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Abstract. This paper investigates efficient curve processing that originates from
the localization and grasping of 2D curved objects. The first algorithm locates the
boundary section of an object traced out by a rolling finger based on the length and
total curvature information obtained with the finger’s tactile sensor. The algorithm
slides an imaginary segment along the object boundary by alternatively marching
its two endpoints forward, stretching or contracting the segment if necessary.

The second algorithm computes all pairs of antipodal points on an object. Two
fingers placed at such a pair of points can achieve a force-closure grasp in the
presence of friction. Dissecting the boundary into segments everywhere convex or
everywhere concave, the algorithm marches simultaneously on every two segments
with opposing normals and alternates marching with numerical bisection recur-
sively. It builds on a procedure that constructs common tangents of two curves
with quadratic local convergence.

Completeness (up to numerical resolution) of the above algorithms is established
by applying curvature-based analyses. Dissection and the coupling of marching
with bisection introduced in this paper are potentially applicable to optimization
problems involving curves and curved surfaces.

1 Introduction

Geometry often plays an essential role in robot tasks such as sensing, grasp-
ing, pushing, path planning, dextrous manipulation, and control. Sensing,
manipulation, and planning strategies for polygonal and polyhedral objects
have been studied extensively in the past. Many of these strategies are de-
signed using combinatorial techniques that take advantage of the absence of
local (differential) geometry.

Curved shapes are frequent subjects of maneuvers by the human hand
and they share the differential nature with contact kinematics and dynamics
which are responsible for such maneuvers [2]. This paper presents efficient
algorithms that process plane curves for tasks including parts localization
and grasping.

Section 2 studies how a disk-like finger with tactile ability localizes itself
while rolling on a stationary curved object. Section 3 describes an algorithm
that constructs all common tangents of two curve segments. This algorithm
is part of the preprocessing in Sect. 5 that prepares for the computation of
antipodal grasps in Sect. 4.
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The curve a(s) considered in this paper is simple, regular, and twice
continuously differentiable. In case no ambiguity arises, the parameter s also
refers to the point a(s) on the curve. The curvature k(s) of « is zero at only
a finite number of points. A point z on « is a simple inflection if k(z) = 0
but '(z) # 0. The total curvature of a segment of o over [a,b] is given by
&(a,b) = f: k||a’(u)|| du. This integral measures the amount of rotation of
the tangent as a point moves from a to b along the curve!.

1.1 Related Work

Hong et al. [12] proved the existence of two pairs of antipodal points on
a closed, simple, and smooth convex curve or surface. Chen and Burdick [6]
computed antipodal points on 2D and 3D shapes through minimizing a grasp-
ing energy function.

Two vertices of a polygon are antipodal if they admit parallel support-
ing lines. The polygon’s diameter is equal to the distance between the two
furthest vertices (which must be antipodal). For n points in three dimen-
sions, the number of antipodal pairs can be O(n?) while the diameter can be
achieved by 2n — 2 pairs of points [11]. Preparata and Shamos [27] described
a linear-time algorithm that finds the diameter of a convex polygon with n
vertices in one traversal. Clarkson and Shor [7] presented a randomized algo-
rithm to compute the diameter in O(nlogn) expected time. Near-linear-time
deterministic algorithms were developed through derandomizing their algo-
rithm in [5,19]. Yao [32] offered a different approach that led to an o(n?)-time
algorithm for computing the diameter of a point set in any dimensions.

Goodman [10] gave an upper bound on the number of inflection points
on parametric spline curves. Sakai [29] obtained the distribution of inflec-
tion points and cusps on a parametric rational cubic curve. Manocha and
Canny [17] employed the Sturm sequence method to find inflection points on
rational curves. Mokhtarian and Mackworth [21] used inflection points for
plane curve description and matching.

Preparata and Hong [26] developed a “walking” strategy to construct
common supporting lines of two convex polygons in linear time. The proce-
dure Common-Tangent in Sect. 3.2 can be viewed as its continuous counterpart
where tangent lines (in place of supporting lines) are used to determine the
next stops.

