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Abstract. This paper models a multibody collision in the impulse space as a state
transition diagram, where each state represents a phase during which impacts are
“active” at only a subset of the contact points. A state transition happens when-
ever an active impact finishes restitution, or an inactive impact gets reactivated,
depending on whether the two involved bodies are instantaneously penetrating into
each other or not. The elastic energy due to an impact is not only affected by the
impulse at the corresponding contact point, but also by other impulses exerted on
the two involved bodies during the impact. Consequently, Poisson’s impulse-based
law of restitution could result in negative energy. A new law governing the loss of
elastic energy during restitution is introduced. Convergence of the impulse sequence
generated by the state transition diagram is established. The collision outcome de-
pends on the ratios of the contact stiffnesses rather than on their individual values.
The collision model is then applied in an analysis of billiard shooting in which the
cue stick impacts the cue ball, which in turn impacts the pool table.

1 Introduction

Analysis of frictional impact has been a subject of controversy in order to be
consistent with Coulomb’s law of friction, Poisson’s hypothesis of restitution,
and the law of energy conservation. It requires correct detection of contact
modes (sliding, sticking, reverse sliding) and impact phases (compression and
restitution). When the sliding direction stays constant (with possible rever-
sals), the tangential impulse can be determined from the normal impulse
based on Coulomb’s law via case-based reasoning. The total impulse stays
in the plane and grows along a polyline. Routh [15] developed a graphical
method that constructs the trajectory of impulse accumulation based on Pois-
son’s hypothesis. It was applied in the subsequent studies of two-dimensional
rigid-body collisions with friction by Han and Gilmore [6] and by Wang and
Mason [18] who classified impact and contact modes and offered a solution
for each case. Later, Ahmed et al. [1] extended Routh’s method to impact
analysis for multibody mechanical systems with a similar classification.

To an impact in three dimensions, however, Routh’s method hardly ap-
plies since the impulse builds along a space curve. The sliding direction gen-
erally varies during the impact. A differential equation in the normal impulse
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can be set up and solved to determine how the sliding direction varies in the
course of the impact, as shown by Keller [9]. Closed-form solution does not
exist for many three-dimensional impact problems.

This paper deals with simultaneous collisions in three dimensions. No ex-
isting impact laws are known to model the physical process well. Previous
methods either sequence them into two-body collisions [5] by order of normal
approach velocity, or set up linear complementarity conditions at all con-
tacts [16,2]. High-speed photographs of such collisions nonetheless show that
multiple objects are simultaneously in contact rather than two at a time [17].

Stewart [17] pointed out that one difficulty with multiple contacts lies
in the lack of a continuous impact law. Observations seem to suggest, dur-
ing simultaneous collisions, the involved objects may have broken and re-
established contacts multiple times. We represent the collision process as a
sequence of states based on which impacts are instantaneously “active”, or
equivalently, which contacts are instantaneously effective. During a state,
multiple impacts may be acting upon one body. A transition from one state
to another happens when either an active impact finishes restitution or an
inactive impact gets reactivated. A state transition diagram is introduced in
Section 2 via the example of a ball falling onto another resting on the table.

The impulses produced by a pair of active impacts accumulate at a relative
rate determined by themselves and by the stiffness ratio. The elastic energy
stored at one contact point is no longer affected by just the impulse at this
point, but also by those at other contact points involving one or both of these
two bodies in the duration of this impact, which could span multiple states.
Poisson’s hypothesis may lead to overgrowth of an impulse during restitution,
driving the contact elastic energy negative sometimes. The solution is to
introduce a new law of restitution that oversees the loss of elastic energy not

the growth of impulse.1 We will also see that the outcome of impact is affected
by the ratios of stiffnesses at the contact points. This concept of “relative
stiffness” is cited in [17] as missing from the current impact literature.

Section 3 applies the state transition diagram to model billiard shooting
with a cue stick. This is a three-dimensional problem with simultaneous im-
pacts between the cue stick and the cue ball, and between the cue ball and
the pool table. Analysis of frictional contact modes is required.

In Section 4, we will discuss the extension to simultaneous collisions in-
volving three or more bodies, and introduce an ongoing project to build a
robot pool player.

2 System of Two Balls

We start by considering the problem of a rigid ball B1 with mass m1 and
velocity v0 < 0 striking down onto another rigid ball B2 with mass m2 and

1 The roles of the coefficients of restitution and friction were discussed in respect
of energy loss [4], and solutions were given to two planar single-impact problems.



