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Abstract. This paper studies the recognition of low-degree polynomial curves
based on minimal tactile data. Differential and semi-differential invariants have
been derived for quadratic curves and special cubic curves that are found in ap-
plications. Such an invariant, independent of translation and rotation, is computed
from the local geometry at up to three points on a curve. Recognition of the curve
reduces to invariant verification with its canonical parametric form determined
along the way. In addition, the contact locations are found on the curve, thereby
localizing it relative to the touch sensor. Simulation results support the method in
the presence of small noise. Preliminary experiments have also been carried out.
The presented work distinguishes itself from traditional model-based recognition
in its ability to simultaneously recognize and localize a shape from one of several
classes, each consisting of a continuum of shapes, by the use of local data.

1 Introduction

Human can feel a shape through touch. Essentially, the action is performed to
detect some geometric features on the shape which are then subconsciously
synthesized in the brain. Typical geometric features include, for instance,
smoothness, saliences, concavities, etc.

Supported by touch sensing, the robot can also obtain shape informa-
tion without the help of a vision system. Such shape inference is important,
for example, when camera occlusion becomes inevitable or when motion is
involved. Since tactile data are local (and one-dimensional for point con-
tact), seemingly they convey only a limited amount of geometric information.
But how much shape knowledge can
the robot really acquire then?

Fig. 1 illustrates a hand with two

tactile fingers touching an object. tactile data

Suppose through local movements M/
the fingers are able to estimate in-
formation such as the curvatures at lL

several points of contact. And sup-
pose the shape is known to be from
a finite family of parametric curves.
Then we would like to recognize the

shape as well as determine the finger Fig. 1. A robotic hand touching an object
placement. to recognize its shape.

global shape
finger placement
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This problem draws several distinctions from traditional model-based
recognition. First, every model here is not a real shape but rather a con-
tinuum of shapes parametrized in the same form. Second, we would like to
keep the sensor data to the minimum. This is because a touch sensor, un-
like a vision system, does not generate global shape data. Third, we hope to
determine where the tactile data were obtained on the shape.

The characteristics of our problem naturally suggest an approach based
on differential and semi-differential invariants. Such invariants of a shape
are independent of its position and orientation, the computation of which
is often a burden. In this paper, we are interested in invariants that are
also independent of point locations on a shape at which they are evaluated.
Given the local nature of touch sensing, such shape descriptors should be
computable from measurements at just a few points. Our investigation will
be focused on quadratic and cubic spline curves.

1.1 Related Work

There are two primary recognition strategies in model-based vision. The first
one hinges on the recovery of viewing parameters (thus the pose). Kriegman
and Ponce [12] constructed implicit shape equations from image contours and
then solved for viewing parameters through data fitting. The second approach
is to develop descriptors that are invariant to Euclidean, affine, or projective
transformation, or to camera-dependent parameters [15,19].

Algebraic invariants are expressions of the coefficients of polynomial equa-
tions describing curved shapes. The foundation was due to Cayley, Sylvester,
Young, and among others, Hilbert [8], who offered a procedure that constructs
all independent algebraic invariants for a given curve or surface. In real appli-
cations, polynomials are fit to image data and their coefficients are extracted
for invariant evaluation. Keren [10] and Forsyth et al. [6] presented efficient
methods for finding algebraic invariants and demonstrated on recognition of
real objects. Civi et al. [4] also conducted object recognition experiments with
algebraic invariants of Euclidean, affine, and projective groups.

One drawback of algebraic invariants is the requirement of global shape
data. This is almost impossible to provide by a touch sensor, or by a vision
system in case of occlusion.

Differential invariants depend on local data and deal with situations like
occlusion well. Up till now, vision- and invariant-based recognition has fo-
cused on differential invariants that are independent of various transforma-
tion groups but not of point locations on a shape. Calabi et al. [3] introduced
the “signature curve” that is invariant to Euclidean or affine transformation.
Rivlin and Weiss [18] derived differential invariants for a shape by applying
to its quartic fit the same transformation that turns an osculating curve (a
cubic) into the canonical form.