Allen and Roberts [1] deployed robot fingers to obtain a number of contact
points around an object and used fitting to reconstruct the object’s shape.
Fischler [9] described an algorithm that locates points with extreme curva-
tures on planar curves and reconstructs the original curves based on these
points. Erdmann [8] showed that the local geometry of a curved object with
known angular velocity can be recovered by two passive linear tactile sensors.

[43

! The total curvature over [a,b] has a closed form if it is within (0, 27] and can be
fast computed otherwise.



Computation on Parametric Curves 3

Extending this work, Moll and Erdmann [22] applied quasi-static dynamics
to reconstruct the shape of a convex object and estimate its motion from
tactile readings on two palms in frictionless contact with the object.

Mishra et al. [20] gave upper bounds on the numbers of frictionless fingers
that are sufficient for equilibrium and force-closure grasps, respectively, on
objects with piecewise smooth boundaries. Markenscoff et al. [18] determined
the number of fingers to immobilize 2-D and 3-D objects with piecewise
smooth boundaries. Ponce et al. [25] employed parallel cell decomposition to
compute pairs of maximal-length segments on a piecewise smooth curved 2D
object that guarantee force closure with friction.

2 Locating Segments on a Curve

We begin with the problem of determining the location of a finger rolling on
a stationary object bounded by a. A tactile sensor is mounted on the finger.

To simplify our analysis, the finger is assumed to be a disk described
by r(cosu,sinu), where u locates the contact on the disk and is determined
from the tactile data. The disk is rolling with angular velocity w. Let s be
the location of contact on a, as shown in Fig. 1(a).

w
arclength L
r
194
tangent \
tangent rotation 0

(a) (b)

Fig. 1. (a) A disk rolling on a stationary curved object; (b) a disk localizing itself by
rolling from as to bs and then to cs. The localization algorithm finds six segments
over [ai,b;], 0 < ¢ < 5, respectively, which have the length and total curvature
computed from tactile data. These ambiguities are eliminated using the curve length
and total curvature over [bs, cs]
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Contact kinematics [4,23] yield the velocities of the contact point on the
disk and the object, respectively:
w

u:_m; (1)

w
e ()| (1/7 + w(s))

From (1) and (2), we obtain

sl (s)l| = —ra,

sk(s)||ld'(s)]| = u + w.

Integrate these two equations over the time period [0, 7]:

/81 ()| ds = —r(u1 —uo) = I, 3)

S0

S1 T
| @l @lds =u — o+ [ wi@)de = 6, 8
S0 0

where s = 5(0), s1 = s(7), up = u(0), and u; = u(7).

The length L of the object boundary traced out by the contact can be
determined from tactile readings uwg and u;. The amount of disk rotation
Jo w(€)d¢ is also known. Thus the total curvature 6 over [so,s;] is known
by (4). Localization thus reduces to finding a curve segment on o with length
L and total curvature 6.

When multiple segments are found to have length L and total curvature
0, the disk eliminates the ambiguities by continuing the rolling and using the
length and total curvature of the next segment it traces out (see Fig. 1(b)).

Equations (3) and (4) need to be solved numerically. In general, arc length
£(a,b) = f; [l (s)|| ds has no closed form. We first consider the case that the
boundary curve « is convex and present a marching algorithm.

The algorithm marches two endpoints s and ¢ of a hypothesized segment
counterclockwise along a. It starts at location so = 0 and advances repeatedly
by a step size until it reaches the point ¢ where &(sg,q) = 6. If (so,q) > L,
at step ¢ > 0 advance from t;_1 to t; (set to  ¢q) where &(s;,t;) = 6 and
then advance from s; to s;y1 where £(s;11,%;) = L. If £(s9,q) < L, at step
1 advance from ¢;_1 (or from ¢ if i = 0) to t; where £(s;,t;) = L and then
advance from s; to s;11 where &(s;,1,t;) = 0. Figure 2 illustrates the working
of the algorithm in these two cases.