A State Transition Diagram for Simultaneous Collisions 3

resting on a table. The centers of the two balls are vertically aligned, as shown
on the left in Fig. 1. The lower ball B2 in turn impacts the table. Let v1 and
v2 be the respective velocities (< 0 if downward) of the two balls during the
collision, where the gravitational forces are negligible compared to the large
impulsive forces. Our goal is to determine the ball velocities at the end.

v1

v2

F1

F2

v0

1

2 2

1

m2

m1

m1

m2

B 1

B 2

l  + x

l  + x

Fig. 1. Two-ball collision.

We attach a virtual spring between B1 and
B2, and another one between B2 and the table, as
shown on the right in Fig. 1. Let x1 and x2 be the
changes in the lengths of these springs, which have
stiffnesses k1 and k2, respectively. The kinematic
and dynamic equations are given below:

ẋ1 = v1 − v2, (1)

ẋ2 = v2, (2)

m1v̇1 = F1 = −k1x1, (3)

m2v̇2 = F2 − F1 = k1x1 − k2x2, (4)

where F1 and F2, both positive, are the contact forces, and the dot ‘·’ denotes
differentiation with respect to time. The above are a system of four differential
equations in four variables vi and xi, i = 1, 2.

Since an impact happens in infinitesimal time, it is best analyzed in the
impulse space. During the two-ball collision, there are two impulses: I1 =
∫ t

t0
F1 dt and I2 =

∫ t

t0
F2 dt with initial values I

(0)
1 = I

(0)
2 = 0. Integration

of (3) and (4) yields the ball velocities in terms of the impulses:

v1 = v
(0)
1 +

1

m1
∆I1, where ∆I1 = I1 − I

(0)
1 , (5)

v2 = v
(0)
2 +

1

m2
(∆I2 − ∆I1), where ∆I2 = I2 − I

(0)
2 . (6)

The two virtual springs store elastic energies E1 = 1
2k1x

2
1 and E2 = 1

2k2x
2
2,

respectively. To eliminate x1, from equations (1), (3), (5), (6) we obtain

dx1

dI1
=

ẋ1

İ1

=
v
(0)
1 − v

(0)
2 + ( 1

m1
+ 1

m2
)∆I1 − 1

m2
∆I2

−k1x1
. (7)

Multiply both sides of the above equation with −k1x1dI1 and then integrate.

We obtain the change in the elastic energy E1 from its initial value E
(0)
1 :

∆E1 =
(

v
(0)
2 − v

(0)
1

)

∆I1 −
1

2

( 1

m1
+

1

m2

)

∆I2
1 +

1

m2

∫ I1

I
(0)
1

∆I2 dI1. (8)

Similarly, from equations (2) and (6) we derive the change in E2 from E
(0)
2 :

∆E2 = −v
(0)
2 ∆I2 −

1

2m2
∆I2

2 +
1

m2

∫ I2

I
(0)
2

∆I1 dI2. (9)
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A relationship between the two impulses I1 and I2 can be now set up:

dI2

dI1
=

İ2

İ1

=
k2x2

k1x1
=

√
k2E2√
k1E1

=

√

k2

k1
·

√

√

√

√

E
(0)
2 + ∆E2

E
(0)
1 + ∆E1

. (10)

With no closed-form solution to (10) in general, the impact process is
simulated via numerical integration with a step size of I1, say, h. To initialize
ρ = dI2

dI1
(h), we plug into (8)–(10) the values I1(h) = h, I2(h) ≈ ρh, and

∫ h

0
∆I2 dI1 =

∫ ρh

0
∆I1 dI2 ≈ 1

2ρh2. Solve the resulting quadratic equation
in ρ:

dI2

dI1
(h) =

2k2

k1 · (b +
√

b2 + 4k2/k1)
, where b = −2·m2v0

h
−1−m2

m1
+

k2

k1
.(11)

As h tends to zero, b goes to infinity. Hence dI2
dI1

(0) = limh→0 ρ = 0.

2.1 State Transition Diagram

An impact is divided into two stages [12, p. 212]: compression and restitution.
In the classical problem of a particle of mass m with downward velocity v0

striking a horizontal table, the impact ends compression when the velocity
becomes zero, which gives the impulse I = −mv0. Poisson’s hypothesis states
that I will accumulate −emv0 more during restitution to yield the final ve-
locity −ev0, where e is the coefficient of friction. Setting up a virtual spring
at the contact point, we can derive the elastic energy E = −v0I − 1

2m
I2.