Semi-differential invariants combine global constraints and local informa-
tion to ease the correspondence issue faced by non-invariant-based methods
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and also relieve the burden on estimating higher order derivatives for dif-
ferential invariants. The theoretical foundation for this type of invariants
was presented by Moons et al. [14]. Pajdla and Van Gool [16] used simple
semi-differential invariants to match curves extracted from range data in the
presence of partial occlusion.

In touch sensing, shape recognition has long built on the notion of “inter-
pretation tree”, which represents all possible correspondences between geo-
metric features of an object and tactile data. Grimson and Lozano-Pérez [7]
identified and localized a 3-D polyhedron from a set of models using tactile
measurements of positions and surface normals. Fearing [5] described how
a cylindrical tactile fingertip could recover the pose of a generalized convex
cone from a small amount of data.

Allen and Michelman [1] fit a superquadric surface to sparse data obtained
by a Utah-MIT hand around an object as its reconstructed shape. Moll and
Erdmann [13] showed how to simultaneously estimate the shape and motion
of an unknown convex object from tactile readings on multiple manipulating
palms under frictionless contact.

A method based on the interpretation tree or least-squares fitting needs
to recover the pose. This may be costly and often unnecessary. Not until
very recently did differential invariants start to find applications with touch
sensing. For spheres, cylinders, cones, and tori, Keren et al. [11] constructed
descriptors in terms of curvatures and torsions and (up to their third or-
der) derivatives estimated at points on one or two curves embedded in these
surfaces.

In this work, we have extended our recent result [9] and derived semi-
differential invariants that not only recognize the classes but also recover the
algebraic descriptions of quadratic and certain cubic curves from curvature
and derivative measurements.

2 Curve Invariants

The touch sensor in contact with a 2D object can “feel” its local geometry,
which is described by the curvature. At the contact point denote by ¢ the tan-
gential angle formed by the tangent of the boundary curve a(t) = (z(t),y(t))
with the z-axis. The curvature k is the rate of change of ¢ with respect to
arc length s, that is,

d 'y — 'y
H:d_d): /g /23/2'
s (27 +y"?)

(1)

Curvature is independent of parametrization, rotation, and translation. We
are also interested in the derivative of curvature with respect to arc length:

dedt &)

M= Gt ds (z2 4+ y2)1/2" @
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Section 7 will look at how curvature and derivative can be reliably esti-
mated from real data. Until then we just assume that these two quantities
are measurable.

2.1 Signature Curve

A differential invariant of a curve is a real-valued function that depends on
the curve and its derivatives but not on a specified transformation group or
parametrization. The transformation group considered in this paper is the
plane Euclidean group SE(2). More intuitively, the value of a differential
invariant depends on the point location on the curve but not on the curve’s
rotation and orientation.

Theorem 1. FEvery differential invariant of a plane curve is a function of
the curvature k and its derivatives with respect to arc length.

The FEuclidean signature curve of a curve a(t) is the set of all points
(k(t), ks(t)) evaluated along the curve. An example is shown in Fig. 2. The

&Y

(a) (b)
Fig. 2. (a) A cubical parabola y = 0.6z + 0.4z; (b) its signature curve.

following result is well known [3]:

Theorem 2. Two smooth curves are equivalent up to an Fuclidean trans-
formation if and only if their signature curves are identical.

The above result has led to the development of shape recognition meth-
ods [18,17,3] based on matching signature curves. Construction of the signa-
ture curve, nevertheless, requires global shape information, which the touch
sensor does not provide. So our aim is to make use of the local geometry at
a small number of points to perform the recognition task.