It can be shown by induction [15] that the two sequences sg, s1,... and
to,t1, - - - generated above are monotone and will converge to the endpoints of
the first segment on « that satisfies (3) and (4). Furthermore, the convergence
rate [31, p. 264] is linear and given by the ratio min{x(a)/k(b), k(b)/x(a)}.
To find the next segment on a, we reset sg to be slightly greater than s; for
large enough i, and repeat the same procedure.
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(a) (b)

Fig. 2. Two cases of marching s and ¢: (a) P(si,t;) = 6 but £(s;,t;) > L; (b)
£(siyti) = L but &(s;,t;) > 0. Both marches converge to (a,b) where £(a,b) = L
and &(a,b) =6

The correctness of the above march relies on that the total curvature
&(s,t) has partial derivatives 0#/ds < 0 and 0#/0t > 0 for all s < t. But
this is no longer true when o has concavities. For example, 0$/9s > 0 when
K(s) < 0.

When « is not convex, marching has four basic modes: convex-convex
(k(s) > 0 and k(t) > 0), concave-concave (k(s) < 0 and k(t) < 0), convez-
concave (k(s) > 0 and k(t) < 0), and concave-convez (k(s) < 0 and x(t) > 0).
Within each mode, the hypothesized curve segment over (s,t) slides along o
until a simple inflection point is reached by either s or ¢ so that the mode
changes. Location(s) of the desired curve segment, if exists, is also found
during the advancement. Sliding is done by increasing only one of s and ¢
at a time while simultaneously keeping track of where the other should be
(without actually increasing it).

For a detailed description of all operations, we refer to [15] where the
following result is established:

Theorem 1. All segments with length L and total curvature 8 can be found
on a closed simple curve over domain [0, D] up to numerical resolution in at
most 5D /h steps, where h is the step size.

The algorithm runs asymptotically as fast as evaluating the length of the
entire curve through numerical integration.

3 Common Tangent Construction

For clarity of presentation, in Sects. 3 and 4 we consider that the curve «
is unit-speed, that is, ||@’(s)|| = 1. All algorithms to be presented have been
extended straightforwardly to and implemented on arbitrary-speed curves.
Two segments S and 7 of a are defined on subdomains (s,,sp) and
(ta,ts), respectively, where (sq,s5) N (ta,tp) = 0. Here s, < sp always holds
but t, > tp is allowed, in which case (t,,tp) refers to the interval (¢p,%,).
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Denote by T'(s) = @/(s) the unit tangent of a and denote by N(s) the unit
normal such that T'(s) x N(s) = 1. The following conditions are satisfied by
Sand T:

(i) & > 0 everywhere or k < 0 everywhere on § and T, with x = 0 possible
only at sq, Sp, ta, th.

(ii) N(sq) + N(t,) =0 and N(sp) + N(tp) = 0.

(iil) —7 < D(sq, sp) = —P(ta,tp) < 7.

For now we present algorithms working on § and 7. Section 5 will describe
how to preprocess a to generate pairs of segments satisfying (i)—(iii).

Under these conditions, a one-to-one correspondence exists between a
point s on S and a point ¢t on T:

N(s)+ N(t) =0, or equivalently, (5)
T(s)+T(t)=0. (6)
Let g(s,t) = N(s) x N(t). Since % = N(s) x (—s(®)T(t)) = —k(t) # 0

under (5),2 by the Implicit Function Theorem, the equation g(s, ) = 0 defines
t locally as a function of s. From now on, we refer to ¢ as the opposite point
of s. Differentiate (6) with respect to s and then substitute (5) in. We obtain
that k(s) — k(t) 2 =0 and

dt  k(s)
ds = R@) (7)

3.1 Classification of Common Tangents

Theorem 2. The segments S and T under conditions (i)—(ii) have at most
two common tangents. The segments are always on the same side of every
common tangent or always on different sides of every common tangent.

A proof of Theorem 2 is given in [14]. Based on the theorem, we classify four
configurations (shown in Fig. 3) in which at least one common tangent of S
and 7T exists.

In configurations (a) and (c) the two curve segments bend in the same
direction while in (b) and (d) they bend in opposite directions. The bending
direction of the curve o at a point w is indicated by x(u)N(u). So we check
the dot product &(sc)N(sc)-k(tc)N(tc) = —k(sc)k(tc), where s, = 22t and
N(t.) = —N(s.). If the dot product is positive, then the two segments S and
T bend in the same direction; otherwise, they bend in opposite directions.