Restitution starts with E assuming the maximum value 1
2mv2

0 and ends with
loss of energy 1

2mv2
0 · (1− e2). Since 0 ≤ e ≤ 1, there is always enough elastic

energy to provide the impulse accumulation −emv0 during restitution.
Coming back to the two-ball collision problem, the ball-ball and ball-table

impacts have coefficients of restitution e1, e2 ∈ [0, 1], respectively. Compres-
sions end when ẋ1 = 0 and ẋ2 = 0, respectively; or equivalently, by (1), (2),
(5), and (6), when

v0 +

(

1

m1
+

1

m2

)

I1 −
1

m2
I2 = 0 and I1 = I2, respectively. (12)

The two impacts will hardly start restitution at the same time, neither
will they end restitution so. When one of them, say, between the two balls,
finishes restitution first, the other one (between the ball and the table) will
continue. As a result, the two balls may start moving toward each other at
some point later, reactivating the first impact.

The above discussion suggests us to partition the collision process into
(repeats of) three states: S1 when both impacts are active, S2 when only the
ball-table impact is active, and S3 when only the ball-ball impact is active.
Fig. 2 shows a state transition diagram. The collision starts with the state S1.
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S 2 S 3

S 1

v1

v2

v1

v2

v2

v2

v1

v1

v  = 02

v  > 02

(                   )v  > v  > 1 2 0 (                   )v  > v  > 1 2 0

1

2

v  = v 

ends restitution
otherwise, spring 1otherwise, spring 2

ends restitution

spring 2 ends

before spring 1
ends restitutionends restitution

before spring 2

restitution first
v  > v 1 2

restitution first
(            )

21

(           )

spring 1 ends 

restitution together
both springs end 

End of Collision

Fig. 2. State transition diagram for the two-ball collision in Fig. 1. During each
state, v1 and v2 can be either upward or downward, except v2 is upward in S3.

A transition from S1 to S2 happens when the ball-ball impact finishes resti-
tution before the ball-table impact. So the two balls are “breaking” contact
momentarily. Since the impulse I1 was in restitution just before the transi-
tion, ẋ1 > 0, which by (1) implies v1 > v2 when S2 begins. Because gravity
is neglected during the collision, v1 will not vary during S2. The state will
transition back to S1 when v2 increases to become equal to v1 before restitu-
tion ends. If this does not happen, the ball-table impact will finish restitution
with v1 ≥ v2, hence the end of collision.

Similarly, a transition from S1 to S3 happens when the ball-table impact
finishes restitution before the ball-ball impact. The state S3 will transition
to S1 when v2 = 0, that is, when the lower ball is “re-establishing”contact
with the table. Otherwise, the collision will end within the state.

The transition diagram describes the collision as a sequence of states, each
being one of S1, S2, S3. Now, Ii, i = 1, 2, represent the impulses accumulated
since the start of the collision. An impact may start with one state, end
compression in another, and finish restitution with a third.

By induction on the number of states, we can generalize (5) and (6):

v1 = v0 +
1

m1
I1 and v2 =

1

m2
(I2 − I1). (13)

It is easy to show that the conditions (12) respectively hold when the two
impacts end their compressions in a state.



6 Yan-Bin Jia, Matthew T. Mason, and Michael A. Erdmann

2.2 An Energy-Based Model

The superscript ‘(0)’ continues to refer to the value of a physical quantity at
the start of a state, and the notation ‘∆’ its increment so far in the state. The
relationship (8) between ∆E1 and ∆I1 in the state S1 depends on the masses
and initial velocities of both balls, as well as an integral of ∆I2 over I1. If
we were to let the impulse I1 accumulate by a factor of e1 after restitution
under Poisson’s hypothesis, there may not be enough elastic energy E1 left
to provide such an increase.2 To deal with multiple simultaneous impacts, we
limit the amount of energy to be released during restitution relative to the

amount accumulated during compression. Since in the single particle impact
case, the loss of energy is 1

2mv2
0 · (1− e2), we see that e2 is the needed ratio.

When compression ends, the elastic energy is at its maximum Emax. Resti-

tution will finish when E = (1−e2)Emax. The remaining amount e2Emax can
be seen as lost at the state transition instead of at the end of compression.
In this view, during a state, equations (8) and (9) hold for our convenience,
while the total (elastic and dynamic) energy is conserved.

Single-Impact States The state S2 starts with v
(0)
2 < v

(0)
1 since restitution

of the ball-ball impact has just finished. During the state, v1 ≡ v
(0)
1 and ∆I1 ≡

0. From (6), we conclude that restitution, if not in process, would happen

during the state when ∆I2 = −m2v
(0)
2 with E2max = E

(0)
2 + 1

2m2v
(0)
2

2
by (9).