2.2 Semi-Differential Invariants as Curve Descriptors

Suppose the curve a(t) = (z(t),y(t)) is known to be from a family. Often
we can derive a canonical parametric form of the family through proper ro-
tation, translation, and reparametrization. This canonical form should have
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minimum number of indeterminates (other than ¢) to parametrize the family.
These independent indeterminates are referred to as shape parameters and
denoted by ay,...,a,. For instance, the class of all ellipses are parametrized
with the semimajor axis a and the semiminor axis b. The canonical form
expresses the curve in a coordinate system determined by its geometry.

Since the parameter ¢, which specifies the location of contact (with the
touch sensor), is not measurable, we try to eliminate it from the expres-
sions (1) and (2). This can always be done through computing the resultant,
yielding an equation for the signature curve:

flai, .-, an](k, ks) = 0. (3)

The simplest case is when the function f can be split into two parts and
rewritten as

I(HaK’S) = g(aly"'aan)'

Then I is an expression whose value depends on the shape of the curve not
on any specific point at which it is evaluated. It is thus an invariant for the
curve, or a curve invariant. That the expression assumes the same value at
different points is a necessary condition for an unknown curve to be from the
family. The family of parabolas will be given as an example in Sect. 3.1.

When a curve family has n shape parameters, we need n independent
differential invariants to uniquely identify a curve from the family. If only
one point on the curve is considered, this requires up to the nth derivative
of the curvature. Numerical computation of high order derivatives is very
unreliable. The solution is to trade the order of derivative for extra points.
So we consider the curvatures and derivatives at n points and derive semi-
differential invariants. They are functions of the 2n curvatures and derivatives
but assume values depending on ay,...,a, only. For some curves, such as
ellipses and hyperbolas (Sects. 3.2-3.3), semi-differential invariants can be
found via algebraic manipulation.

However, derivation of semi-differential curve invariants appears to be
very difficult, if not impossible, for many curves. It is more likely that we have
to solve for the shape parameters ag, ..., a, using curvature and derivative
estimates at m > n points. Viewed differently, the semi-differential invariants
now have values equal to the shape parameters but their evaluation can only
be done through solution or minimization.

From now on we focus on curves parameterized by polynomials. From (1)
and (2) we derive two polynomial equations in ¢:

2 (:L"2 +y12)3 — (2'y" — a:"y')2 =0, (4)
% (z'y" — x//y/)2 — (@'y" — 2™y (.CL‘I2 + y/2)
+3(z'2" + y'y") (@'Y — z'"y') = 0. (5)

Note that k and ks are measurable and thus treated as constants. Suppose
z(t) and y(t) have degrees d, and d,, respectively. The two polynomials on
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the left hand sides of (4) and (5) may have a resultant with degree as high
as dy + dy + 8max{d;,dy} — 12 in a1,...,an. This is not computationally
tractable once d, or d, exceeds 3.

2.3 Semi-Signature Curve

We can lower the degree of the resultant polynomial in ag, ..., a, by consid-
ering the slope A = y'/z’. This can be rewritten as a polynomial equation:
Az =y, (6)

Assume that ' # 0 at every point measured by the touch sensor. Equa-
tions (1) and (5) are rewritten as

IiZ.CL"Z(l + /\2)3/2 _ (y// _ .Z'”)\) — 07 (7)
Ks/K? + 3\
1+ A2

With the slope A treated as a separate variable, we compute the resultants
of (6) with (7) and (8), respectively, to eliminate ¢ and obtain

fila1, ... an]( A, K,65) =0 and  faolaq,...,an](A K, &) = 0.

The two functions f; and f» have degrees not exceeding 3 max{d,,d,} — 3
and 3 max{d;,d,} — 5, respectively, in a1,...,an.

