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Modeling Deformations of General Parametric
Shells Grasped by a Robot Hand

Jiang Tian and Yan-Bin Jia, Member, IEEE

Abstract—The robot hand applying force on a deformable ob-
ject will result in a changing wrench space due to the varying
shape and normal of the contact area. Design and analysis of a
manipulation strategy thus depend on reliable modeling of the ob-
ject’s deformations as actions are performed. In this paper, shell-
like objects are modeled. The classical shell theory [P. L. Gould,
Analysis of Plates and Shells. Englewood Cliffs, NJ: Prentice-Hall,
1999; V. V. Novozhilov, The Theory of Thin Shells. Gronigen, The
Netherlands: Noordhoff, 1959; A. S. Saada, Elasticity: Theory and
Applications. Melbourne, FL: Krieger, 1993; S. P. Timoshenko and
S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. New
York: McGraw-Hill, 1959] assumes a parametrization along the
two lines of curvature on the middle surface of a shell. Such a
parametrization, while always existing locally, is very difficult, if
not impossible, to derive for most surfaces. Generalization of the
theory to an arbitrary parametric shell is therefore not immedi-
ate. This paper first extends the linear and nonlinear shell theories
to describe extensional, shearing, and bending strains in terms
of geometric invariants, including the principal curvatures and
vectors, and their related directional and covariant derivatives.
To our knowledge, this is the first nonparametric formulation of
thin-shell strains. A computational procedure for the strain en-
ergy is then offered for general parametric shells. In practice, a
shell deformation is conveniently represented by a subdivision sur-
face [F. Cirak, M. Ortiz, and P. Schröder, “Subdivision surfaces:
A new paradigm for thin-shell finite-element analysis,” Int. J. Nu-
mer. Methods Eng., vol. 47, pp. 2039–2072, 2000]. We compare the
results via potential-energy minimization over a couple of bench-
mark problems with their analytical solutions and numerical ones
generated by two commercial software packages: ABAQUS and
ANSYS. Our method achieves a convergence rate that is one order
of magnitude higher. Experimental validation involves regular and
free-form shell-like objects of various materials that were grasped
by a robot hand, with the results compared against scanned 3-D
data with accuracy of 0.127 mm. Grasped objects often undergo
sizable shape changes, for which a much higher modeling accuracy
can be achieved using the nonlinear elasticity theory than its linear
counterpart.

Index Terms—Deformable modeling, elasticity, grasping, shell.

I. INTRODUCTION

D EFORMABLE objects, which include clothes, plastic bot-
tles, paper, magazines,ropes, wires, cables, balls, tires,
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toys, sofas, fruits, vegetables, meat, processed food (e.g., cakes,
dumplings, buns, and noodles), plants, animals, biological tis-
sues, etc, are ubiquitous in our world. The ability to manipulate
deformable objects is an indispensable part of the human hand’s
dexterity and is an important feature of intelligence.

In robotics, grasping of rigid objects has been an active re-
search area in the past two decades [6]. The geometric founda-
tion for form-closure, force-closure, and equilibrium grasps is
now well-understood. However, grasping of deformable objects
has received much less attention until recently. This is in part
due to the lack of a geometric framework, and in part due to the
high computational cost of modeling the physical process itself.

Since the number of degrees of freedom of a deformable ob-
ject is infinite, it cannot be restrained by a finite set of contacts
only. Consequently, form-closure grasp is no longer applicable.
Does force-closure grasp still apply? Let us consider two fingers
that squeeze a deformable object in order to grasp it. The normal
at each contact point changes its direction, so does the corre-
sponding contact-friction cone. Even if the two fingers were
not initially placed at close-to-antipodal positions, the contact-
friction cones may have rotated toward each other, thus resulting
in a force-closure grasp.

More generally, when a robot hand applies force to grasp a
soft object, deformation will result in the enlargement of the
finger contact regions and the rotation of the contact normals
on the object, which, in turn, will result in a change in the
wrench space. Accurate and efficient modeling of the object’s
deformation can help us to predict the success of a grasp from
its initial finger placement and applied force, and subsequently,
use the prediction in the design of a grasping strategy.

This paper investigates shape modeling for shell-like objects
that are grasped by a robot hand. A shell is a thin body that
is bounded by two curved surfaces, whose distance, i.e., the
shell thickness, is very small in comparison with the other di-
mensions. The locus of points, at equal distances from the two
bounding surfaces, is the middle surface of the shell.

Shells have been studied based on the geometry of their mid-
dle surfaces that are assumed to be parametrized along the lines
of curvature [19], [43], [51]. The expressions of extensional and
shear strains and strain energy, although derived in a local frame
at every point, are still dependent on the specific parametriza-
tion rather than on the geometric properties only. The Green–
Lagrange strain tensor of a shell is presented in general curvi-
linear coordinates in [22] and [41]. However, the geometry of
deformation is hidden due to the heavy use of covariant and
contravariant tensors for strains.

The strain energy of a deformed shell depends on the ge-
ometry of its middle surface and its thickness, all prior to the
deformation, as well as the displacement field. In this paper, we
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will rewrite strains in terms of geometric invariants, including
principal curvatures, principal vectors, and the related direc-
tional and covariant derivatives. All shell-like objects addressed
in this paper satisfy the following three assumptions.

1) They are physically linear, but geometrically either linear
or nonlinear.1

2) They are considered homogeneous and isotropic, i.e., they
have the same elastic properties in all directions.

3) Their middle surfaces are arbitrarily parametric or so
approximated.

The rest of the paper is organized as follows. Section II sur-
veys related work in the finite-element methods (FEMs) for
shells and in robotics and computer graphics. Section III surveys
necessary background in surface geometry. Section IV presents
the displacement field on a shell that completely describes the
deformation. Based on the linear elasticity theory of shells,
Section V establishes that the strains and strain energy of a shell
under a displacement field are decided by geometric invariants
of its middle surface, including the two principal curvatures and
two principal vectors. A computational procedure for arbitrary
parametric shells is then described. Section VI frames the theory
of nonlinear elasticity of shells in terms of geometric invariants.

Section VII sets up the subdivision-based displacement field
and describes the stiffness matrix and the energy-minimization
process. Section VIII compares the simulation results over two
benchmark problems with their analytical solutions, and nu-
merical ones generated by two commercial software packages
ABAQUS and ANSYS. Section IX experimentally investigates
the modeling of deformable objects that were grasped by a
BarrettHand. It compares the linear theory for small deforma-
tions and the nonlinear theory for large deformations through
validation against range data that were generated by a 3-D scan-
ner. We will further see that the nonlinear elasticity-based mod-
eling yields much more accurate results when large grasping
forces are applied. Section X discusses modeling errors and fu-
ture extensions, especially the next phase of our research on
grasping of deformable objects.

This paper extends the results from our conference papers
[25], [50]. It delivers a clear geometric interpretation of the
shell strains. For a parametric shell, geometric invariants are now
computed based on the original parametrization rather than its
subdivision-surface approximation, and hence, results in more
accuracy. This paper also adds simulation results for two bench-
mark problems, and presents more experimental data.

II. RELATED WORK

This paper is about deformable modeling, which has been
studied in the elasticity theory, solid mechanics, robotics, and
computer graphics across a range of applications.

1Physical linearity refers to the assumption that the elongations do not exceed
the limit of proportionality; therefore, the stress–strain relation is governed by
Hooke’s law. Geometric nonlinearity refers to the assumption that the angles
of rotation are of a higher order than the elongations and shears. Geometric
linearity refers to the assumption that they all are of the same order.

A. Elasticity

The FEM [4], [16], [45], for modeling deformations of a
wide range of shapes, represents a body as a mesh structure, and
computes the stress, strain, and displacement everywhere inside
the body. FEMs are used to model the deformations of a wide
range of shapes: fabric [10], a deformable object that interacts
with a human hand [20], human tissue in a surgery [7], etc.

Thin-shell finite elements originated in the mid-1960s. Two
comprehensive surveys [59], [60] were given by Yang et al. It
is well-known that convergence of thin-shell elements requires
C1 interpolation, which is difficult. From a viewpoint of engi-
neering, it is crucial to formulate models that are both physically
accurate and numerically robust for arbitrary shapes.