The next state will be S1 if S2 starts during compression and v
(0)
1 < 0. Since

v2 increases toward zero by (6), it will reach v
(0)
1 before compression ends,

hence the transition to S1. Under the new energy-based model, a transition

to S1 will also happen if S2 starts during restitution with E
(0)
2 + 1

2m2v
(0)
2

2
>

1
2m2v

(0)
1

2
+ (1− e2

2)E2max. If neither case of transition happens, the collision
will end. The impulse accumulation during S2 is

∆I2 =











m2(v
(0)
1 − v

(0)
2 ), if S1 next,

m2

(
√

v
(0)
2

2
+ 2

E
(0)
2 −(1−e2

2)E2max

m2
− v

(0)
2

)

, if impact ends.

A similar analysis based on (8) applies to S3 in determining whether the
collision will end or S1 will follow, and the amount ∆I1 during S3.

Double-Impact State Evolution in the state S1 is governed by the dif-
ferential equation (10) with increasing impulses I1 and I2. If S1 is the start
of the collision or follows S3, I1 is the primary impulse (variable), and I2

is the secondary impulse (function of I1). If S1 follows S2, the roles of the
two impulses reverse. Similar to (11), we initialize the impulse derivatives
dI1
dI2

(h) or dI2
dI1

(h) accordingly for numerical integration. Again, dI1
dI2

(0) = 0

and dI2
dI1

(0) = 0, respectively, in these two cases.

2 An example will be given at the end of Section 2.3.
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At each step of the numerical integration of (10), we check (12) to see
if compression has just ended for either impact, and if so, set the maximum
elastic energy E1max or E2max accordingly. The state transitions to S2 when
E1 = (1−e2

1) ·E1max during restitution of the ball-ball impact, or to S3 when
E2 = (1 − e2

2) · E2max during restitution of the ball-table impact, whichever
occurs earlier.

2.3 The Impulse Curve

In the state S1, the differential equation (10), along with (8) and (9), has
only one occurrence of the stiffness ratio k2

k1
but none of k1 or k2 separately.

Meanwhile, the outcome of the states S2 and S3 are independent of k1 or k2.

Theorem 1. The outcome of the collision depends on the stiffness ratio

k1/k2 but not on individual values of k1 and k2.

The next theorem bounds the total elastic energy using the impulses.

Theorem 2. The following is satisfied during the collision:

0 ≤ E1 + E2 ≤ −v0I1 −
1

2m1
I2
1 − 1

2m2
(I1 − I2)

2. (14)

Proof. By induction on the number of states while making use of equa-
tions (8), (9), and (13). Details are omitted.

v  > v 1 2

v  < v 1 2

v  < v 1 2

v  <2 0

v  <2 0

v  >2 0

1 0m v

I2

I1

v  > v 1 2
v  >2 0

1 0m v−2

1 0m v−2

l  1

l2

I

IV

II

1 0m v

2m v0

−

−

III

Fig. 3. Impulse plane.

In the plane with I1 and I2 as the two
axes, the impulse curve describes the evolution
of their values during the collision. Theorem 2
states that this curve is bounded by an ellipse:

1

2m1
I2
1 +

1

2m2
(I1 − I2)

2 + v0I1 = 0. (15)

Centered at
(

−v0 cos θ
cos2 θ

m1
+

1−sin(2θ)
m2

, v0 sin θ
sin2 θ

m1
+

1+sin(2θ)
m2

)

,

the ellipse rotates from the x-axis by an an-

gle θ = 1
2 arctan

(

− 2m1

m2

)

, as shown in Fig. 3.

It is tangent to the I2-axis and the line
I1 = −2m1v0 at the origin and the point
(−2m1v0,−2m1v0), respectively.3

The impulse curve is monotone in the sense
that I1 and I2 never decrease. This is clear if
the state is S2 or S3 in which one of the im-
pulses increases while the other does not vary.

3 The two horizontal bounding lines are I2 = (−m1 ± √
m1m2)v0 with points of

tangency to the ellipse at I1 = −m1v0.
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2I

I1

1

2

l1

l2

4

3

state v1 v2 I1 I2 Comp. Res.

S1 0.6088 0.3573 3.6085 3.9661 C2-C1-R2

S3 0.9661 0 3.9661 3.9661

S1 2.4414 −0.1211 5.4414 5.3202 R1

S2 2.4414 0.7355 5.4414 6.1769 C2-R2

(b)

E1

3.793.5726

(0.3826, 0.6692)0.6692

(3.79, 0.4609)

2

13
4

2E

(a) (c)

Fig. 4. The impulse and energy curves for a collision of two balls as in Fig. 1 with
masses m1 = m2 = 1kg, the stiffness ratio k2

k1
= 10, the coefficients of restitution

e1 =
√

0.9 and e2 =
√

0.4, and the upper ball velocity v0 = −3m/s.