What is the reason for using the slope A determined by the canonical
form? Though not able to measure the slope, the touch sensor can measure
the tangent rotation from one point to another. The slope A; at the first
point and the slope A; at the ith point are related as

A1+ tan Afy; .
i = m, 6,; tangent rotation. 9)

So only one new variable A; has been introduced.
We refer to the point set {(\, &, ks)} as

the semi-signature curve of a(t). An exam-

ple is shown in Fig. 3. Its projection onto the

k-ks plane is the signature curve. The semi-

signature curve is dependent on the chosen

canonical parametrization, more specifically,

on the orientation of the original curve un-

der the parametrization. Now we may em-

ploy similar methods to derive expressions in

terms of A, k, ks but whose values depend on

the shape parameters only. These “pseudo-

invariants” together with (9) are solved for

the slopes first, and then the shape parame- Fig.3. The semi-signature

ters. The details will be described in Sect. 4 curve of the cubical parabola

on cubical and semicubical parabolas and cu- in Fig. 2.

bic spline curves.

(y// _ .Z'”)\)Q + 31,//(2/// _ :L'")\) _ (y/u _ .Z"")\):L" = 0. (8)
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3 Quadratics

It is well known that every quadratic curve is one of three types: the el-
lipse, the hyperbola, and the parabola. Together the three types of curves
are referred to as the conics. We start with deriving some invariants for these
curves.

3.1 Parabola

Parabolas are identified with all the curves parametrized by quadratic poly-
nomials: £ = ast® + a1t + ap and y = byt? + b1t + by, where azb; — ar1bs # 0.
Every parabola has a canonical parametrization up to rotation and transla-
tion:

z=at’ and y = 2at, a> 0.
We obtain the curvature and its derivative with respect to arc length:

1 d K 3t
k=——"—>7 and ks=— = —5 5 —3-
2a(t2 + 1)3/2 Tou)  4a2(t? 4+ 1)3

Eliminating ¢ from the above equations leads to an equation that describes
the signature curve of the parabola:

1 _ ,.2/3 "ig = I
a5 K Orcd +1) = IL(k,ks). (10)

The expression I(k, ks) has value independent of ¢. It is an invariant which
has a one-to-one correspondence to the shape of the parabola. Fig. 4 illus-
trates three parabolas distinguished by I,. Since k and &, are measurable,

Ks

m- 0.5 a=0.6
— i a=08 a=04
a i 05 ¥ \ /

—_— e

1 05 1 Iy
(a) (b) (c)
Fig. 4. (a) Three parabolas in the form y> = 4ax; (b) their signature curves

{(k,ks)}; (c) corresponding values of the invariant I,. The invariant is evaluated
using any point on a signature curve.

from (10) we can determine the shape parameter a.
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3.2 Ellipse
Let us start with the canonical parametrization:
x =acos(t) and y = bsin(t), a,b>0.
The curvature and its derivative with respect to arc length are
ab —3ab (a® — b?) sin(t) cos(t)

2 gin2 2 c0s2(4)) 32 and g = 2 gin2 2 cos2(4))°
(a2 sin®(t) + b2 cos?(t)) (a2 sin®(t) + b2 cos®(t))

K=

Elimination of ¢ from the above two equations results in an equation describ-
ing the signature curve (see Fig. 5(b)):
a? + b? 1
(ab)*/3  (abk)?/3

— I, (k,ks) =0, (11)

where I, is an expression of k and x, defined in (10). Since there are two
unknown quantities a and b, at least two points on the ellipse are required.

Let x; and kg, ¢ = 1,2, be the curvature and its derivative at the ith
point. Then we end up with two equations in the form of (11). Subtracting
one of them from the other yields the following (assuming k; # ks):

1 (H1N2)2/3
T = (Ip(m, K1) — I (o, 582)) (12)

= c1(f€1,ﬂ2,ﬁs1,l€sz)-

The expression I.; is a semi-differential invariant, since it involves the geom-
etry at more than one points. Its value 1/(ab)?/? is independent of the two
points that are used.