Define the function d(s) as the translational distance along the normal
N(s) from the tangent line of S at s to the tangent line of 7 at its oppo-
site point t. This function is continuous since the curve « is continuously
differentiable. Obviously, d(s) = 0 if and only if the tangent line through s

% The Frenet formulas [24, pp. 56-58] for unit-speed plane curves state that T”(s) =
k(s)N(s) and N'(s) = —x(s)T(s).
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L=
<A

Fig. 3. Four conﬁguratlons where two segments satisfying conditions (i)—(iii) have
at least one common tangent

is a common tangent. It follows from condition (i) that d'(s) # 0 whenever
d(s) =0.

When d(s,) and d(sp) have different signs, there exists some ¢ € (sg, sp)
such that d(c) = 0. Namely, the line passing through ¢ and its opposite point
on 7 is a common tangent. Because there are at most two common tangents
and d has only simple zeros, we can infer that this is the unique common
tangent of S and 7 and the configuration is either (c) or (d) in Fig. 3. These
two configurations can be further distinguished.

When d(s,) and d(sp) have the same sign, S and 7 may have two common
tangents as in configurations (a) and (b) or they may not have a common
tangent at all. We will need to look at whether the two segments bend in the
same direction or in opposite directions and make use of the regions parti-
tioned by the segments as well as the four tangent lines at their endpoints. A
procedure is given in [14] to determine whether two or zero common tangent
exists.

3.2 An Iterative Method

Below we offer an iterative method to construct a common tangent. The
method makes the following two assumptions that will be removed in the
end of the section.
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tozta

to=ta

Fig. 4. Constructing a common tangent iteratively

1. There exists exactly one common tangent L. of S and 7 incident on s,
and t., respectively.

2. A point traversing 7 from t, to t, is moving towards s. at the time it
reaches t.. So the two segments and L, are in one of the two configurations
shown in Fig. 4.

The iteration starts at sg = s, and tg = t, and maintains two invariants:

(alsis) — () x T(sir1) = 0; ®)
N(si+1) + N(tiy1) = 0. 9)

The point s;+1 € (i, sp) is found by a primitive point-of-tangency. Such a
point of tangency always exists under assumptions 1 and 2. The procedure call
for finding the two points of tangency s. and t. is Common-Tangent (84, Sp, ta, ts)-

We have established [14] that the two sequences {s;} and {¢;} generated
according to (8) and (9) are strictly increasing (decreasing) and bounded by
sc and t.. They must converge to two points that satisfy (8), i.e., s, and ..

Next, we determine the order of local convergence of {s;} and {¢;}. Let
g be the iteration function such that s;11 = g(s;). Differentiate equation (8)
with respect to s;, simplify, and substitute (7) in:

K(8;)

—T(t:) x T(8i+1)m +llesirs) — ati)l| £(siv1)

dsit1

ds; =0.
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From above we obtain the derivative of the iteration function g¢'(s;), in par-
ticular,

T(t:) x T(sc) K(sc)
sc) — a(tc)l[k(se) K(te)

(
because T'(t.) X T(s.) = 0. Meanwhile, we also obtain

76 = Ta -

" _ Kk(sc)
959 = Silaty) —atn T ”

Hence the two sequences {s;} and {¢;} have quadratic convergence rate.

To remove assumptions 1 and 2 made earlier, we need to determine the or-
der of the four endpoints passed on as arguments for calling Common-Tangent.
This order determines which of the two pairs of endpoints to start the itera-
tion at, and, within the pair, which endpoint to update first. This would not
be an issue for configuration (b) in Fig. 3, where the two common tangents
can be found using the procedure calls

Common-Tangent(s,, Sp,ta,tp) and Common-Tangent(sy,Sq,ts,tq)

regardless of the vertex labeling.

When the configuration is one of (a), (c¢), (d), we look at the parallel
tangent lines L, and L, of o at s, and t,, respectively. For instance, if the
translation from L, to L/, is along the bending direction of S then we start the
iteration by updating from ¢y = ¢, to ¢, the point of tangency of a tangent
line to T through s,, then from s¢ = s, to s1, where N(s1)+ N(¢;) = 0, and
S0 on.

