniccurve s, = sg boundedby P, and ends
wheneerit corvergesor reacheghe boundaryof P. The
solution (tgk),tgk)) is invalid if s, < s, Orsq < s at
(tgk) J tz(sk) > U3, l4) .

The other casewith threefingers placedat verticesis
easy: The location of the fourth finger can be directly
solvedfrom the constraintequation.

2.3 Types3and 4 Polygons

A type 3 polygonhasan optimal graspt € P with, say
sa(t) = sg(t) = s,(t) < ss(t), from which two vari-

ablescan be eliminated. The following theoremenables
the eliminationof a third variableso thatthe optimization
eventuallyreducego non-linearprogrammingn onevari-

able.

Theorem 4 Everyoptimalgrasponatype3 polygonposi-
tionsat leastonefinger at somevertex.

Proof. Lett beanoptimal graspwith s,(t) = sg(t) =
sy(t) < s5(t), without loss of generality Supposethat
noneof thefingersis atary verte, thatis, ¢t € Int P. The
optimality of ¢t impliesthatno At existssuchthat

084 Osq 954
Vsa Bty Oty Ots 0

_ dsg 9sp dsp
Vsg | At = 0 5 75, o |At
VS,Y Osy 0 Osy  Osy

Bty Btz Bta
> 0, 9)

whereVs,, Vs, andVs, arethegradientof s, sg, and
sy. SuchAt doesnot exist if andonly if thereexist some
non-neative \1, A2, and 3 with A; + A2 + A3 > 0 such
that

A Vsa(t) + A2Vsa(t) + A3Vs,(t) =0.  (10)

(See[2, p. 27].)
Sinces, (t) = sp(t) = s4(t) = s*, we caneasilyshav

that 084 084 084 857 BS_Y 857 > O and 88@, 885’
Ota ' Ot3

Oty ' Bty Bts' Ot1' Otz Ol
‘Z%f < 0, by Lemmal. Thenit is not hardto verify that
equation(10) cannothold for arny non-neyative A1, Ao, A3
with Ay + A2 + A3 > 0. Sothereexists At satisfyingin-
equality(9). A contradictionHencet € oP. O

A type4 polygonprovidesthreeconstraints, = sg =
s, = s; thateliminatethreevariables,reducingthe opti-
mizationagainto non-linearoptimizationin onevariable.

3 TheMetric My

We now move on to the problem of finding the optimal
graspto resistan adwersaryfinger positionedsomevhere
on the boundaryof a 2-D object D. It follows that such
a graspg atp;,...,p, € 0D mustbe ableto gener
atewrench—w for all w € W(D). Thereforethe set
-W(D) = {—w | w € W(D)} mustbe containedin
the corvex of wrencheaw; (p,), ..., w4(py); SOG is also
force-closure.

Themetric My onagraspg atpointsp, ,...,p, € 0D
measurehon muchforceby theadwersaryfingeris always
resistibleby G with unit force. More precisely the quality
of G is definedunderthis metricas

s(G{P1;---,p4})) =

max K
—h‘,W(D)gCOl‘lV(w(pl),...7w(p4))

In the below we addresghe graspoptimizationon an
n-gon P. Figure6 illustratesthe graspin Figure 1 under
metric M. As seenfrom thefigure,only the2n wrenches
in —W (D) relatedto theverticesof P mayaffects(G); let
the setof thesewrencheshe denotecby W,, C —W (D).
Againletw; = n; +t;7 bethewrenchgeneratedby finger
i, for 1 < i < 4, andT the grasptetrahedrorthus de-
fined. As before,we only considerthe casethatthefingers
are constrainecon four edgesey, es, €3, andey with dis-
tinctinward normalsrespectiely, because¢he othercases
relatively simple. Furthermoreassumehe topologyof 7
to be thatedgew, w3 is above edgew,w,, andlet P be
the corvex 4-polytopedefinedby inequalities(3) and (4)
which consistsof all force-closuregraspson P.

Denoteby F,, Fj3, F.,, andF; thefour facetsof thetetra-
hedronT, 1 < i < 4, andby s,, sg, s, andss the maxi-
mumscaleson W, for it to beattheinterior sidesof these



W (e )

s,
7 n(es)

W (ps)

W (er)

Y w(py)

Figure 6: Thegraspon the5-gonin Figurel undermetric. M ;.
The quality of the graspis the largestscaleto shrink —W (P)
(shavn asdashedines)into theconvex hull of w(p;), 1 < i < 4.

facetgespectrely. Thuswe have
dao

Sat) = ————,
maxgew, Mo -4

whered, and n, are definedby equations(6) and (7)
respectiely; andsg(t), s,(t), ss(t) aredefinedsimilarly.
Now partitionP into cellsC(q), for all ¢ € W,,, in which
g maximizesthedot productwith n,. Notethebisectorof
two adjacentells C(q,) andC(q,) is a hyperplanggiven
by equation
Ng g1 = Ng " qs.

Sinces,, is only relatedto ¢1, t> andts, the partitionforms
a power diagramboundedby the projectionof P ontothe
t1-t2-t3 spaceanddualto somecorvex hull in %3, all of
which canbe constructedn O(n?) time [1]. The power
diagramdor otherthreefacetsFj, F., andF; canbe simi-
larly constructed.