Cirak et al. [9] introduced an FEM based on subdivision
surfaces. By assuming linear elasticity, they presented simu-
lation results for planar, cylindrical, and spherical shells only.
The work was extended in [49] to model dynamics in textile
simulation.

Other thin-shell FEMs include flat plates [61], axisymmetric
shells [21], [39], and curve elements [11]. More recently, com-
putational shell analysis in the FEM has employed techniques,
including degenerated shell approach [24], stress-resultant-
based formulations [1], integration techniques [5], 3-D elasticity
elements [13], etc.

B. Robot Manipulation

Compared with an abundance of research in grasping of rigid
objects in the past two decades, less attention has been paid
to grasp the deformable objects. Work on robotic manipulation
of deformable objects has been mostly limited to linear and
meshed objects [34], [55]. Most of the developed models are
energy-based, and some of them are not experimentally verified.

Wakamatsu et al. [53] examined whether force-closure and
form-closure grasps can be applied to grasp deformable objects.
Form-closure grasp is not applicable because deformable objects
have infinite degrees of freedom, and they cannot be constrained
by a finite number of contacts.

The deformation space (D-space) of an object was introduced
in [18] as the C-space of all its mesh vertices, with modeling
based on linear elasticity and frictionless contact. Hirai et al. [23]
proposed a control law to grasp deformable objects, using both
visual and tactile methods to control the motion of a deformable
object. Most recently, a “fishbone” model, which is based on
differential geometry for belt objects, was presented and exper-
imentally verified [56].

Picking up a highly flexible linear object, such as a wire or
rope, can be easily done with a vision system [42]. Knotting [32],
[44], unknotting [28], and both [54] are the typical manipulation
operations on this type of linear objects, which can be carried
out with no need of deformable modeling.

C. Computer Graphics

Gibson and Mirtich [17] gave a comprehensive review on de-
formable modeling in computer graphics. The main objective in
this field is to generate visual effects efficiently, rather than to
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be physically accurate. Discrepancies with the theory of elas-
ticity are tolerated, and experiments with real objects need not
be conducted. For instance, the widely used formulation [47]
on the surface strain energy, as the integral sum of the squares
of the norms of the changes in the first and second fundamental
forms, does not follow the theory of elasticity.

In this field, there are generally two approaches to model de-
formable objects: geometry-based approach and physics-based
approach [17]. In a geometry-based approach, splines and spline
surfaces, such as Bézier curves, B-splines, nonuniform rational
B-splines (NURBS), are often used as representations [3], [14].

Physics-based modeling [35] of deformation takes into ac-
count the mechanics of materials and dynamics to a certain
degree. Mass-spring systems, although inaccurate and slow for
simulation of material with high stiffness, are extensively used in
animation [8], facial modeling [48], [58], surgery [12], and sim-
ulations of cloth [2], and animals [52]. Meanwhile, the “snake
model” is widely used in medical image analysis [33]. The
skeleton-based method [31] achieves efficiency of deformable
modeling by interpolation.

III. SOME BACKGROUND IN SURFACE GEOMETRY

Throughout the paper, we will denote by fu for partial deriva-
tive of a function f(u, v) with respect to u, and by fuu the sec-
ond derivative with respect to the same variable. All the vectors
will be column vectors by default, and will appear in the bold
face. Displacements and strain components (of all orders) will
be denoted by Greek letters, as will surfaces, curvatures, and
torsions by convention. In addition, points, tangents, normals,
and other geometric vectors will be denoted by English letters
by convention.

Let σ(u, v) be a surface patch in 3-D. It is regular such
that the tangent plane at every point q is spanned by the two
partial derivatives σu and σv . The unit normal to the surface is
n = σu × σv /‖σu × σv‖. The first fundamental form of σ is
defined as Edu2 + 2Fdudv + Gdv2 , where

E = σu · σu , F = σu · σv , G = σv · σv (1)

and the second fundamental form is defined as Ldu2 +
2Mdudv + Ndv2 , where

L = σuu · n, M = σuv · n, N = σvv · n. (2)

A compact representation of the two fundamental forms com-
prises the following two symmetric matrices:

FI =
(

E F
F G

)
and FI I =

(
L M
M N

)
. (3)

The eigenvalues of F−1
I FI I are the two principal curvatures

κ1 and κ2 at the point q. They represent the maximum and
minimum rates of change in geometry when passing through q
at unit speed on the patch, and are achieved in two orthogonal
velocity directions, respectively, unless κ1 = κ2 .2 These two
directions, which are denoted by unit vectors t1 and t2 , are

2The point is called umbilic, when κ1 = κ2 . In this case, geometric variation
is the same in every tangent direction.

Fig. 1. Deformation of a shell. The point p in the shell is along the direction
of the normal n at the point q on the middle surface. After a deformation, the
two points are displaced to p′ and q′, respectively.

referred to as the principal vectors, where the indices are chosen
so that n = t1 × t2 . These three vectors define the Darboux
frame at the point q.

The Gaussian and mean curvatures are, respectively, the de-
terminant and half the trace of the matrix F−1

I FI I

K = κ1κ2 =
LN − M 2

EG − F 2 (4)

H =
κ1 + κ2

2
=

1
2

EN − 2FM + GL

EG − F 2 . (5)

A curve on the patch is called a line of curvature, if its tangent
is in a principal direction everywhere. The patch is orthogonal,
if F = 0 everywhere. It is a principal patch, if F = M = 0
everywhere. In other words, a principal patch is parametrized
along the two lines of curvature, one in each principal direction.
On such a patch, the principal curvatures are simply κ1 = L/E
and κ2 = N/G, respectively, and the corresponding principal
vectors are t1 = σu/

√
E, and t2 = σv /

√
G. For more details

on elementary differential geometry, see [38] and [40].

IV. DISPLACEMENT FIELD ON A SHELL

Let σ(u, v) be the middle surface of a thin shell with thick-
ness h before the deformation, as shown in Fig. 1(a). The
parametrization is regular. Every point p in the shell is along
the normal direction of some point q on the middle surface, i.e.,
p = q + zn, where z is the signed distance from q to p.

The displacement δ(u, v) of q = σ(u, v) is best described in
its Darboux frame as

δ(u, v) = α(u, v)t1 + β(u, v)t2 + γ(u, v)n. (6)

We refer to the vector field δ(u, v) as the displacement field of
the shell. The new position of q after deformation is

q′ = σ′(u, v) = σ(u, v) + δ(u, v).

Meanwhile, the displacement of p has an additional term,
which is linear in the thickness z

δ(u, v) + z




ϑ(u, v)
ϕ(u, v)
χ(u, v)


 (7)

from the classical shell theory [37, p. 178]. The new position p′

of the point p may not be along the normal direction of q′, due
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to a transverse shear strain that acts on the surface through p
and parallel to the middle surface. This type of strain tends to
be much smaller than other types of strain on a shell, and it is
often neglected in the classical shell theory [30], [51] under the
following Kirchhoff’s assumption:

Straight fibers normal to the middle surface of a shell before the
deformation will, during the deformation, 1) not be elongated; and
2) remain straight and normal to the middle surface.

In this paper, we adopt the Kirchhoff’s assumption and do not
consider transverse shear.

When the deformation of a shell is small, the linear elasticity
theory is adequate. The theory makes no distinction between the
predeformation and postdeformation values of the magnitudes
and positions of the areas on which the stress acts. It assumes
small angles of rotation, which are of the same order of magni-
tude as elongations and shears. Furthermore, it neglects 1) their
squares and products; and 2) neglects them as well as elonga-
tions and shears, when compared with unity and terms that do
not involve these three types of terms [37, pp. 53, 83–84].

V. SMALL DEFORMATION OF A SHELL

Most of the literature [19], [37], [43], [51] on the linear elas-
ticity theory of shells3 has assumed orthogonal curvilinear co-
ordinates along the lines of curvature. Although in this theory,
there exists a local principal patch that surrounds every point
with unequal principal curvatures, most surfaces, except simple
ones such as planes, cylinders, spheres, etc., do not assume such
a parametrization.

The exception, to our knowledge, is [22] in which general
curvilinear coordinates are used in the study of plates and shells.
Nevertheless, the geometric intuition behind the kinematics of
deformation is lost amidst its heavy use of covariant and con-
travariant tensors to express strains and stresses. The forms of
these tensors still depend on a specific parametrization rather
than just on the shell geometry.