After S1 starts, the strain energies E1, E2 > 0, which implies the derivative
dI2/dI1 =

√
k2E2/

√
k1E1 > 0, hence the monotonicity.

Add two lines ℓ1 and ℓ2 defined by equations (12). Referred to as the
compression lines, they partition the feasible elliptic region (I1 ≥ 0) into four
smaller regions I–IV. The impulse curve evolves from the origin into region I
within the state S1 as dI2

dI1
increases from 0. As I1 increases unconstrained, the

curve will cross ℓ1 (or ℓ2) when the ball-ball impact (or the ball-table impact)
ends compression. During the state S2, the curve stays to the right of the line
ℓ1, and evolves vertically upward, ending either inside region IV (in which
case the collision ends) or on the line ℓ1 for a transition to S1. Similarly,
during S3, the curves stays to the left of ℓ2 and evolves horizontally to the
right, ending either inside the region IV or on the line ℓ2 for a transition to
S1.

Fig. 4 illustrates a collision instance which results in a sequence of four
states S1, S3, S1, S2. In (a), the impulse curve is plotted, along with the
bounding ellipse: −3I1 + 1

2I2
1 + 1

2 (I1 − I2)
2 = 0 and the two compression lines

ℓ1: −3 + 2I1 − I2 = 0 and ℓ2 : I1 = I2. The impulse segments corresponding
to different states are labeled in the order and separated by the dots. The
first segment (of a S1 state) crosses ℓ2 before ℓ1, indicating that the ball-table
impact goes into restitution before the ball-ball impact. The ball-table impact
subsequently finishes restitution. This is marked as C2-C1-R2 in table (b),
where each row describes the status at the end of a state. Diagram (c) in the
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figure plots the evolution of the elastic energies E1 and E2 with four segments
also labeled in the state order. It shows energy losses at the end of all but the
second states. The loss in the total (elastic and dynamic) energy E during
the collision is calculated to be 1.2494.

Suppose restitution were decided by impulse accumulation according to
Poisson’s hypothesis for single impact. The same collision would generate an
impulse curve exiting the bounding ellipse (15) in the fourth state — the
increase of I1 to the required value 5.906 would result in a negative elastic
energy (E1 = −1.01).

Every state terminates. This is trivial for S2 and S3 for which ∆I1 and
∆I2 are given in Section 2.2. Within the state S1, the ‘primary impulse’ must
stop increasing because the impulse curve is bounded inside the ellipse (15).

Denote by I
(i)
1 and I

(i)
2 the values of the two impulses at the end of the

ith state. The sequence {(I(i)
1 , I

(i)
2 )} is monotone non-decreasing. In case it

is finite, the state transitions terminate with v1 ≥ v2 ≥ 0 according to the
diagram in Fig. 2 as the impulse curve stops inside region IV in Fig. 3 or on
it boundary.4 In case the sequence is infinite, because it is bounded inside the
ellipse (15), by a result from calculus it must converge to some point (I∗1 , I∗2 ).
We can show that this point must lie on the boundary of region IV.

Theorem 3. The state transitions will either terminate with v1 ≥ v2 ≥ 0
or the generated impulse sequence will converge with either v1 = v2 ≥ 0 or

v1 > v2 = 0.

As v0 scales by a factor of s, we can show that throughout the collision the
impulses I1, I2 and the velocities v1, v2 scale by s while the elastic energies E1

and E2 scale by s2. The differential equation (10) still holds after the scaling,
as well as the conditions (12) for ending of compressions and the conditions
on state transitions.

Theorem 4. At the end of the collision, the ratios v1/v0 and v2/v0 are con-

stants depending on m1, m2, e1, e2 and the stiffness ratio k1/k2 only.

2.4 Preliminary Experiment

To validate the collision model, we let a ping pong ball B1 fall onto another
one B2 resting on a plexiglass block. The ball has mass 0.00023kg and radius
0.019m. The block is placed horizontally on the marker tray of a (vertical)
office whiteboard, and against a vertical axis ℓ drawn on the board. The ball
B1 is held in the hand. Both balls are positioned almost in contact with the
whiteboard such that ℓ “passes through” their centers in the frontal view.

To measure the coefficient of restitution e2 between a ball and the plex-
iglass surface, we drop the ball from certain height h1 onto the surface
and record the rebounding height h2 (on the axis by human vision). Thus

4 The curve will reach the bounding ellipse at termination only if e1 = e2 = 1.
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e2 ≈
√

h2/h1. Sixteen measurements from different heights (with four balls)
have generated a mean estimate of 0.846529 with a standard deviation of
0.020827. To measure the coefficient of ball-ball restitution e1, B2 is held
steady on the surface, and B1 is dropped from the same height onto B2

multiple times with the highest rebound (from the closest-to-a-perfect hit)
recorded. The mean value of e1 calculated over eight different dropping
heights is 0.807755 with standard deviation 0.021231.

v0

v2

v1

one trial

(     )m/s

(     )m/s

Fig. 5. Collisions between two ping pong balls
and a plexiglass surface: experimental results
(dots) vs. predictions (lines) by the impact
model (with guess k2/k1 = 10).