Intersectinghesefour powerdiagramsyieldsacell com-
plex C boundedby P, in which eachcell is associatedvith
someq,,qg,q,, andg, € W, suchthat

S(g) _ mm( da 7 dﬁ 7 d»y 7 d5 ) )
No-qq M -qp My -4, N5 -g;
We have obtainedthe following resultson the structure
of C:

Theorem 5 If theoptimalgraspis attainedat t* € Int P,
thensq (t*) = sp(t*) = s4(t*) = s5(t%).

Theorem 6 Theoptimalgraspis attainedon 9P (i.e., one
finger at a vertex) or on the skeletonof the cell complex C
definedabove

Theproofsof theabove theoremsanbefoundin [6].
Sofar we have not beenableto devise an algorithmto
computet* dueto the structuralcomplexity of C. For the
caset* € 0P, the dimensionof the optimizationis low-
eredby atleastonesothatthe computatiorcanproceedn
a hypothesis-and-erificationmannersimilar to thatof the
lastsection.For thecaset* € Int P, we suspecthatthe set

{t]sa(t) =s5(t) = s,(t) = s5(t) }

is an one-dimensionapiecavise smoothcurve so that t*
couldbefoundby traversingalongthis curve andchecking
its every intersectiorwith the skeletonof C.

4 Simulations

Simulationson computingthe optimal graspson random
polygonsunder both metrics were conducted. The data
weregeneratedsclosedrandomwalkson anarrangement
of 100randomlines. Theradii of gyrationof the polygons
were computedby a commonplane sweepingalgorithm.
The centerof geometryof eachpolygonwas selectedas
its torqueorigin. Optimalgraspsarecomputedunderboth
metricsM,, and M usingpolygonboundarydiscretiza-
tion andunder.M,, by anumericalalgorithm.

The discretizationmethod proceededas follows. The
boundaryof a polygon was first discretizedinto 25-50
equallyspacedoints. Thesepoints,togethemwith thever
tices, were consideredas possiblefinger locations. Next,
all edgetriples andquadruplesvereenumerate@s possi-
ble contactedgedor the grasp.Giventhe contactedgesa
quick checkwas done on whetherthe edgenormalspos-
itively expandthe force plane. Then all possiblefinger
placementon theseedgeswere evaluatedunder metrics
M., andM ¢ respectiely. Thebesttwo graspseachunder
onemetric,wereretainedaftertheiterationoverall contact
edgechoicesastheoptimalgrasps.

Among the 30 polygonstested,only two hadthe same
optimalgraspaunderboth metrics. The optimalgraspsun-
der metric M,, were measuredo be 61%-100%of the
optimaundermetric M, while the optimal graspsunder
metric M ; weremeasuredo be 71%-100%of the optima
undermetric M,,. Theseresultshave sufficiently demon-
stratedthe disparitybetweerthe two metrics. An example
is shav in Figure7.

The numericalalgorithmwasimplementedo solve for
optimalgraspson Types1 and2 polygons,andwastested
onthesamesetof data.Noneof thetestedpolygonswasof
type 1, aswe hadexpected. Sinceour algorithmdoesnot
handletypes3 and4 polygonswe cannotsaythatall tested
polygonswere thus of type 2. However, all exceptone
“optimal grasps”found by the numericalalgorithm were
betterthanthe “optimal grasps“found by the dicretization



Figure 7: The optimal graspsG;, (white fingers)andGy (black
fingers)on a 10-gonundermetrics M., and M respectiely,
computedby discretizingthe polygon boundaryinto 50 points.
Thegraspg,, canresistary wrenchwithin magnitude0.376but
only ary force within magnitude0.261;the graspG canresist
ary force within magnitude0.283 but only ary wrenchwithin
magnitude).35.

methodusingaresolutionof 50. Theseresultssuggesthat
polygonsaremorelikely of type 2. (SeeFigure8.)

Vo

Figure 8: The optimal graspon the samel0-gonfound by the
numericalalgorithm. It hasa quality of 0.388undermetric M, .

5 Conclusion and Future Work

In this paperwe arguethatthe goodnes®f a graspshould
be measuredwith respectto the external wrench space
specifiedby eachindividual task. We have introducedtwo
graspmetrics, M,, and M, asexamplesfor full andre-
ducedwrenchspacegespectiely. The first metric mea-
sureshow muchexternalwrenchis necessaryo breakthe
grasp.Thesecondnetricmeasuresow muchforceby one
nastyfingercanalwaysberesisted.

We presenta numericalalgorithmto computethe opti-
mal graspon a simplepolygonundermetric M,,. Theal-
gorithmessentiallyreducegheoptimizationto constrained
nonlinear programming. The grasp optimization under
metric M hasalso beenaddressed. Simulationswere
conductedon both graspmetricsusing polygonboundary
discretizationandon M,, with animplementatiorof the
numericalalgorithm. Theresultshave sufficiently demon-
stratecthe disparitybetweerthetwo metrics.

Morework is neededo deviseanefficientoptimalgrasp
algorithm under metric M. Furtheralong this line of

work would be to develop more practicaland easily com-
putablegraspmetricsaswell asto studytheassociatedp-
timizationtechniques.

The currentwork on optimal graspscanbe extendedto
frictional contactsfor which the optimizationwill become
concevably harderdespitethat fewer fingersarerequired.
Extensionof the work to 2-D objectswith curved bound-
ariesand3-D objectsmayalsobeof ourinterest.
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