Section V-A first reviews some known results on deformations
and strain energy from the linear shell theory. In Section V-B,
we will transform these results to make them independent of
any specific parametrization, but make them rather dependent
on geometric invariants, such as principal curvatures and prin-
cipal vectors. In the new formulation to be derived, geometric
meaning of strains will be more clearly understood. Section V-D
will describe how to compute strains and strain energy on an
arbitrarily parametrized shell using tools from surface geometry.

A. Strains in a Principal Patch

In this and the following section, the shell’s middle surface
σ(u, v) is assumed to be a principal patch. Under a load, at a
point q on σ [see Fig. 1(b)], there exist extensional strains ε1
and ε2 , which are the relative increases in lengths along the two
principal directions t1 and t2 , respectively. They are given as

3The theory is distinguished from the membrane theory that deals with elon-
gations, but ignores shearing and bending.

Fig. 2. Rotation of the surface normal.

follows [19, p. 219]:

ε1 =
αu√
E

+
(
√

E)v√
EG

β − κ1γ (8)

ε2 =
βv√
G

+
(
√

G)u√
EG

α − κ2γ (9)

where E,F, and G are the coefficients of the middle surface’s
first fundamental form that is defined in (1), and κ1 and κ2 are
the two principal curvatures, all at q.

There is also the in-plane shear strain ω. As shown in
Fig. 1(b), t′1 and t′2 are the unit tangents from normalizing the
two partial derivatives of the displaced surface σ′, respectively.
These vectors are viewed as the “displaced locations” of the
principal vectors t1 and t2 . The angle between t′1 and t′2 is no
longer π/2, and ω is the negative change from π/2. We have
ω = ω1 + ω2 , where [19, p. 219]

ω1 =
αv√
G

− (
√

G)u√
EG

β (10)

ω2 =
βu√
E

− (
√

E)v√
EG

α. (11)

The extensional and in-plane shear strains at p, which is off
the shell’s middle surface, will also include some components
due to the rotation of the normal n. Under the assumption
of small deformation, we align t2 with t′2 and view it in their
common direction (see Fig. 2). Let φ1 denote the amount of
rotation of the normal n′ from n about the t2 axis toward t1 .
Similarly, let φ2 be the amount of rotation of the normal about
the t1 axis toward t2 . We have [19, pp. 209–213]

φ1 = − γu√
E

− ακ1 (12)

φ2 = − γv√
G

− βκ2 . (13)

It is shown that4 the extensional strains at p = q + zn are

ε̂1 = ε1 + zζ1 (14)

ε̂2 = ε2 + zζ2 (15)

4By dropping all terms of order hκ1 or hκ2 , when compared with 1.
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and the shearing strain at the point is

ω̂ = ω + z(τ1 + τ2) (16)

where the “curvature” and “torsion” terms [19, p. 219] are

ζ1 =
(φ1)u√

E
+

(
√

E)v√
EG

φ2 (17)

ζ2 =
(φ2)v√

G
+

(
√

G)u√
EG

φ1 (18)

τ1 =
(φ1)v√

G
− (

√
G)u√
EG

φ2 (19)

τ2 =
(φ2)u√

E
− (

√
E)v√
EG

φ1 . (20)

The geometric meanings of these terms will be revealed in
Section V-B after they are rewritten into parametrization-
independent forms.

Let e be the modulus of elasticity, and µ be the Poisson’s con-
stant of the shell material. We let τ = τ1 + τ2 . Under Hooke’s
law, the strain energy density is

dUε =
e

2(1 − µ2)

(
ε̂2
1 + 2µε̂1 ε̂2 + ε̂2

2 +
1 − µ

2
ω̂2

)
dV.

The strain energy is then obtained by integration of z over the
thickness interval [−h

2 , h
2 ] [37, p. 47]

Uε =
∫

V

dUε

=
e

2(1 − µ2)

∫
σ

∫ h/2

−h/2

(̂
ε2
1 + 2µε̂1 ε̂2 + ε̂2

2 +
1 − µ

2
ω̂2

)
dzds

=
e

2(1 − µ2)

∫
σ

{
h

(
ε2
1 + ε2

2 + 2µε1ε2 +
1 − µ

2
ω2

)

+
h3

12

(
ζ2
1 + ζ2

2 + 2µζ1ζ2 +
1 − µ

2
τ 2

)}√
EG dudv.

(21)

The linear term in h in the aforementioned equation is due to
extension and shear, while the cubic term is due to bending and
torsion.

B. Transformation Based on Geometric Invariants

The strains (8)–(13), (17)–(20), and the strain energy formu-
lation (21) are applicable to the middle surface that consists of
principal patches only. They need to be generalized to arbitrary
parametric surfaces to widen the application scope. An impor-
tant step in the generalization is to rewrite the strains in terms
of geometric invariants, like principal curvatures and vectors
that are independent of any specific parametrization. This is
presented shortly.

The strains are given under the assumption that the middle
surface σ(u, v) is a principal patch. Let us start with rewriting

the numerator in the first term of the extensional strain (8)

αu = lim
∆u→0

α(σ(u + ∆u, v)) − α(σ(u, v))
∆u

= lim
∆u→0

α(σ(u, v) + σu · ∆u) − α(σ(u, v))
∆u

def= σu [α]. (22)

Here, σu [α] is defined to be the directional derivative of α
with respect to σu . By the linearity of the directional-derivative
operator, we rewrite the first term in (8) as follows:

αu√
E

=
σu√
E

[α] = t1 [α]. (23)

The term t1 [α] is independent of parametrization.
To examine the second summand in (8), we first observe that

(t2)u√
E

= lim
∆u→0

t2(σ(u + ∆u, v)) − t2(σ(u, v))
∆u

1√
E

= lim
∆u→0

t2(q + σu · ∆u) − t2(q)
∆u

1√
E

= lim
∆u

√
E→0

t2(q + (σu/
√

E) · ∆u
√

E) − t2(q)
∆u

√
E

= lim
∆s→0

t2(q + t1 · ∆s) − t2(q)
∆s

def= ∇t1 t2 . (24)

The covariant derivative ∇t1 t2 measures the rate of change of
the principal vector t2 as a unit-speed surface curve that passes
through the point q in the t1 direction. Next, we make use of
the following identity:

(t2)u =
(
√

E)v√
G

t1 (25)

of which the proof is given in Proposition in Appendix A. Let
us combine (24) and (25)

(
√

E)v√
EG

t1 = ∇t1 t2 , and hence

(
√

E)v√
EG

= ∇t1 t2 · t1 . (26)

A second identity follows by symmetry

(
√

G)u√
EG

= ∇t2 t1 · t2 . (27)

Substitutions of (23) and (26) into (8) results in a formula-
tion of the extensional strain ε1 , which is independent of the
parametrization

ε1 = t1 [α] + (∇t1 t2 · t1)β − κ1γ

= t1 [α] + (∇t1 t2 · t1)β + (∇t1 n · t1)γ. (28)

The last step uses an equivalent definition of the principal

curvature: κi
def= −∇ti

n · ti .
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Fig. 3. Strain along a principal direction t1 partly due to (a) change rate of
displacement in that direction and (b) displacement in the orthogonal principal
direction t2 due to its rotation along t1 .

C. Geometry of Strains

The first term t1 [α], in (28), represents a component of the
strain due to the change rate of the displacement in the t1 di-
rection. As illustrated in Fig. 3(a), we consider a point r, which
is close to q, on some surface curve that passes through q at
unit speed in the t1 direction. The two points are displaced to r′

and q′ after the deformation, respectively. Let q′
1 and r′

1 be the
respective projections of q′ and r′ onto t1 (before the deforma-
tion). The relative change in length, from qr’s projection onto
t1 to q′

1r
′
1 , is then t1 [α], as r approaches q along the curve.

To understand the second term in (28), from q to r, the two
principal vectors have undergone some rotations. This is shown
in Fig. 3(b), where r is now placed on the t1 axis, since it is
very close to q. The two points q′

2 and r′
2 are the projections of

the displaced locations q′ and r′ onto the second principal axes
at q and r, respectively. The cosine of the angle θ over ‖r − q‖
is the projection of the covariant derivative ∇t1 t2 onto t1 . Let
w be the projection of r′

2 onto t1 . The displacement β along t2
also contributes a component

‖w − r‖ = ‖r′
2 − r‖ cos θ = β cos θ

which is then normalized over ‖r − q‖, to the strain ε1 . This
component is the second term in (28).