The invariant I.; alone cannot distinguish ellipses with the same product
ab, or equivalently, with the same area. So we find a second invariant by
substituting I; for 1/(ab)?/? into the second term of the equation (11):

a® +b? 1 2/3 2/3 )
= k1 "Iy (K1,Kks1) — Ky "I, (Kay K
(ab)4/3 Iif/3 _ K§/3 ( 1 p( 1, Sl) 2 p( 25 82)

= cz(fﬁ,fﬁz,ﬁsl,f‘ész)- (13)

A one-to-one correspondence exists between the tuples (Ic1, Ic2) and (a,b).
Fig. 5 compares two ellipses and a circle distinguished by the invariants Iy
and I.5. From the two invariants we easily recover the values of a and b.

3.3 Hyperbola
A hyperbola has the canonical parametric form

t o ot t_ ot
x =acosh(t) =a €re  and y = bsinh(¢) = b e-¢

5 a,b>0.
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4
1 a=1.7
b=13
1 1L'21|l
05 . #a=08,b 2
a =0.9 - . #a=1.1,b=1.1
b =1.2) .;x | a=17,b=13
] 0.5 azl‘l - -
b 1.1
| 0.5
_
i 0.5 Iy

(a) (b) (c)
Fig. 5. (a) Three ellipses in the form z2/a”® + y?/b> = 1; (b) their signature curves
(the one for the circle with @ = b = 1.1 degenerates into a point (1/1.1,0)); (c)
corresponding values of the invariant pair (Ici, Ic2). The invariants are evaluated
using any two points on the same signature curve.

Similar to the case of an ellipse, we are able to eliminate ¢ from the equations
k= k(t) and ks = ks(t) and obtain the following:

a® — b? n 1

(ab)4/3 ~ (abk)2/3
where I, is again defined in (10). Taking the curvatures and derivatives at
two points on the hyperbola, from the two copies of equation (14) we derive

1 d 1 _ a? — b2
W an cz(f'ﬁl,/‘iz,ﬂsl,fiﬂ) = W-

These two invariants are in the same forms as for an ellipse but their values
are in different expressions of a and b. In particular, I.; is always negative
for the hyperbola.

The invariants Ic; and I.o completely determine the hyperbola. Compu-
tation of a and b from them is very straightforward.

—Iy(k,ks) =0, (14)

Ioi (K1, K2, K1, Ks2) = —

3.4 Invariants for Conics

Both I and I.s are also semi-differential invariants for a parabola, assuming
values 0 and 1/(2a)?/3, respectively. With curvature and derivative informa-
tion at any two different points, the sign of I.; tells the type of a conic. When
the invariant is positive the curve is an ellipse, when it is negative the curve
is a hyperbola, and when it is zero the curve is a parabola. The invariants
I.; and I, thus describe the correlations between any two points on a conic.

4 Cubics

There is no classification of all cubic curves. So it seems very difficult to
construct invariants that recognize all of them. However, we are interested in
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cubic splines, whose continuity in curvature enables them to model curved
shapes in graphics and geometric modeling. Every segment of a cubic spline
has the general and canonical parametric forms as follows:

x=a3t3+a2t2+a1t+a0, x=t2,

y = bat® + bot® + byt + by;  equivalently, y = at® + bt? + ct. (15)

In the canonical form on the right, a (> 0), b, ¢ are the shape parameters.
This section starts with two subclasses of cubic splines — cubical and
semi-cubical parabolas — and then moves on to general cubic splines.

4.1 Cubical Parabola
This class of curves has the canonical parametric form:
z=t and y=at®+ct, a> 0.

Figs. 2 and 3 plot an example and its signature and semi-signature curves.
Unfortunately, it is not obvious how to eliminate the parameter ¢ from the
expressions of the curvature k and its derivative k5. So we employ the method

