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Abstract. This paper studies modeling of tangential compliance as two rigid bod-
ies collide in the space. Stronge’s spring-based contact structure [13, pp. 95-96] is
extended to three dimensions. Slip or stick is indicated by the tangential motion of a
massless particle connected to the contact point (viewed as an infinitesimal region)
on one body via three orthogonal springs. We show that the effect of tangential
compliance can be analyzed using normal impulse rather than time, contrary to
a previous claim by Stronge. This is primarily due to the ability of updating the
elastic energies of the three springs without knowledge of their stiffnesses or length
changes. The change rates, nevertheless, are computable. So are sliding velocity and
tangential impulse. The latter is then integrated into impact equations and contact
kinematics, making the whole system driven by normal impulse alone. Examples
include a ball and a pencil bouncing on a table, and a massé billiard shot. The
theory has potential impact on impulsive robotic manipulation in which the ability
to deal with friction and compliance is vital for skillful maneuvers.

1 Introduction

Impulse-based manipulation is an area in robotics where very little work [6,14]
is known. An impulsive force has very short execution time, and thus good
potential for improving task efficiency. Its use could considerably simplify the
robotic mechanism needed to perform a manipulation task, while avoiding
uncertainties accumulated over repeated complex operations. The primary
reason for the lack of research attention is possibly because the foundation of
modeling rigid body impact is not fully developed and the existing theories
often seem either too simple to be realistic or too complex to be applicable,
especially in the presence of friction and compliance, not to mention nonlinear
viscoelastic effects. Discrepancies often exist between an introduced theory
and the findings from an experiment intended for its validation.

Before presenting some related work on impact mechanics, we give a brief
review of rigid body impact. Suppose during an impact the ith contact force
f i is applied at the location ri on a body. Integration of the acceleration
equation V̇ = dV /dt =

∑

i f i/m over the impact duration ∆t yields the
total impulse

∑

i Ii = m∆V . Similarly, integrating the angular acceleration
equation

∑

i ri × f i = Qω̇ + ω × Qω, where Q is the body’s angular inertia
matrix, we obtain

∑

i ri × Ii = Q∆ω since ω is bounded and ∆t → 0. The
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following linear impact equations relate the body’s velocities to individual
impulses:

∆V =
1

m

∑

i

Ii and ∆ω = Q−1
∑

i

(ri × Ii). (1)

An impulse I can be decomposed into a component of magnitude In along
the contact normal and a tangential component I⊥. The normal impulse In

increases during both compression and restitution phases of impact. The ratio
of its amount of accumulation during restitution to that during compression
is a constant under Poisson’s hypothesis. In solving an impact problem, In is
often treated as the variable [9] with whose growth the velocities, the contact
mode, and the impact phase are updated.

The tangential impulse I⊥, meanwhile, depends on the sequence of con-
tact modes that occur during the impact. If the contact is sliding, the differ-
ential accumulations dI⊥ and dIn are related under Coulomb’s law of friction,
with the former opposing the instantaneous slip direction. If the contact is
sticking, dI⊥ is in a direction to counter the tendency of slip. As the direction
varies, the tangential impulse accumulates along a plane curve, and the total
impulse along a space curve. A closed-form solution rarely exists.

Efforts on impact analysis have struggled over the consistencies between
laws of Coulomb’s friction and energy conservation, and Poisson’s impulse-
based hypothesis of restitution. Routh’s graphical method [10] to construct
the impulse trajectory has proven successful for analyzing 2-dimensional im-
pacts, and has been later extended by various researchers [4,15,1]. For 3-
dimensional impact, Darboux [3] was the first to describe impact dynamics
in terms of normal impulse in the form of a differential equation. His result
was later rediscovered by Keller [9] who also used the equation’s solution to
determine the varying slip direction.

The above efforts have neglected the effect of tangential compliance and
assumed that all work done by the tangential reaction force is lost to friction.
When tangential compliance is not negligible, however, part of the work is
converted into recoverable internal energy, despite the loss of the remaining
part to friction. The approaches [2,11], designed to produce a ratio of tan-
gential to normal impulse equal to the coefficient of friction, did not exactly
follow Coulomb’s law of friction. Stronge [13] developed a lumped parame-
ter representation of compliance, and applied a time-dependent analysis to
track the change in the tangential velocity during a collision. His model could
predict slip or stick at the contact under Coulomb’s law. However, without
knowing the duration of impact, the analysis can only be used to perceive
contact modes qualitatively rather than to carry out specific computation.