Similarly, the third term in (28) is the part of the normal
displacement γ convolved onto t1 due to the variation of the
normal n along t1 .

Similarly, parametrization-independent formulations can be
derived for other strain components (9)–(13) and (17)–(20)

ε2 = t2 [β] + (∇t2 t1 · t2)α + (∇t2 n · t2)γ (29)

ω1 = t2 [α] − (∇t2 t1 · t2)β (30)

Fig. 4. Rotation of one principal vector toward another under deformation.

ω2 = t1 [β] − (∇t1 t2 · t1)α (31)

φ1 = −t1 [γ] + (∇t1 n · t1)α (32)

φ2 = −t2 [γ] + (∇t2 n · t2)β (33)

ζ1 = t1 [φ1 ] + (∇t1 t2 · t1)φ2 (34)

ζ2 = t2 [φ2 ] + (∇t2 t1 · t2)φ1 (35)

τ1 = t2 [φ1 ] − (∇t2 t1 · t2)φ2 . (36)

τ2 = t1 [φ2 ] − (∇t1 t2 · t1)φ1 . (37)

The term ε2 in (29) is interpreted similarly as ε1 in (28). Now,
we offer a geometric explanation of ω1 in (30). Fig. 4 shows
that every neighborhood point along the principal vector t2 is
displaced by an amount in the t1 direction equal to the value
of the function α [see (6)] at that point. After the deformation,
these neighborhood points, at their new locations, project (ap-
proximately) onto a vector t′2 in the original tangent plane. This
new vector can be viewed as a rotation of t2 during the defor-
mation. Since these points often do not have the same α value,
t′2 is unlikely orthogonal to t1 . The change rate t2 [α] thus gives
the rotation of t2 toward t1 after the deformation. The second
term in (30) represents the amount of rotation from t2 toward
t1 that ought to happen due to the change in surface geometry
at q and the varying elongation β (both along t2). Thus, this
amount needs to be subtracted from the first term, thus yielding
exactly ω1 given by (30). Similarly, ω2 , given by (31), is the
amount of rotation from t1 toward t2 . Together, ω = ω1 + ω2
is the shearing in the tangent plane.

By the same reasoning, the negation of φ1 , given in (32), is
understood as the rotation from t1 toward the normal n after
the deformation. Under Kirchhoff’s assumption, no shearing
happens in the normal t1–n plane. Therefore, the rotation from
n toward t1 must be φ1 to ensure that the two vectors remain
orthogonal to each other after the deformation. In the same way,
φ2 represents the rotation of n toward t2 .

The geometric meanings of ζ1 , ζ2 , τ1 , and τ2 in (34)–(37)
can also be explained, although in a more complicated way.
Let us recall from surface geometry that the derivative of a
rotation of the normal n about some tangent vector is the normal
curvature in the orthogonal tangent direction. The term ζ1 (ζ2 ,
respectively), referred to as change in curvature, accounts for the
change rate of the angle φ1 (φ2 , respectively) along the principal
direction t1 (t2 , respectively), plus the effect of the angle φ2 (φ1 ,
respectively) due to the change of t2 (t1 , respectively) along t1
(t2 , respectively). Together, ζ1 and ζ2 measure the bending of the
surfaces. The sum τ = τ1 + τ2 , referred to as change in torsion,
measures the twisting of the surface due to the deformation.

In the strain-energy integral (21), the area element√
EG dudv now needs to be replaced by

√
EG − F 2 dudv to
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be applied to a regular patch on which the two partial derivatives
are not necessarily orthogonal, i.e., F �= 0. Hence, we have

Uε =
e

2(1 − µ2)

∫
σ

{
h

(
ε2
1 + ε2

2 + 2µε1ε2 +
1 − µ

2
ω2

)

+
h3

12

(
ζ2
1 + ζ2

2 + 2µζ1ζ2 +
1−µ

2
τ 2

)}√
EG−F 2 dudv.

(38)

with all strains given in (28)–(37).

D. Strain Computation on a General Parametric Shell

With strains in terms of geometric invariants, we can compute
them on an arbitrary parametric shell using tools from surface
geometry. In this section, the middle surface σ(u, v) is not nec-
essarily parametrized along the lines of curvature. To compute
the strains according to (28)–(37), we need to be able to evaluate
the directional derivatives of the principal curvatures κ1 and κ2
and the displacements α, β, and γ with respect to the principal
vectors t1 and t2 , as well as the covariant derivatives ∇ti

tj ,
i, j = 1, 2 and i �= j. All these derivatives should be expressed
in terms of the middle-surface parameters u and v.

1) Differentiation of Principal Curvatures: Let us express
the principal curvatures in terms of the Gaussian curvature K
and the mean curvature H (by choosing κ1 ≥ κ2)

κ1 = H +
√

H2 − K, and κ2 = H −
√

H2 − K. (39)

To obtain the partial derivatives of κ1 and κ2 with respect
to u and v from the previous equations, we first differentiate
the fundamental-form coefficients E,F,G,L,M, and N that
are defined in (1) and (2). The partial derivatives of K and
H are then computed using (4) and (5).

2) Covariant Derivatives of Principal Vectors: The princi-
pal vectors at a point q are linear combinations of σu and σv ,
which span the tangent plane

t1 = ξ1σu + η1σv (40)

t2 = ξ2σu + η2σv . (41)

Here, (ξ1 , η1)T and (ξ2 , η2)T are the eigenvectors of F−1
I FI I

[cf., (3)] corresponding to κ1 and κ2 , respectively [40, p. 133].
The four coefficients, i.e., ξi, ηi , are derived in Appendix B.

Using (40) and (41), all the derivatives with respect to the
principal vectors t1 , t2 in (28)–(37), which are repetitive or not,
can be obtained. For instance, from (22)

t1 [α] = (ξ1σu + η1σv )[α]

= ξ1 · σu [α] + η1 · σv [α]

= ξ1αu + η1αv . (42)

We also have, for i, j = 1, 2

∇ti
tj = ∇ξi σu +ηi σv

tj

= ξi∇σu
tj + ηi∇σv

tj

= ξi∇σu
(ξjσu + ηjσv ) + ηi∇σv

(ξjσu + ηjσv ). (43)

The first summand in (43) is computed as follows:

ξi∇σu
(ξjσu + ηjσv )

= ξi(σu [ξj ] · σu + ξj∇σu
σu + σu [ηj ] · σv + ηj∇σu

σv )

= ξi

(
∂ξj

∂u
σu + ξjσuu +

∂ηj

∂u
σv + ηjσuv

)
.

Here, the first step uses a fact about covariant derivatives:
∇a(fb) = a[f ] · b + f · ∇ab. The second step uses (22);
namely, the directional derivatives of a scalar along σu and
σv are just its partial derivatives with respect to u and v, re-
spectively. The same rule applies to the covariant derivatives
of a vector with respect to σu and σv . Similarly, we express
the second summand in (43) in terms of partial derivatives with
respect to u and v. By merging the resulting terms from the two
summands, we have

∇ti
tj =

(
ξi

∂ξj

∂u
+ ηi

∂ξj

∂v

)
σu +

(
ξi

∂ηj

∂u
+ ηi

∂ηj

∂v

)
σv

+ ξiξjσuu + (ξiηj + ξj ηi)σuv + ηiηjσvv . (44)

VI. LARGE DEFORMATION OF A SHELL

When a shell undergoes a large deformation, the linear elas-
ticity theory, as presented in Section IV, is no longer adequate.
This is illustrated later using the displacement caused by a rota-
tion about the z-axis through an angle θ

 x′

y′

z′


 =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1





 x

y
z


 −


 x

y
z


 .

No deformation happens, hence no strain occurs along the
x-axis, as confirmed by the nonlinear theory [36, p. 13]

εx =
∂x′

∂x
+

1
2

[(
∂x′

∂x

)2

+
(

∂y′

∂x

)2

+
(

∂z′

∂x

)2
]

= 0.

However, the linear elasticity theory yields a strain

εx =
∂x′

∂x
= cos θ − 1

which is negligible only when the rotation angle θ is small.
As earlier stated, σ(u, v) is the middle surface of a thin shell

in a regular parametrization. We look at a point q = σ(u, v) in
the middle surface with the displacement field (6) in the Darboux
frame, which is defined by the two principal vectors t1 and t2 ,
and the normal n at the point. A point p = q + zn in the shell,
which projects to q, has the displacement that is given as (7).