’

in Sect. 2.3 and utilize the slope A = % = 3at? + c. First, we obtain

2 12a(\ —¢) _ 6a(l + A%) — 36a\(\ —¢) .
(1422)°

(14 x2)°
Note that we can obtain a and ¢ using A, «, and Ks:
ks + 362 (14 A2)°
a= (s 6) ( ) = Ipi(\ K, Ks), (16)
&% (14 \?)
=A———— " = I\ K, kg)- 17
¢ 2 (ks + 3Xk2) ep2 (A, 5, 155) (17)
The expressions I.p1 and Ic.p2 map any point on the semi-signature curve to
the shape parameters a and c, respectively. They are invariants of the curve
provided that the slope A can be determined.
Measure the tangent rotation A#y2 from point 1 to point 2. Write §12 =
tan Af5. Since the value of ¢ should be same, we have

and Ks

Icp2()\17"717’§31) = CpZ()\27'§27K/82)- (18)
Substitution of (9) with ¢ = 2 into (18) results in a quartic polynomial:
dyA} + d3)3 + do X} +did +do =0, (19)

which can be solved for A\; (and hence \s). These coefficients are
do = ksy (K3 (5075 — 1) + 2k59012) + KT (3K3012 + Ksa) 5
di = 2019 (fcsl (3&% - m52512) + 2/-@% (3/@%612 + /-652)) ,
dy = kg1 (K3 (5075 — 1) + 2K59012) + k7 (18K3812 — Ksg (5075 — 1)),
dsz = 261> (/‘651 (3&3 — /<;52512) + 2&% (3&%612 + /<532)) ,

d4 = 55%512 (3/‘11% — 14352(512) .
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4.2 Semi-Cubical Parabola
The canonical parametrization for this class of curves takes the form
z=t> and y=at®+ bt?, a>0.
Reparametrize the curve with the slope is A = 3 /2’ = 3at/2 + b and obtain

8k3(1 + A2)3/2
=yt = I s Ky Ks), 2
“ \/ 9(ks + 3AK2) p1(A 6, 65) (20)

K2(1 4+ A2
b=\ + ﬁ = Isch()\,/"\'/; K/s). (21)

Using two points, we can set up an equation:
Iscp2()\1,f‘61, lis1) = scp2()\27 K2, 532)-

This equation together with (9) again yield a quartic polynomial in A;. The
invariants for this class of curves are Iyp1 and Iscpo.

4.3 Cubic Spline

It is time now to turn to general cubic splines described by (15). Different
from its two subclasses, we cannot replace t with the slope A in the expressions
of the curvature and its derivative. So we resort to solving equations (6)—(8),
which are simplified to the following:

3at’ +2(b— Nt +¢ =0, (22)
Lt* —3at — (b—\) =0, (23)
6at + M((b A2 - 3ac) £3(b—A) =0, (24)

where L = 2(1+ %)%/ and M = Gs:ff;’} . We substitute ¢ in (24) with (22):

9a2 M2 +6a(1+M(b— ,\))t+M(b—,\)2 +3(b—)) =0. (25)
Next, the resultant of equations (23) and (25) is computed to eliminate ¢:
2
81Ma* + 18L<1 +3M(b— )\))a"’ FIL2(b— )\ (M(b A+ 3) - 0. (26)

Since M can get very large when « is small, we divide the left hand side of (26)
by 81 Ma* and denote the resulting expression as the function g(a,b, \).

With curvatures and derivatives estimated at [ > 3 points, the shape
parameters a, b, and the slope A; at the first point can be estimated through
a least-squares optimization:

l

min Z g(aa b) )‘i)27

a7ba)\1 i=1

where \;s depend on A; according to (9). To determine the third parameter
¢, we just need to eliminate the #> and ¢ terms from (22)—(24).
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5 Locating Contact

The parameter value ¢ determines the contact location on the curved shape
with the touch sensor. Since the tangent at the contact is measurable, ¢ also
determines the relative pose of the shape to the sensor. We have the following;:

(30, if parabola;

ab)2/3_po
sin ! < (“(I)QTQI)) , if ellipse;

R (“75)2/3—1)2 .
+ = { sinh e , if hyperbola;

%7 if cubical parabola;
2%@_[))7 if semi-cubical parabola;
)2 _
\ — (G 6?;“)+3(b A), if cubic spline.