Computation of tangential impulse is the key to solving an impact prob-
lem and the focus of this paper. We extend the structure of Stronge’s linear
model of planar impact with compliance [13, pp. 95-96] to develop a theory
for 3-dimensional impact that is based on normal impulse only and consistent
with both laws of Coulomb friction and energy conservation.
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2 Tangential Impulse

During a collision of two bodies, the gravitational forces are negligible com-
pared to the contact force. The configuration can be oriented to keep the
contact tangent plane horizontal. To model tangential compliance, we first
extend the planar contact structure used by Stronge [13, pp. 95–96] to three
dimensions. The “contact point” on the upper body does not directly touch
the lower body but is rather connected to a massless particle p via three
springs respectively aligned with the upward normal n̂ and two orthogonal
tangential directions û and ŵ, all unit vectors, as shown in Fig. 1. The di-

p
enlarged

up

n
w

u

n
w

contact tangent plane

Fig. 1. Compliance model for 3-dimensional impact. The contact point, initially
coinciding with the particle p, is blown up into a small region (shown on the right)
connected to p via three springs.

rection û is chosen to oppose the tangential component of the initial contact
velocity v0, and ŵ = n̂ × û. All velocities will be measured along these
directions but not relative to p which may move during impact.

The contact force F on the upper body is decomposed as F = Fuû +
Fwŵ + Fnn̂, with each component exerted by one of the three springs. The
impulse I =

∫

F dt also has components In, Iu, Iw, respectively in the three
orthogonal directions; namely,

I = Inn̂ + Iuû + Iwŵ. (2)

2.1 Impact Model

The impact starts with compression and ends with restitution. In the com-
pression phase, the normal spring compresses and its elastic energy En builds
up while the normal component vn of the contact velocity v decreases. Com-
pression ends when vn = 0; at this moment En has the maximum value, say,
Emax. During restitution, the normal spring extends, releasing an amount e2Emax
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of the energy, where e ∈ [0, 1] is referred to as the energetic coefficient of

restitution. The conventional kinetic coefficient of restitution, introduced by
Poisson as the ratio between the normal impulse released during restitution
to that accumulated during compression, is not consistent with energy con-
servation when the direction of contact slip varies during collision [13, p. 47].

We adopt Stronge’s explanation [13, p. 96] for the energy loss (1−e2)Emax:
at the moment restitution starts, the normal stiffness suddenly scales up 1/e2

times. Namely, the normal stiffness k during the impact is given by

k =

{

k0, compression,
k0/e2, restitution.

(3)

where k0 is the original stiffness. Meanwhile, the change n in the normal
spring length suddenly varies by a factor of e2. The normal contact force Fn

nevertheless stays the same at this phase transition.
The two tangential springs have the same stiffness k⊥ which is invariant

during the impact. The ratio η2
0 = k0/k⊥ is often considered a constant that

depends on the Young’s moduli and the Poisson’s ratios of the materials in
contact.1 In the analysis below, we will use the ratio

η2 = k/k⊥, (4)

where η = η0 during compression and η = η0/e during restitution.
Denote by n, u, w the changes of length of the three springs, and En, Eu, Ew

the elastic energies they store, respectively. The contact force components and
the elastic energies are given below:

Fn = −kn ≥ 0, Fu = −k⊥u, Fw = −k⊥w; (5)

En =
1

2
kn2, Eu =

1

2
k⊥u2, Ew =

1

2
k⊥w2. (6)

Impulse Derivatives Our objective is to describe the entire system in terms
of the normal impulse In. To avoid any ambiguity, from now on the notation
‘˙’ will refer to differentiation with respect to time, while the notation ‘′’ will
refer to differentiation with respect to In (which monotonically increases from
zero during impact).