Under Kirchhoff’s assumption, at q, the relative elongation
ε33 of a fiber along the normal n, and shears ε13 and ε23 in the
t1–n and t2–n planes, respectively, are zero; namely,

ε33 = ε13 = ε23 = 0. (45)

In the rest of section, we present the nonlinear shell theory
[36, pp. 186–193], which transforms related terms into expres-
sions in terms of geometric invariants. First, we have the relative
elongations of infinitesimal line elements starting at q, which,
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before the deformation, were parallel to the two principal direc-
tions t1 and t2 , respectively

ε11 = ε1 +
1
2
(ε2

1 + ω2
1 + φ2

1) (46)

ε22 = ε2 +
1
2
(ε2

2 + ω2
2 + φ2

2) (47)

as well as the shear in the tangent plane spanned by t1 and t2

ε12 = ω1 + ω2 + ε1ω2 + ε2ω1 + φ1φ2 . (48)

In (46)–(48), εi , ωi , and φi , i = 1, 2, are given in (28)–(33). Note
the appearance of nonlinear terms in (46)–(48). The strains εij ,
i, j = 1, 2, 3, which are symmetric in the indices, together con-
stitute the Green–Lagrange strain tensor of a shell [41, pp. 201–
202].

The rate of displacement, in (7), along the normal n at q is
determined as follows:

ϑ = φ1(1 + ε2) − φ2ω1 (49)

ϕ = φ2(1 + ε1) − φ1ω2 (50)

χ = ε1 + ε2 + ε1ε2 − ω1ω2 . (51)

The relative elongations and shear at p (off the middle surface)
are affected by the second-order changes in geometry at its
projection q in the middle surface. They are characterized by
six “curvature” terms, which are rewritten in terms of t1 , t2 , and
n, in the same way, as in Section V-B

κ11 = t1 [ϑ] + (∇t1 t2 · t1)ϕ + (∇t1 n · t1)χ

κ22 = t2 [ϕ] + (∇t2 t1 · t2)ϑ + (∇t2 n · t2)χ

κ12 = t1 [ϕ] − (∇t1 t2 · t1)ϑ

κ21 = t2 [ϑ] − (∇t2 t1 · t2)ϕ

κ13 = t1 [χ] − (∇t1 n · t1)ϑ

κ23 = t2 [χ] − (∇t2 n · t2)ϕ.

Among them, κ11 and κ22 describe the changes in curvature
along t1 and t2 , respectively. κ12 and κ21 together describe the
twist of the middle surface in the tangent plane. κ13 and κ23
describe the twists out of the tangent plane.

The six terms κij form the following three parameters that to-
gether characterize the variations of the curvatures of the middle
surface along the principal directions:

ζ11 = (1 + ε1)κ11 + ω1κ12 − φ1κ13 (52)

ζ22 = (1 + ε2)κ22 + ω2κ21 − φ2κ23 (53)

ζ12 = (1 + ε1)κ21 + (1 + ε2)κ12

+ ω2κ11 + ω1κ22 − φ2κ13 − φ1κ23 . (54)

Finally, we have the relative tangential elongations and shear
at p in terms of those at q in the middle surface

ε̂11 = ε11 + zζ11 (55)

ε̂22 = ε22 + zζ22 (56)

ε̂12 = ε12 + zζ12 . (57)

Their derivation neglects terms in z2 , as well as products of z
with the principal curvatures −∇t1 n · t1 and −∇t2 n · t2 .

In the case of a small deformation, we neglect elongations
and shears, as compared with unity, for instance, 1 + ε1 ≈ 1 in
(57), as well as their products (also separately with curvature
terms), such as ε1ω2 in (48). Equations (55)–(57) then reduce to

ε̂11 = ε1 + zκ11

ε̂22 = ε2 + zκ22

ε̂12 = ω + z(κ12 + κ21)

where ω = ω1 + ω2 . These equations are essentially the same,
as (14)–(16), in the linear elasticity theory of shells, with κii

corresponding to ζi , κ12 to τ1 , and κ21 to τ2 .
The strain energy of the shell has a similar form, as (38), in

the linear case

Uε =
e

2(1 − µ2)

∫
σ

{
h

(
ε2

11 + ε2
22 + 2µε11ε22 +

1 − µ

2
ε2

12

)

+
h3

12

(
ζ2
11 + ζ2

22 + 2µζ11ζ22 +
1 − µ

2
ζ2
12

)}

×
√

EG − F 2 dudv. (58)

VII. ENERGY MINIMIZATION OVER A SUBDIVISION-BASED

DISPLACEMENT FIELD

The displacement field δ(u, v) = (α, β, γ)T of the middle
surface of a shell describes its deformation completely. At the
equilibrium state, the shell has minimum total potential en-
ergy [15, p. 260], which equals its strain energy (38) or (58)
minus the work of applied loads. Applying calculus of vari-
ations, δ(u, v) must satisfy Euler’s (differential) equations. A
variational method [57] usually approximates δ(u, v) as a lin-
ear combination of some basis functions, whose coefficients are
determined via potential-energy minimization.

Since the curvature terms ζ1 , ζ2 , and τ , or ζ11 , ζ22 , and ζ12
contain second-order derivatives of the displacement, to ensure
finite-bending energy, the basis functions that interpolate δ(u, v)
have to be square integrable. Loop’s subdivision scheme meets
this requirement [29]. Recently, the shape functions of subdivi-
sion surfaces have been used as finite-element basis functions
in simulation of thin-shell deformations [9].

A subdivision surface, piecewise polynomial, is controlled
by a triangular mesh with m vertices positioned at x1 , . . . ,xm

in the 3-D space. Every surface element corresponds to a tri-
angle on the mesh, and it is determined by the locations of not
only its three vertices, but also by the nine vertices in the im-
mediate neighborhood. In Fig. 5(a), the 12 vertices that affect
the shaded element are numbered with locations xis, respec-
tively. A point in the element is

∑12
i=1 bi(s, t)xi , where s and

t are barycentric coordinates that range over a unit triangle
[see Fig. 5(b)]: {(s, t)|s ∈ [0, 1], t ∈ [0, 1 − s]}, and bi(s, t) are
some quartic polynomials, which are called as the box-spline
basis functions [46].

The advantage of a subdivision surface is that it can easily
represent an object of arbitrary topology. The shape of a shell
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Fig. 5. (a) Regular patch with 12 control points defining a surface element
that is described in (b) barycentric coordinates s and t.

after some deformation usually bears topological similarity to
that before the deformation. This suggests us to approximate the
deformed middle surface as a subdivision surface σ′(u, v) over
a triangular mesh that discretizes the original surface σ(u, v).5

The vertices xi of σ′(u, v) are at the positions x
(0)
i = σ(ui, vi)

before the deformation; they are later displaced by δi = xi −
x

(0)
i , respectively.
Every surface element S of σ′ is parametrized with the two

barycentric coordinates s and t. To compute the strain energy Uε

in (38) or (58), we need to set up the correspondence between
(s, t) and the original parameters (u, v). The triangular mesh of
σ′ induces a subdivision of the domain of the original surface,
whose vertices (ui, vi) are the parameter values of the vertices
of xi of σ′. Let σ′(uk , vk ) be the 12 neighboring vertices of
σ′(u, v). Then, in this domain subdivision

(u, v) =
12∑

k=1

bk (s, t)(uk , vk ). (59)

The corresponding point on the original surface is

σ(u, v) = σ

(
12∑

i=1

bi(s, t)(ui, vi)

)

≈
12∑

i=1

bi(s, t)σ(ui, vi) =
12∑

i=1

bi(s, t)x
(0)
i . (60)

Here, in the second step, the function σ(u, v) is locally approx-
imated as linear over the small domain region corresponding
to S.

The displacement of a point on the middle surface in its
Darboux frame is, as given by (6)

(α, β, γ) = (σ′(u, v) − σ(u, v))T (t1 , t2 ,n). (61)

Obtaining the Jacobian with entries ∂s/∂u, ∂s/∂v, ∂t/∂u, and
∂t/∂v from (60), the strain energy of the shell can be integrated
over each subdivision element of σ′. For accuracy, all needed
geometric invariants are nonetheless computed under the origi-
nal parametrization σ.