A collision trial involves
dropping B1 from a fixed height
onto B2 multiple times, and
choosing the one with the high-
est rebounds of both balls. The
input velocity v0 and the out-
put velocities v1 and v2 are cal-
culated. Results from ten trials,
each with a different dropping
height, are plotted in Fig. 5 as
pairs of points (−v0, v1) and
(−v0, v2). Also shown are the
two lines v1 and v2 as v0 varies
from −2m/s to −4m/s. Despite
the rather primitive setup and
measurement method, the re-
sult suggests a reasonably good match between the model and the physical
collision process.

3 Shooting a Billiard

I2z

c
I1

stick
cue

cue 
ball

n

Fig. 6. Pool shot.

We apply the impact model to the problem of a cue stick
shooting the cue ball in the game of pool, as illustrated
in Fig. 6. The cue stick has initial velocity vc0. Let c be
the unit vector vc0/‖vc0‖, n the unit normal at the point
of impact on the ball, and z the unit normal at the table
contact. The condition n · c < 0 must hold for the shot
to happen. During the shot, we assume that the cue stick
is constrained to move along c or −c.5 The cue stick has
velocity vc, the ball has velocity v and angular velocity
ω, all varying during the shot.

Denote by I1 and I2 the impulses at the cue-ball and the ball-ball con-
tacts, respectively, as shown in the figure. The impulse I1 consists of a normal
component I1nn and a tangential component I1⊥. The impulse I2 consists of
a vertical component I2zz and a horizontal component I2⊥. We have I1n > 0
or I2z > 0 whenever the corresponding impact is active.

5 This is the case with our design of a mechanical cue stick to be shown in Fig. 8.



A State Transition Diagram for Simultaneous Collisions 11

S 1

vc

2

n

z

ω

v

1

Fig. 7. State S1.

Two virtual springs, with stiffnesses kcb and kbt, are
attached at the points of impact in alignment with the
normals n and z, respectively. Based on the impact
model, the shot by the cue stick has three states: S1

(illustrated in Fig. 7) during which both the ball-ball
and the ball-table impacts are active, S2 during which
only the ball-table impact is active, and S3 during which
only the ball-ball impact is active. The shot starts with
S1 and ends in either S2 or S3.

Denote by vcb the relative velocity of the cue stick to the ball, and by vbt

that of the ball to the pool table. The state transition diagram has the same
structure as that in Fig. 2 except in the transition conditions, v1 − v2 and
v2 are respectively replaced by the normal velocity components vcb · n and
vbt · z. A cue-ball impact is in compression when vcb · n < 0. A ball-table
impact is in compression when vbt · z < 0.

If the cue stick shoots the ball below its equator (i.e., n · z < 0) or at the
equator horizontally or upward, only the cue-ball impact exists. In this case,
the transition diagram has only one state — S3.

3.1 Dynamics and Impact State Analysis

The symbols (0) and ∆ carry the same meanings as in Section 2. For instance,

∆vcb = vcb − v
(0)
cb is the change in the relative velocity of the cue stick to

the cue ball during a state from its starting value v
(0)
cb .

Let M be the mass of the cue stick. Let the ball have radius r and mass
m, thus angular inertia 2

5mr2. Changes in the velocities during a state can
be expressed in terms of the impulse accumulations ∆I1 and ∆I2:

∆vc =
1

M
(∆I1 · c)c, ∆v =

1

m
(∆I2 − ∆I1), (16)

∆ω =
5

2

1

mr2

(

rn × (−∆I1) + (−rz) × ∆I2

)

, (17)

∆vcb = ∆vc − ∆v − ∆ω × (rn), ∆vbt = ∆v − ∆ω × (rz). (18)

To find out how the normal impulses I1n = I1 · n and I2z = I2 · z are
related to each other in the state S1, we notice that the two virtual springs
at the cue-ball and the ball-table contacts have their lengths change at the

rates ẋ1 = n · (v(0)
cb + ∆vcb) and ẋ2 = z · (v(0)

bt + ∆vbt), respectively. From

these rates, İ1n = −kcbx1, and İ2z = −kbtx2, we obtain the derivatives dx1

dI1n

and dx2

dI2z
as linear expressions in ∆I1 and ∆I2 over −kcbx1 and −kbtx2,

respectively. Multiplying away the denominators in the derivative equations
and integrating both sides of each equation, we obtain the changes in the
elastic energies:

∆E1 = E1 − E
(0)
1 = −n ·

(

∆I1nv
(0)
cb +

( 1

M
ccT +

1

m

)

D1 −
1

m
D2

)

, (19)
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∆E2 = E2 − E
(0)
2 = −z ·

(

∆I2zv
(0)
bt − 1

m
D3

)

− 1

m
D4, (20)

where the integrals during the state are defined as D1 =
∫ I1n

I
(0)
1n

∆I1 dI1n,

D2 =
∫ I1n

I
(0)
1n

∆I2 dI1n, D3 =
∫ I2z

I
(0)
2z

∆I1 dI2z , and D4 = 1
2∆I2

2z . This sets up

a differential relationship between I1n and I2z :

dI2z

dI1n

=
İ2z

İ1n

=
−kbtx2

−kcbx1
=

√

kbt

kcb
·

√

√

√

√

E
(0)
2 + ∆E2

E
(0)
1 + ∆E1

. (21)

The system of equations (19)–(21), along with a contact mode analysis,
determines the evolution within the state S1. A closed-form solution does not
exist in general. Numerical integration is performed as follows.

Entering a state, we need to set dI1n to h and compute dI2z/dI1n if at
the start of the shot or the previous state is S3, or set dI2z to h and compute
dI1n/dI2z if the previous state is S2. The tangential impulse increments dI1⊥

and dI2⊥, as well as D1, D2, D3, D4, are also initialized. This is similar to
that for the two-ball collision as described right before Section 2.1 but is
much more involved since we need also determine the contact modes.

After initialization, iterate until one of the impacts ends restitution. At
each iteration step, update vcb, vbt according to (18), and E1, E2 according
to (19)–(20). In case one impact is starting restitution, set maximum elastic
energy E1max or E2max accordingly. Compute dI1n and dI2z by (21), and
I1⊥ and I2⊥ based on a contact mode analysis to be described below. The
iteration step finishes with updating the values of ∆I1, ∆I2, D1, D2, D3, D4.

Contact Modes Contact modes depend on the tangential components vcb⊥

and vbt⊥ of the two contact velocities vcb and vbt. Let µcb and µbt be the
coefficients of friction between the cue tip and the ball and between the ball
and the table, respectively. When a tangential velocity, say, vcb⊥, is not zero,
the cue tip is sliding on the ball. We have dI1⊥ = −µcbdI1n · v̂cb⊥ under
Coulomb’s law, where v̂cb⊥ = vcb⊥/‖vcb⊥‖. Similarly, dI2⊥ = −µbtdI2z ·
v̂bt⊥ when the ball is sliding on the table.

When one tangential velocity is zero, there are three cases: (1) vcb⊥ = 0
but vbt⊥ 6= 0, (2) vbt⊥ = 0 but vcb⊥ 6= 0, and (3) vcb⊥ = 0 and vbt⊥ = 0. We
here treat the first case only as the other two cases can be handled similarly.

In case (1), dI2⊥ = −µbtdI2z · v̂bt⊥. We obtain the derivative of vcb⊥

with respect to I1n in terms of those of the tangential impulses I1⊥ and I2⊥.
To stay in sticking contact, dvcb⊥/dI1n = 0, which determines the value of
dI1⊥/dI1n. If ‖dI1⊥/dI1n‖ ≤ µcb, the contact stays sticking. Otherwise, the
contact starts sliding in the direction of dvcb⊥/dI1n, which can be solved.

Ball-Table Impact Only In the state S2, E1 = 0 and I1 = 0. In the
case that S2 begins during compression, we set the maximum elastic energy

E2max = E
(0)
2 + 1

2m(v
(0)
bt · z)2. From (16)–(18) under ∆I1 = 0, the change
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in the tangential velocity is ∆vbt⊥ = (1 − zzT )∆vbt = 7
2m

∆I2⊥. So vbt⊥

and I2⊥ will not change their directions during the state. Once vbt⊥ reduces
to zero, it will stay zero so as not to contradict Coulomb’s law. To make

v
(0)
bt zero, ∆I2⊥ = −mv

(0)
bt , which requires ∆I2z ≥ m

‖v(0)

bt
‖

µbt
. Also, S2 would

switch to the state S1 when vcb · n = 0. We hypothesize the outcome of S2

(a transition to S1 or the end of collision), and in the first case, the contact
mode (sticking or sliding). Then we test these hypotheses by checking some

derived inequalities which depend on v, v
(0)
c , v

(0)
bt , E

(0)
2 , ∆E2, and E2max.