6 Simulation

In simulation, we approximate the curvature and its derivative by finite dif-
ference quotients using arc length s and tangential angle ¢:

o ny D5+ As) — ¢(s — As) ., O(s+ As) —24(s) + ¢(s — As)

- 2As d o (As)? ’

The arc length between two points on the curve, close to each other, is ap-
proximated by their Euclidean distance. The rotation of the tangent from one
point to another uses the exact value since it can be measured quite accurately
in practice. Given the errors of finite differences, it is not very meaningful to
introduce simulated noise, which may either reduce or magnify such errors.!

6.1 Verification of Invariants

The first group of simulations were conducted to verify the invariants of the
three conics, cubical parabolas, and semi-cubical parabolas. The results are
summarized in Table 1, where estimation errors of k and k4 accounted for the
discrepancies between the actual values of the invariants and their estimates.

In the second group of simulations shown in Table 2, we demonstrate that
an invariant for one of the curve classes varies for another.

Finally, Table 3 reveals how much the recovered shape parameters a, b, ¢
differ from the real ones a, b, c. From the table we see that on the average the
relative errors are around 1% except for cubic splines.

1 A method introduced in [3] approximates the osculating circle with one that
passes through three local points. This curvature estimation scheme was extended
in [2]. These methods are able to generate slightly better estimates than finite
differencing but the simulation outcomes would not have been altered.
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inv. Ip Icl (12) Icz (13) Icpl Icpz Iscpl Iscpz
(10) |ellipse |hyperbola|ellipse |hyperbola| (16) | (17) | (20) | (21)
real |0.2198]0.1857| —0.2678 |1.2055| 0.3222 |6.9963|2.6127|1.3730(6.5107
min (0.2168|0.1801| —0.2729 (1.1749| 0.2937 [6.7687|1.7312|1.4111|6.3945
max |0.2230(0.1863| —0.2655 {1.2083| 0.3615 |[7.0289(|3.16841.4447|6.5834
mean|0.2198|0.1852| —0.2675 |1.2035| 0.3210 (6.9355|2.5022|1.4220/6.5154

Table 1. Invariant verification on five specific curves. Each invariant, labeled with
its defining equation, is evaluated 100 times using points randomly selected from
the corresponding curve. The shape parameters of each curve are easily recoverable
from the definitions of its invariants.

\ data| conic cubical semi-cub. cubic
inv.\ (ellipse) parabola parabola spline
—6.38(min) 2284 | —45.24

Ia - —0.04(max) 28.37 —4.94
—0.73(mean) 3.37 —16.50

1.22(stdev) 6.76 10.86

—11.97 8.54 11.66

Iepo ~15.46 _ 19.03 | 1721.04
—0.04 13.76 55.52

2.53 3.07 217.34

—265.80 7.80 —150.68

Iscpo 5.83 65.22 - 1715.73
—3.22 29.17 38.97

26.75 17.19 182.24

Table 2. Evaluating three invariants on data obtained from curves of different
classes. Each cell displays the summary over 100 evaluations on a curve.

ellip. |hyper.| par. | cub. |semi-cub.| cubic
par. par. spline
min (0.02%]0.10%0.01%|0.02%| 0.04% |0.61%
max (7.99%|9.71%|3.35%|7.49%| 8.09% (29.23%
mean|0.40%|1.15%0.36%|0.83%| 1.23% |11.27%

Table 3. Relative errors \/((a —a)/a)® + ((b — I_))/b)2 + ((¢ — €)/c)? on estimating
shape parameters. Summary over 100 curves from each class (only 25 curves from

the cubic spline class) randomly generated under uniform distributions of its shape
parameters within prescribed ranges.