If the middle surface of a shell is not parametric, but either
free-form or described by an implicit equation, the subdivision

5Subdividing the surface domain to approximate the displacement field di-
rectly does not generate a good result, as we have found out via simulation with
several surfaces, because the topology of the displacement field is unknown
beforehand.

surface σ′(u, v) for the deformed shape is then subtended by a
triangular mesh over the shell’s 3-D range data before the defor-
mation. Essentially, the original middle surface is approximated
by σ′, with the vertices at their predeformation positions x

(0)
i .

Whether the shell is parametric or not, let m be the number
of vertices of the subdivision surface σ′. The deformed shape is
characterized by the column vector ∆ = (δT

1 , . . . , δT
m )T , which

consists of 3m coordinate variables. After the deformation, the
vertices are at xi = x

(0)
i + δi , for 1 ≤ i ≤ m.

A. Stiffness Matrix

In the case of a small deformation, the system is linear, fol-
lowing the linear elasticity theory, and it can be easily solved.
We can rewrite the strain energy Uε in (38) into a matrix form

Uε = ∆T Ks∆ (62)

where Ks is the (symmetric) stiffness matrix, which is con-
structed as follows. Let us assume that there are Ne elements
in the triangular control mesh of σ′. Let Sk denote the kth
element. Let us number the neighboring vertices locally so
that they are at x1 ,x2 , . . . ,x12 , respectively. The displace-
ment field (α, β, γ)T of Sk is decided by δT

1 , . . . , δT
12 , where

δi = (δ3(i−1)+1 , δ3(i−1)+2 , δ3(i−1)+3)T , for 1 ≤ i ≤ 12. Each
of α, β, and γ is a linear combination of these 36 variables.

Next, we illustrate over the integral summand that involves
ε2
1 in (38). By its definition (28), ε1 is still a linear combi-

nation of these 36 variables, say, ε1 =
∑36

l=1 Nlδl . Let t1 =
(t1x , t1y , t1z )T , t2 = (t2x , t2y , t2z )T , and n = (nx, ny , nz )T .
The forms of Nls are from (28), for 1 ≤ i ≤ 12, 1 ≤ j ≤ 3

N3(i−1)+j = t1 [bit1q ] + (∇t1 t2 · t1)bit2q − κ1binq (63)

where q is x, y, or z when j = 1, 2, 3, respectively, and bis are
the subdivision basis functions. The directional and covariant
derivatives in (63) are computed, according to (42) and (44),
respectively. From (38), the element stiffness matrix Kε2

1 is a
36 × 36 matrix (symmetric) with entries

K
ε2

1
lp =

e

2(1 − µ2)

∫
Sk

hNlNpdA. (64)

Similarly, we construct Kε2
2 , Kε1 ε2 , Kω 2

, Kζ 2
1 , Kζ 2

2 , Kζ1 ζ2 ,
and Kτ 2

. The stiffness matrix for the element is

KSk
= Kε2

1 + Kε2
2 + Kε1 ε2 + Kω 2

+ Kζ 2
1 + Kζ 2

2 + Kζ1 ζ2 + Kτ 2
. (65)

Now, we need to assemble KSk
into Ks (3m × 3m matrix).

The local indices of the vertices in KSk
are converted to the

global indices. After adding rows and columns of zeros for all
vertices that are not appearing in Sk , KSk

is expanded to a new
3m × 3m matrix K ′

Sk
. The global stiffness matrix sums up all

element contributions

Ks =
Ne∑
k=1

K ′
Sk

. (66)
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Fig. 6. Clamped boundary condition δ1 = δ2 = δ3 = δ4 = 0. Simply sup-
ported boundary condition δ2 = δ3 = 0, δ4 = −δ1 .

B. Minimization of Potential Energy

Let q(u, v) denote the load field, which does work

Uq =
∫

σ

q(u, v) · δ(u, v) dA = ∆T Q (67)

where Q is the vector of all nodal forces. The total potential
energy of a shell is

U = Uε − Uq = ∆T Ks∆ − ∆T Q (68)

where the strain energy Uε is given in (62).
To minimize U , a system of equations in ∆ can be derived

by differentiating (68), with respect to the vector, and setting all
partial derivatives to zero

2Ks∆ = Q. (69)

The linear system (69) can be easily solved using Gaussian
elimination or a sparse matrix method.

A large deformation is governed by the nonlinear elasticity
theory. The strain energy Uε in (58) no longer takes the quadratic
form ∆T Ks∆, but rather takes a quartic form. Minimization
of the total potential energy Uε − Uq is done iteratively. In the
case of point contacts, a conical initial displacement field is
placed around each contact point. Minimization over the ra-
dius of the deformed region sets the initial value of ∆. The
conjugate gradient method is employed to improve on ∆, with
the gradients evaluated numerically. Interpolation in the local
neighborhood improves the computational efficiency. On a Dell
Optiplex GX745 computer with 2.66 GHz CPU and 3.00 GB
of RAM, it usually takes several minutes to obtain the solution,
compared with several seconds in the linear case.

C. Boundary Conditions

Boundary conditions are handled in the same way, as de-
scribed in [9]—the boundary displacements are determined only
by vertices, at most, one edge away, including added artificial
vertices just outside the domain. This is because of the local sup-
port within the subdivision scheme in Fig. 5. For every boundary
edge, one artificial vertex is introduced. As shown in Fig. 6, ver-
tex 4 is artificial and positioned at σ4 = σ2 + σ3 − σ1 , where
σ1 , σ2 , and σ3 are the positions of the vertices 1, 2, and 3,
respectively, which form a triangle. Vertex 4 affects the geom-
etry of the surface element that corresponds to a triangle. Un-
der the clamped condition (displacements and rotations fixed),
the displacements of the vertices on the boundary and their

Fig. 7. Plate under gravitational load and clamped at the boundary.

Fig. 8. Convergence of the maximum displacement for the clamped plate in
Fig. 7. The number of degrees of freedom equals three times the number of
vertices.

adjacent vertices, inside or outside, must be zero. Under the
simply supported condition (displacements fixed and rotations
free), the displacements of the vertices on the boundary must be
zero, while those of the adjacent vertices, inside and outside the
boundary, must be opposite to each other.

VIII. SIMULATION

The metric system is used in our simulation and experiment.
For instance, the unit of Young’s modulus is Pascal, while the
unit of length is meter. First, simulation tests under linear elas-
ticity are conducted on two benchmark problems, and the results
are compared with their analytical solutions.6 These two prob-
lems in mechanics were designed to provide strict tests to deal
with complex stress states.

A. Square Plate

The first benchmark problem involves a square plate under
unit load of gravity (p = 1.0). Here, the effect of bending dom-
inates those of elongation and shearing. As shown in Fig. 7,
the plate’s boundary is clamped during the deformation. Values
of the plate’s length L, thickness h, Young’s modulus E, and
Poisson’s ratio µ are listed on the right side of Fig. 7.

The maximum displacement at the center of the plate is
umax ≈ 0.1376, according to the analytical solution [51, p. 202],
which is in the form of a trigonometric series. Fig. 8 plots the
computed maximum displacements, which is normalized over
umax , against the numbers of degrees of freedom. Note that

6Closed-form solutions rarely exist for general thin-shell problems.
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Fig. 9. Calculated deformed shape (deflection scaled) for the clamped plate
in Fig. 7. Artificial vertices are marked red.

every vertex in the control mesh has three degrees of freedom.
The curve plot approaches the analytical value.7

The geometry, load, and boundary condition are all symmetric
in the example. The Young’s modulus and the load represent a
scaling factor only and do not affect the overall deformed shape.
In Fig. 9, the load p is scaled 200 times in order to illustrate the
global deformed shape. The added artificial vertices are drawn
in red.

B. Comparison With Commercial Packages

Shell elements in commercial packages usually fall into two
categories: degenerated 3-D solid elements and elements based
on thick-shell theories, especially the Reissner–Mindlin theory
[27].

A shell may be approximated as a collection of degener-
ated 3-D solid elements, which are simple to formulate because
their strains are described in Cartesian coordinates. Meanwhile,
analysis of general curved shells uses curvilinear coordinates.
Although this increases the complexity of derivation, the use of
curvilinear coordinates provides increased accuracy, and is thus
more preferable.