Cue-Ball Impact Only Entering the state S3 from S1, the ball-table

impact had just finished restitution, so v
(0)
bt · z > 0. Substituting ∆I2 = 0

into (18), we obtain the change in the tangential velocity: ∆vcb⊥ = 1
M

(c ·
∆I1)c⊥ + 7

2m
∆I1⊥. Two special cases, c = n and c · z = n · z = 0, can be

treated with analyses similar to that for the case of ball-table impact only.
Generally, I1⊥ varies its direction along a curve in the tangent plane. Nu-

merical integration similar to that described earlier for the two-impact state
is employed. The procedure is nevertheless simpler given only one impulse I1.

3.2 Billiard Simulation

Table 1 shows four different shots and the trajectories6 resulting from three
of them. With some simplifications7, the ball trajectory is completely deter-
mined by the x and y components of its velocity v and angular velocity ω. It
is known that the ball will first slide along a parabolic arc (unless ω · v = 0)
and then roll along a straight line before coming to a stop.

The first shot, vertical but not through the ball center, yields a straight
trajectory in figure (a). The second shot (figure (b)), horizontal along the
x-axis, hits the point at the polar angle 3π

4 on the ball’s equator. Due to
friction, the ball trajectory forms a smaller angle with the x-axis than with
the y-axis, exhibiting some effect of English. The third is a jump shot in the
x-z plane. The last one, shown in figure (c), is a massé shot with the cue
erected.

4 Discussion and Future Work

The introduced impact model makes use of the fact that the velocity and
angular velocity of a body in simultaneous collisions are linear in the impulses
at its contact points (with other bodies) like in (5)–(6) or (16)–(17). The
linearity carries over to an object of arbitrary shape with angular inertia
matrix Q. Suppose the forces f i are applied on the object at the locations ri.

6 The trajectory equations are omitted, though some can be found in [11].
7 We ignore the effects on the trajectory due to (possibly) multiple collisions be-

tween the ball and the table.
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shot n v
(0)
c v ω

vertical (−1,−2,1)
√

6
(0, 0,−2) (0.3963, 0.7926, 0.4506) (27.97,−13.98, 0)

horizontal (−
√

2
2

,−
√

2
2

, 0) (0.8, 0, 0) (0.6299, 0.4614, 0) (0, 0, 10.42)

jump (−
√

2
2

, 0,−
√

2
2

) (1, 0,−1) (1.169, 0, 0.1883) (0, 13.15, 0)

massé (−2,−1,12)
√

149
(4, 0,−16) (−0.3253, 0.2938, 6.232) (−88.48, 179.8,−3.178)

(a) (b) (c)

Table 1. Four shots at the cue ball (with the x-y plane on the pool table). Trajec-
tories (a), (b), (c) are produced by the 1st, 2nd, 4th shots, respectively. On each
trajectory, the red dot marks where sliding switches to pure rolling; and the green
line represents the cue stick. We use the following measured physical constants:
m = 0.1673kg, M = 0.5018kg, r = 0.0286m, µbt = 0.152479, ecb = 0.656532, and
ebt = 0.51625. We set µcb = 0.4 [14] and the stiffness ratio kcb/kbt = 1.5.

Integrating the dynamic equation
∑

i ri×f i = Qω̇+ω×Qω over the duration
∆t of an impact, we obtain

∑

i ri × Ii = Q∆ω since ω is bounded.

The state transition diagram can deal with three or more impact points
via state partitioning based on which impacts are instantaneously “active”
and which are not. A transition happens whenever the set of active impacts
changes. The evolution within a state is driven by the primary impulse. The
elastic energy at a contact can still be expressed in terms of the impulses
affecting the two involved bodies as in (8)–(9). A differential relationship
like (21) holds between the active normal impulses at two contact points.

Fig. 8. A mechani-
cal cue stick.

We would like to compare the model with other exist-
ing models [3,8,5] on multiple impacts. Our main effort,
though, will be experimental verification of the impact
model for billiard shots. A shooting mechanism has been
designed as shown in Fig. 8. It includes a steel cue stick
constrained to linear motions by ball bearings inside an
aluminum box. The cue stick can be elevated by adjust-
ing the slope of the attached incline. We plan to examine
issues like area contact, shearing effect of the cue tip,
bending of the cue stick, gravity, etc.

The long term objective is to design a robot able to
play billiards with human-level skills based on understanding of the mechan-
ics. To our knowledge, none of the developed systems [13,10,7] perform shots
based on the mechanics of billiards, or have exhibited real shooting skills.
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