6.2 Curve Recognition

We now use invariants to recognize a curve out of the six classes of quadratic
and cubic curves. For example, consider the ellipse in Figure 6(a). The values
of k and k, are estimated at t; = 0.36, to = 1.86, and t3 = 4.23. Invariant
I, has values 0.8971 and 0.4030 at the first two points, so the curve is not a
parabola. Invariant Iy yields values 0.3447, 0.3446, and 0.3449 at the three
resulting pair of points, from which we infer that the curve is an ellipse. The
recovered shape parameters (from I.; and I.2) are a~2.8609 and b=~ 1.7275.
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(a) (b) (c)
Fig. 6. Recognition of three shapes based on local geometry at three points. (a)

An ellipse with a = 2.8605 and b = 1.7263; (b) a cubical parabola with a = 3.2543
and b = —2.3215; and (c) a semi-cubical parabola with a = 2.5683 and b = 1.4102.

For the cubical parabola in Figure 6(b), a test on the invariant I.; has
failed. So we know that the curve is not quadratic. Hypothesizing cubical
parabola, we solve for A; from (19). Subsequent tests on invariant I p; (for
shape parameter a) yield values 3.2244, 3.2536, and 3.1872, and on invari-
ant Iope (for b) yield values —2.3237, —2.3237, and —2.3972. The recognition
of the semi-cubical parabola in Fig. 6(c) is similar.

7 Preliminary Experiments

The key for the applicability of our invariant-based approach lies in obtaining
reliable estimates of curvature s and its derivative k, from real data. The
tactile data used in our experiments were generated by a joystick sensor
mounted on an Adept Cobra 600 robot. Despite the Adept’s high precision,
we found that difference quotients and other estimation methods [3,2] based
on the Taylor expansion were still too sensitive to small measurement errors.

To reliably estimate x at a point, say, pg, the sensor measures n points
(including po) in its neighborhood on the shape. Then a quadratic curve
is fit over the point sequence. Differentiating this curve at py gives us the
curvature.

Similarly, we estimate curvature #; at a second point p; following po.
This is done by sensing [ more points along the shape while removing the
first ! points from the sequence (I is very small so py remains in the new
sequence). The arc length §; between py and p; is estimated by numerically
integrating the new curve fit. Continuing this process, we generate a sequence
of pairs (0, &Ko), (81, 1), - - -, (8m—1, Am—1)- Now, fit a quadratic curve over this
sequence and differentiate it to obtain curvature derivative estimates at the
m points. Fig. 7 shows the results for an ellipse and a cubic spline shape.

8 Discussion

We have introduced an invariant-based method that aims at unifying shape
recognition, recovery, and pose estimation with tactile information. Differen-
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Ky(1/em?2) It a b
real 0.373836] 2.5 | 1.75
0.01 _ [min [0.350550| 2.38636 | 1.62636

0.03 k(i /em) | max [0.404903] 2.67234 | 1.83549
mean0.3777282.511269]1.719586
(b)

(c)

i Ks(llcmz)

0.014 |

r o

0.03 K(1/cm)

(d) (e)

Fig. 7. Estimating x and derivative k, from tactile data generated by a joystick
sensor: (a) an ellipse and 20 sample points; (b) estimates (k,”s) at these points
plotted against the signature curve; (c) the invariant Ic; evaluated at 80 pairs of
the same points; (d) a closed cubic spline with 8 sample points from one of its
segment; (e) estimates (k,ks) and the signature curve of the segment.

tial and semi-differential invariants have been developed for several classes of
low-degree algebraic curves. Evaluated over a few points, these invariants cap-
ture intrinsic information about a curve. They allow us to recover the shape
parameters of the curve as well as obtain the locations of contact where the
data are supposed to be taken.

Although only quadratic curves and special cubic curves are treated, it
is straightforward to extend the results to objects bounded by segments of
these types. The invariant-based scheme also extends to a curve in implicit
form, which can be used along with curvature and its derivative to eliminate
the two coordinates. Analytical feasibility of the scheme lies in deriving an
equation that describes the signature (or semi-signature) curve. For a curve in
3D, such invariants will have to involve torsion (and possibly its derivatives).

Future work includes improvement on the robustness of curvature and
derivative estimation, invariant design for more general plane curves, and
extension to 3D surfaces.
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