The Reissner–Mindlin theory allows to shear throughout the
thickness of a shell, and best models thick shells [26]. It requires
C0 interpolation only, which simplify the underlying basis func-
tions, and is thus easy to implement. However, it often does not
perform well in thin-shell analysis because of shear and mem-
brane locking.

We will compare our method with the use of shell elements
S3 and T6. The element S3 is from the commercial software
ABAQUS and is based on the thick shell theory. It served as a
general-purpose shell element in ABAQUS, and is widely used
in industry for both thin and thick shells. The element T6 is a
degenerated 3-D solid element from the SHELL93 library of
another commercial package ANSYS.

Our performance criterion is accuracy in terms of the total
number of degrees of freedom, which is standard in the FEM
field.8 Here, we use a well-known benchmark problem: a cylin-
der with rigid-end diaphragms subjected to opposing normal
point loads through its center (see Fig. 10). The radius of the
cylinder is R = 300.0. This problem tests the ability to model
deformation caused by bending and membrane stresses. The an-
alytical solution yields a displacement of 1.8248 × 10−5 under

7The analytical solution considers bending only, whereas our formulation
also incorporates in-plane extension, shearing and torsion, and is thus more
realistic.

8Note that a more rigorous criterion of performance would be CPU time;
however, this is quite difficult to establish because the various shell elements
are run on different computer systems.

Fig. 10. Pinched cylinder.

Fig. 11. Convergence of the displacement under load for the pinched cylinder
in Fig. 10.

Fig. 12. Rates of convergence.

the load of F = 1 [41, p. 217]. The results of using elements S3
and T6 are taken from [27].

The convergence of our method to the analytical solution is
shown in Fig. 11, along with those of ABAQUS and ANSYS.
The vertical axis represents the deflection at the point of contact
normalized over the analytical displacement value. The normal-
ized maximum displacement converges to 1 as the number of
degrees of freedom increases, which means that the solutions
converge to the analytical value.

To compare the rates of convergence of the three methods, Let
n denote the number of degrees of freedom in a finite-element
mesh, and let r denote the relative error. The relationship be-
tween r and n is, perhaps, best illustrated by plotting log(r)
against log(n). If r = np , then, log(r) = p log(n); therefore,
the relationship between log(r) and log(n) is linear with the
slope p. Therefore, the rate of convergence may be conveniently
measured by the slope p. As shown in Fig. 12, this slope of our
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Fig. 13. Deformations of a monkey saddle. The maximum displacement under
point load is 0.019 m.

Fig. 14. Experimental setup with a tennis ball.

method is approximately−2, which means that the relative error
decays roughly at the rate of 1/n2 . In other words, the error r
decreases by a factor of 4 with every doubling of the number of
degrees of freedom n. In comparison, the relative errors of both
S3 and T6 decay roughly at the rate of 1/n.

The convergence rate of our method is of an order of mag-
nitude higher than those of ABAQUS and ANSYS.9 This is
because the derivation of our method is based on an arbitrary
shell parameterization, which is exact, and thus results in higher
accuracy in implementation.

C. Algebraic Surface

Simulation test under linear elasticity is also conducted on a
monkey saddle. It is worthy to note that classical shell theory
does not apply directly to the shape that does not have a known
parametrization along the lines of curvature. The boundary con-
dition requires that its edge is clamped during the deformation.
The result generated by our method is shown in Fig. 13. General
mathematical surfaces, which are not easily modeled using the
classical theory, are well in the application range of our method.

IX. EXPERIMENT

The experimental setup, as shown in Fig. 14, includes an
Adept Cobra 600 manipulator, a three-fingered BarrettHand,

9Although both S3 and T6 converge monotonically to the reference solution,
as reported in [27], T6 does so more slowly due to severe membrane locking.

and a NextEngine’s desktop 3-D scanner with accuracy of
0.127 mm. Every finger of the BarrettHand has a strain gauge
sensor that measures contact force. To model point contact,10 a
pin is mounted on each of the two grasping fingers. A triangu-
lar mesh model of a deformed surface, due to finger contact, is
generated by the scanner. We measure the modeling accuracy
by matching the deformed surface from computation against the
corresponding mesh model and averaging the distances from the
mesh vertices to the deformed surface.11

A. Tennis Ball—Linear Versus Nonlinear Elasticities

For comparison, we have conducted an experiment on a tennis
ball that was grasped at antipodal positions by the BarrettHand
(see Fig. 14). The rubber ball has an outer diameter of 65.0 mm
and thickness of 2.5 mm. The Young’s modulus of the rubber is
approximated as 1 MPa, and its Poisson’s ratio is approximated
as 0.5. Two subdivision-based displacement fields, one for each
finger contact, are used. Each field is defined over a 45 mm ×
45 mm patch, which is large enough to describe the deformed
area based on our observation.

The results are given in Table I. Each row corresponds to one
instance of deformation. The first column in the table lists the
force exerted by each finger. The second column that consist
of two subcolumns lists the deformed shapes produced by the
scanner. The third and fourth columns present the corresponding
deformations that are computed according to the nonlinear and
linear elasticity theories, respectively.

From Table I, it is shown that the nonlinear modeling results
have smaller errors than the linear modeling results in three out
of four grasp instances, all corresponding to large deformations.
In the first instance, the two simulation results have comparable
errors, which suggests that the deformation is within the range
of linear elasticity. Starting from the second instance, the two
methods generate shapes that are visibly different from each
other. In the second instance, the shape that was generated by the
nonlinear method has an obvious dent, which was comparable
with the one of the real shape shown to the left, whereas the
shape by the linear method, shown to the right, hardly shows
any dent. We can see that the larger the force is, the bigger is the
error of linear deformation. The error of nonlinear deformation
does not increase with the force.

Grasping causes deformations in the regions around the con-
tact, while the rest of the surface hardly deforms. Fig. 15 shows
the deformed regions, under the finger force of 21.48 N, super-
posed onto the scanned undeformed model of the tennis ball.
Fig. 15 corresponds to the fourth instance in Table I. The red
curves, one at the top and the other at the bottom, mark the
borders of these deformed regions. The measured maximum
displacement of 10.27 mm is achieved at two marked points.
Due to symmetry, we only display the top-deformed area. We

10Assumed between an object and a BarrettHand finger in this paper.
11We select a small underformed area on the computed surface by observation.

Pick a vertex from the area, then place it at a vertex on the scanned mesh model.
Align their normals, and rotate the small area to find the best match. Iterating
over all vertices of the scanned mesh model will register the computed shape,
after deformation onto the scanned shape.
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TABLE 1
COMPARISONS BETWEEN LINEAR AND NONLINEAR DEFORMATIONS ON A TENNIS BALL

Fig. 15. Deformed tennis ball under grasping. The points in contact with the
fingers have maximum displacements of 10.27 mm.

can see that the two antipodal contact points move closer under
the force exerted by the two fingers. The scanned deformations
on the tennis ball and the nonlinear results are within 7% of each
other, from the fourth instance in Table I.

B. Rubber Duck—Free-Form Object

The surface of a real object usually has two varying princi-
pal curvatures. To demonstrate the ability to model free-form
objects, we conduct an experiment on a rubber duck toy. The
rubber has thickness of 2.0 mm. Its Young’s modulus is ap-
proximated as 1 MPa, and Poisson’s ratio is approximated as
0.5.

Fig. 16 displays the rear and the front views of the deformed
rubber duck under an antipodal grasp by the BarrettHand. The
average modeling error is 0.58 mm, which is within 7.4% of the
scanned maximum displacement 8.56 mm.

Fig. 16. Deformed rubber duck under an antipodal grasp with force of 19.22 N
exerted by each finger. Two images show deformations from (left) rear view and
(right) front view with maximum displacements (marked by dark points) of 8.56
and 6.73 mm, respectively.

X. DISCUSSION AND FUTURE WORK

This paper investigates deformable modeling of general
shell-like objects. The first objective is to describe the linear
and nonlinear shell theories, independent of a shell’s middle-
surface parametrization, thus making them applicable to arbi-
trary parametric shells, and thus to free-form shells that are well-
approximated by spline or subdivision surfaces.12 The second
objective is to empirically compare our method with existing
commercial software packages, which establish a convergence
rate of an order of magnitude higher. The third objective is to
experimentally compare the linear and nonlinear elasticity the-
ories in the context of a deformable object that interacts with a
robot hand, thus confirming that the nonlinear theory is more
appropriate, given large deformations are often generated by the
action of grasping.