4 Computation of Antipodal Points

From now on we require that a be also closed. Two points ¢ and b on o are
antipodal if their normals are collinear and pointing at each other, or more
precisely,

N(a)+ N(b) =0,
N(a) x (a(b) . a(a)) =0,
N(a) - (a(b) - a(a)) >0

We need only consider that the curvature of « is not constant®. For example,
the closed curve in Fig. 5(a) has eight pairs of antipodal points (numbered
the same within each pair). Two fingers placed at any of these eight pairs of
points will form a force-closure grasp that can resist any arbitrary external

3 This excludes a circle on which any two points determining a diameter are an-
tipodal.
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T(s)

(2) (b)

Fig. 5. (a) Eight pairs of antipodal points on a curved shape. The grasp at pair 7
(or at any other pair) is force-closure. (b) Antipodal angle 6

force and torque in the presence of contact friction. Such a grasp is referred
to as an antipodal grasp.

In this section, we present an algorithm that finds all antipodal points on
a pair of segments S and T of o that meet conditions (i)—(iii) in Sect. 3 as
well as the conditions below:

(iv) Neither s, and t, nor s; and t; are antipodal.
(v) N(s)- (a(t) - a(s)) > 0 for all s € (s, 5)-

Under condition (iii), no two points on S (which does not include s, or
t,) are antipodal and the same holds for 7. Condition (v) addresses that two
opposite points may be antipodal only if their normals do not point away
from each other.

Pairs of segments on a that meet conditions (i)—(v) will be generated in
the preprocessing step described in Sect. 5.

4.1 Antipodal Angle

Define the antipodal angle* §(s) as the rotation angle from the normal N(s)
to the vector r(s) = a(t) — a(s), where ¢ is the opposite point of s (see
Fig. 5(b)). Under condition (v), § € (—%,%). By definition, s and ¢ are
antipodal if and only if 6(s) = 0.

To determine the change rate of 6, we first calculate the derivative:

d%”r(s)” = d%\/r(s) -r(s) = (% + 1) sin 6, by (7).

* In [3], it is referred to as the friction angle.
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From Fig. 5(b) we see that sinf = N(s) x r(s)/||r(s)||. Differentiate both
sides of this equation and substitute the above expression for ZL||r(s)]| in.
After a few more steps, we obtain

, _ cosf (k(s)
Ay W] (a(t)“)' 10)

Suppose « is at least k¥ + 1 > 2 times continuously differentiable. Two
points s* on S and t* on T are called antipodal points of order k if 6(s*) =
0'(s*) = --- = %D (s*) = 0 but 8 (s*) # 0. When k = 1, s* and t* are
simple antipodal points. When k = 2, equation (10) reduces to ||r(s*)|| =
ﬁ + ﬁ; that is, the osculating circles at s* and t* are concentric.

We are primarily interested in finding simple antipodal points. So from
now on we assume that higher order antipodal points do not exist. Qur al-
gorithm employs different strategies according as whether the signs of the
antipodal angles 6(s,) and 6(s;) at the endpoints of S are the same.

4.2 Opposite Angle Signs at Endpoints

When 6(s,) and 6(sp) have different signs, at least one pair of antipodal
points exists on S and 7. Bisection method [28, pp. 261-263] guarantees to
find one such pair.

In the case where both segments are concave, k(s) < 0 and x(t) < 0, we
have 6'(s) > 0 by (10). The antipodal angle € increases monotonically from
S, t0 sp. A unique pair of antipodal points exists if 8(s,) < 0 and 6(s;) > 0.
Otherwise, no antipodal points exist.

4.3 Same Angle Sign at Endpoints

In this case, at least one of S and 7 must be convex in order to have antipodal
points. Multiple pairs of antipodal points may exist.

Two Convex Segments When S and T are both convex, we march on

both segments using the fact that the vector r(s) rotates counterclockwise as
dr

s increases from s, to sp. This is because 7; x 7 < 0. To see the inequality,

note that the vector 4L = T'(¢) (1 + ”(s)) is in the direction of T'(t) since

r(t)

k(s),k(t) > 0. But T'(t) x r(s) = =T'(s) x r(s) < 0 under condition (v).

Figure 6 illustrates the march when 6(s,) < 0 and 6(sp) < 0. It starts
with s and t at sg = s, and ty = tp, respectively. As s moves toward s,,
the vector 7(s) rotates clockwise. At the ith iteration step move s from s;
to ;41 at which the normal is parallel to 7(s;). If no such point s;1; exists,
stop. Otherwise, move ¢ from ¢; to ;41 where N(tit1) + N(si+1) = 0. The
iteration continues until s; and ¢; converge to a pair of antipodal points, as
in the figure, or it reaches s, and t,, in which case no antipodal points.
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Fig. 6. Geometry at a pair of antipodal points s* and t*: #'(s*) < 0 and [|r(s*)|| >
o T

It can be shown by induction [14] that the sequence sg, s1, . . ., generated
above according to N (s;y1) X r(s;) = 0is strictly decreasing and no antipodal
point exists on [s;, sp) = Ui_,[sk, sk—1) for all i > 0. The monotone sequence
{si} is bounded from below by s*, the closest antipodal point to s if it exists.
So it must converge to some £ € (s,, 8p) where N (&) xr(£) = 0. Hence £ = s*.

Next, we show that the local convergence rate of the sequence is linear.
It suffices to establish that 0 < %(8*) = f'(s*) < 1. As shown in Fig. 6,
sin§; = sin(0(s;)) = N(s;) X N(s;+1). We can derive f'(s;) by differentiating
both sides of this equation with respect to s;, and in particular,

P o W o 7.1 N

K(s*) K(s*)6(t*)[[r(s*)]]
where t* on 7T is the opposite point of s*. The march starts at s, where
0(sp) < 0 and never passes s*. So 6'(s*) < 0 must hold. Hence f'(s*) < 1.

When 6(s,) > 0 and 6(s;) > 0, the march starts at s, and t, and moves
toward s and t,. The result on convergence still holds.

A Convex Segment and a Concave Segment We only consider the
case that S is convex and T is concave as the other case is symmetric. We
first determine if one of the rays extending the normals N(¢,) and N(tp)
intersects S. Under conditions (i)—(v), this can be done by checking cross
products. If neither ray intersects S, then no antipodal points exist (a proof
is given in [14]).

When either the ray of N(t,) or the ray of N(t;) intersects S, we carry
out the following march. Start at so = s, and tq = t, if the ray of N(t,)
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intersects S, or at so = sp and tg = tp if the ray of N(¢;) intersects S. In
each round, s;y; is generated as the intersection of the ray of N(¢;) and S
and t;41 is generated as its opposite point.

The sequence {s;} is shown to be strictly increasing and will converge at
linear rate to the first antipodal point s* from s, if it exists.

Theorem 3. Let S and T be two curve segments satisfying conditions (i)-
(v). Suppose the two antipodal angles 0(s,) and 6(sp) at the endpoints s, and
sy of S have the same sign. Then the two iterative strategies described above
satisfy the following:

1. When no antipodal points exist, the iteration starting at a pair of opposite
endpoints of S and T will terminate at the other pair of endpoints.

2. Otherwise, the iteration will converge at linear rate to a pair of antipodal
points s* and t* that is the closest to the two endpoints at which the
iteration starts. Furthermore, 8'(s*) < 0 if S and T are both convezr and
0'(s*) > 0 if one of them is concave.

4.4 Finding All Pairs of Antipodal Points

Once the first pair of antipodal points s* and ¢* has been found, other pairs,
if exist, can be found by alternating marching with bisection recursively.

To illustrate, suppose 6(s,),0(sp) < 0 and S and T are both convex. Then
s* and t* have been found by a march from s;. So we already know that no
antipodal points exist in (s*,s;). That 6'(s*) < 0 and 6(s*) = 0 implies
0(s* —€) > 0 for small enough € > 0. Therefore the interval (s,,s* — €)
contains at least one antipodal point, which can be found using bisection.

Suppose 0(s,) and 6(sp) have different signs. Then s* and t* have been
found through bisection. So 8(s* — €) has the sign of 8(s,) while §(s* +¢€) has
the sign of §(sp). Then we march over the intervals (s,, s* —€) and (s* +¢, sp)
separately to search for possible antipodal points.

Figure 7 illustrates the recursive procedure as applied on an ellipse.

5 Preprocessing, Generalization, and Implementation

Curve « is preprocessed in four steps to generate pairs of segments that
satisfy conditions (i)—(v). These steps are illustrated on an example in Fig. 8.
To locate antipodal points on «, we perform all four steps of preprocessing
to generate segment pairs that satisfy conditions (i)—(v). Then find antipodal
points on each pair® as described in Sect. 4.