12The parametric independent formulation of strains also makes it possible
to treat shells described by implicit equations, although they are not common in
practice.
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Deformable modeling of shell-like and other objects prepares
for strategies to grasp them, as already argued in Section I. Other
application areas include dexterous manipulation, haptics, and
computer graphics.

1) To dexterously manipulate a deformable object, contact
force needs to be controlled based on its dynamically up-
dated geometry under deformation.

2) In haptics, sensation from interacting with a deformable
object is directly affected by the varying size and shape of
the surface area being “touched.” Both finger-movement
planning and force control (admittance or impedance) will
rely on real-time updates of the local shape of contact
and the global shape of the object, as well as the force
distribution over the contact area.

3) Our modeling method, with experimental validation and
the use of subdivision surfaces, is based on the physical
theory of elasticity. It could potentially influence computer
graphics to achieve higher realism, especially on accurate
computation of strain energy and deformation under ap-
plied force.

It is worth mentioning that our invariant-based formulation is
mathematically equivalent to the tensor-based one in [22]. How-
ever, this study provides much more clear geometric meanings
to shell strains, which are buried in the latter formulation due to
its complicated symbolism of tensor calculus.

In nonlinear modeling, an evolutionary algorithm rarely
works due to its high-dimensional search space. The conjugate
gradient method improves the computational efficiency with
a good initial guess obtained by interpolation over the local
neighborhood.

Compared with commercial packages, our method achieves
a higher convergence rate. Faster convergence rate implies that
a smaller number of mesh nodes are needed, which in turn
results in faster running time. The invariant-based formula-
tion of thin-shell strains increase accuracy and works with any
parametrization. In contrast, commercial packages either ap-
proximate strains in Cartesian coordinates, or use thick-shell
theory that could easily lead to shear and membrane locking
when applied to thin shells.

There are two sources of errors in the simulation. The first
is due to the discrepancy between the original surface σ(u, v)
and its “deformed” shape σ′(u, v) as a subdivision surface un-
der no deformation. This is because subdivision surfaces cannot
represent some curved shapes exactly. The second source of
error comes from modeling the deformation of the subdivision
surface, a process that simplifies a variational problem, of find-
ing a shape function that satisfies Euler’s equation, to that of
determining a finite number of degrees of freedom.

In our experiment, several factors have affected the modeling
accuracy: occlusion to the scanner, the scanner accuracy, and er-
rors in the force readings (due to drifting of the zero points of the
BarrettHand’s strain gauge sensors). In the tennis-ball experi-
ment, the air pressure inside the ball also affects its deformation,
but is not modeled.

In a real situation, as the object deforms, the surface region
in contact with a robot finger usually grows larger and the load
distribution changes. Modeling is expected to improve by con-

sidering area contacts and distributed loads. Installation of tac-
tile array sensors on the BarrettHand can dynamically estimate
contact regions on the fingertips.

We will also consider solid objects that are more common in
a robot task than shell-like objects. One plan is to develop an
interactive environment that can model deformations of shell-
like and solid objects as the shape changes. Such an interface
will facilitate future analysis and synthesis of grasp strategies
for these types of objects.

For grasp analysis and synthesis, we will begin with two-
fingered squeeze grasps of deformable objects. We intend to
characterize the evolution of contact-friction cones, design
grasp-synthesis algorithms under the energy principles, exam-
ine the roles of elasticity constants, and look into issues such as
grasp stability and slip detection.

APPENDIX A

Proposition 1: The following equations hold for partial
derivatives of the principal vectors t1 and t2 on a principal
patch σ(u, v):

(t1)v =
(
√

G)u√
E

t2 (70)

(t2)u =
(
√

E)v√
G

t1 . (71)

Proof: Due to symmetry, we only need to prove one equa-
tion, say (71). Let us express the derivative (t2)u in the
Darboux frame, which is defined by t1 , t2 , and n. Differen-
tiating the equation t2 · t2 = 1, with respect to u, immediately
yields (t2)u · t2 = 0. Next, we differentiate t2 · n = 0 with re-
spect to u

(t2)u · n + t2 · nu = 0.

Here, nu is the derivative of n along the principal direction
t1 = σu/‖σu‖, and hence must be a multiple of t1 .13 Therefore,
the previous equation implies (t2)u · n = 0.

Thus, (t2)u has no component along t2 or n. We only need to
determine its projection onto t1 . First, differentiate σu · σv = 0
with respect to u, to obtain

σuu · σv = −σu · σuv . (72)

Next, we differentiate t2 · t1 = 0 with respect to u

(t2)u · t1 = −t2(t1)u = −t2

(
σu√
E

)
u

= −t2

(
σuu√

E
+

( 1√
E

)
u
σu

)

= −t2
σuu√

E
= −σv · σuu√

EG

=
1√
G

σu · σuv√
E

by (72)

=
(
√

E)v√
G

, since E = σu · σu . �

13One can show that nu = −Eκ1 t1 , although the details are omitted.
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APPENDIX B

We derive the four coefficients ξ1 , η1 , ξ2 , and η2 in (40) and
(41), as well as their partial derivatives with respect to u and
v. Since the principal curvatures κi , i = 1, 2, are eigenvalues of
the matrix F−1

I FI I , we have

0 = det(FI I − κiFI )

= (L − κiE)(N − κiG) − (M − κiF )2 . (73)

There are two cases: 1) L − κiE = N − κiG = 0, for i = 1 or
2; and 2) either L − κiE �= 0 or N − κiG �= 0, for both i = 1
and i = 2.

In case 1), M − κiF = 0 by (73). Therefore, FI I − κiFI =
0, i.e.,

F−1
I FI I = κiI2

where I2 is the 2 × 2 identity matrix. The two eigenvalues of
F−1FI I , namely, κ1 and κ2 , must be equal. Any tangent vector
is a principal vector. We let

t1 =
σu√
E

, with

(
ξ1

η1

)
=


 1√

E

0


 by (40).

The other principal vector t2 = ξ2σv + η2σv is orthogonal to
t1 . Therefore

(ξ2σu + η2σv ) · σu = 0, i.e., ξ2E + η2F = 0. (74)

To determine ξ2 and η2 , we need to use one more constraint,
i.e., t2 · t2 = 1, which is rewritten as follows:

Eξ2
2 + 2Fξ2η2 + Gη2

2 = 1. (75)

Substituting (74) into (75) yields

ξ2 = ∓
√

F 2

E(EG − F 2)
, and η2 = ±

√
E

EG − F 2 . (76)

In case 2), L − κiE �= 0 or N − κiG �= 0, for both i = 1, 2.
For i = 1, 2, we know that

(FI I − κiFI )
(

ξi

ηi

)
= 0. (77)

Equation (77) expands into four scalar equations according to
(3)

(L − κiE)ξi + (M − κiF )ηi = 0 (78)

(M − κiF )ξi + (N − κiG)ηi = 0. (79)

For each i value, three subcases arise, which are as follows.
a) L − κiE = 0, but N − κiG �= 0. It follows from (73) that

M − κiF = 0. Thus, (79) gives us ηi = 0. ξi has an expo-
nent 2, i.e., ti · ti = Eξ2

i = 1, we can obtain ξi = ± 1√
E

.
b) L − κiE �= 0, but N − κiG = 0. This is the symmetric

case of a). The coefficients are(
ξi

ηi

)
=

(
0

± 1√
G

)
.

c) L − κiE �= 0, and N − κiG �= 0. From (78), we have

ξi = −M − κiF

L − κiE
ηi. (80)

Substitution of (80) into (75) yields a quadratic equation
with the solution

ηi = ±
√

L − κiE

EN − 2FM + LG − 2κi(EG − F 2)
. (81)

In all the expressions of ξi and ηi , the signs are chosen such
that t1 × t2 = n.

The gradients ∇ξi = ( ∂ξi

∂u , ∂ ξi

∂ v ) and ∇ηi = ( ∂ηi

∂u , ∂ηi

∂ v ), i =
1, 2, are obtained by differentiation of appropriate forms of ξi

and ηi that hold for all points in some neighborhood, which are
not necessarily the ones at the point.
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