We have implemented all algorithms in C++ for arbitrary-speed curves.
The eight pairs of antipodal points in Fig. 5(a) has all three combinations
of curvature signs. Figure 9 displays the antipodal points found on three

® For each pair, we also report opposing endpoints that are antipodal.
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march 1
s, tf

bisection

g, 1

/ N\

march2 march3

(a) (b)
Fig. 7. (a) Two pairs of antipodal points (s7,t]) and (s3,t3) on an ellipse; and (b)
the recursion tree in search for them. Here a(sy) = a(ta) and N(sq) = —N(ta).

The recursion always ends at marching

K>0
y4) Us
U, S S
K<0 z Uy
Uz ta ty 2
<0 2 ﬁ\. Z4 75
K>0
@ (© (d)
N@s) N(z4)
S S
N(Z2) 755
. o N ta th
% - N(Z3)=N(U1)
- N(Z4)=N(U2)

(b)

Fig. 8. Four preprocessing steps illustrated on a closed curve. (a) Find all four
inflection points 21, 22, 23, and z4. (b) Split the segments [22, 23] and [z4, z1] with
total curvatures beyond [—m, 7] at the points w1 and w2, respectively. Carry out
the next two steps on every pair of segments, for instance, [21, 22] and [zs, z4]. (¢)
Intersect the cone of inward normals over [z1, z2] with the cone of outward normals
over [zs,za]. Now (u1,u2) and (z3,z4) satisfy conditions (i)-(iv) but not (v). (d)
Extract the portions defined by the tangency points Sq, ta, Sp, and ¢, of their two
common tangents

other shapes [30]: (a) an elliptic lemniscate p = v/62 cos? ¢ + 32 sin” ¢; (b) a
limagon p = 44 3 cos ¢; and (c) a curve with convexities p = 9/(2+ 2 cos 4¢).

Let n be the number of inflection points and m the number of pairs of
antipodal points. There are O(n?) pairs of segments after the preprocessing.



Computation on Parametric Curves 15

4 2 2
(a) (b)

Fig. 9. Antipodal points on three parametric curves

The total number of calls to the marching and bisection procedures in Sect. 4
is O(n? +m). This bound is indeed tight since a quadratic number of pairs of
segments dissected at inflection points can have at least one pair of antipodal
points. An example is the curve p(¢) = m withp >0,0<e< 1, and

integer m > 1. In Fig. 9(c), p= 3, m =4, and e = L.

6 Discussion

We have presented a collection of algorithms that compute geometric sub-
structures on a simple, closed, and twice continuously differentiable curve.
These substructures include curve segments of specified length and total cur-
vature, common tangents, and antipodal points. Based on the monotonicity
of dissected curve segments and local geometry, various marching strategies
(interleaved with bisection) are employed.

A conventional nonlinear programming approach, inherently local, would
rely heavily on initial guesses of antipodal positions. It would be slow and
not guarantee to always find antipodal points, not to mention all of them.
Our results demonstrate that computational efficiency and completeness can
be achieved by taking advantage of both global and differential geometry.

The algorithms can be extended in a straightforward way to curves that
are piecewise twice continuously differentiable. Extension of the algorithms
to a curved surface in 3D will likely hinge on how efficiently the surface can be
partitioned into patches on which a search or an objective function assumes
similar monotonicity.

Both the localization algorithm and the algorithm for computing antipo-
dal points step over a found segment for more segments or a pair of antipodal
points for more pairs. The completeness is thus subject to the numerical res-
olution. Marching in localization is also subject to the resolution although
marching in antipodal point computation is not.
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The design of these algorithms based on dissection suggests a measure
of the “combinatorial size” of a curve by the number of inflections. The al-
gorithm for finding antipodal points employs several specialized numerical
primitives to complete a basic operation such as moving a point on the curve
or determining if a local geometric condition holds. Such a routine call usu-
ally completes in tens to hundreds of iteration steps. It seems reasonable to
analyze the asymptotic running time of a curve processing algorithm by the
number of calls to such numerical primitives.
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