Combining the first equations in (5) and (6), the change rate of the normal
impulse In over time can be described in terms of the elastic energy En:

İn = dIn/dt = Fn =
√

2kEn. (7)

The derivative is well-defined at the impact phase transition where Fn stays
continuous. Meanwhile, from ṅ = vn, the normal contact velocity, and İn =
Fn = −kn we obtain that Ėn = knṅ = −vnİn, thereby the derivative

E′
n = dEn/dIn = Ėn/İn = −vn. (8)

1 For normal indentation by a rigid circular punch on an elastic half space, John-
son [8, pp. 361–366] showed that η2

0 = 2−ν

2(1−ν)
, where ν is the Poisson’s ratio of the

half space. For most materials, this ratio ranges between 0 and 0.5 (Wikipedia).
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Similarly, from the other two pairs of equations in (5) and (6) we obtain
the change rates of the two tangential impulses:

İu = Fu = −α
√

2k⊥Eu and İw = Fw = −β
√

2k⊥Ew, (9)

where α and β are the signs of the length changes of the u- and w-springs,
i.e.,

α =

{

1 if u ≥ 0,
−1 if u < 0;

β =

{

1 if w ≥ 0,
−1 if w < 0.

(10)

Equation (7) is important because it allows us to convert a derivative with
respect to time into one with respect to the normal impulse In simply by a
division over

√
2kEn. As an illustration, we have

I ′u =
İu

İn

= −α

√

k⊥Eu

kEn

= −α

η

√

Eu

En

and I ′w = −β

η

√

Ew

En

. (11)

In fact, the stiffnesses k and k⊥ will always occur together in the ratio form.

2.2 Contact Modes

u.

w
.

vs

v

w

up

Fig. 2. Sliding velocity of
the contact particle p.

The contact velocity v of the two bodies is ob-
tained from their velocities and angular velocities
as well as the locations of contact on each body,
based on the contact kinematics. This will be il-
lustrated in the examples in Section 3. For now
we just assume that v is provided, and denote its
tangential component as v⊥. Then the velocity of
the particle p is

vs = v⊥ − u̇û − ẇŵ. (12)

When vs = 0, i.e., v⊥ = u̇û + ẇŵ, the contact sticks. In other words, the
relative motion of the upper body to the lower body in the contact plane is
completely absorbed by the two tangential springs so that p has no motion.
When vs 6= 0, it is the sliding velocity of the contact.

When slip happens, under Coulomb’s law, the tangential contact force
F⊥ = −µFnv̂s, where µ is the friction coefficient2 and

v̂s =
vs

‖vs‖
=

v⊥ − u̇û − ẇŵ

‖vs‖
, from (12). (13)

Since the force also exerts on the u- and w-springs, we obtain

k⊥(uû + wŵ) = µFnv̂s, (14)

2 The difference between static and dynamic coefficients is ignored so the value of
µ stays constant whether the contact sticks or slips.
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Substitute (13) into (14), and rearrange the terms slightly:

v⊥ − u̇û − ẇŵ =
k⊥
µFn

‖vs‖(uû + wŵ). (15)

Equation (15) also holds under the sticking contact since it reduces to v⊥ =
u̇û + ẇŵ when vs = 0. Take dot products of both sides of (15) with û, and
then multiply by w. Similarly, take dot products with ŵ and multiply by u.
Subtracting the two resulting equations, we have, under both contact modes,

wu̇ − uẇ = (v⊥ · û)w − (v⊥ · ŵ)u. (16)

The contact between the two bodies sticks when
√

F 2
u + F 2

w < µFn,
namely, by (9), when

√

İ2
u + İ2

w < µİn. (17)

To replace the time derivatives, we substitute equations (7) and (9) into the
above, and rearrange the resulting terms after squaring both sides:

Eu + Ew < µ2η2En. (18)

When the contact slips, we have the equality

Eu + Ew = µ2η2En. (19)

2.3 Stick

Since vs = 0, the lengths of the u- and w-springs change at rates

u̇ = v⊥ · û = v · û and ẇ = v · ŵ. (20)

Their length changes are

u =

∫

u̇ dt =

∫

u̇

İn

dIn =

∫

u̇√
2kEn

dIn =
1√
2k

∫

v⊥√
En

dIn · û,

w =
1√
2k

∫

v⊥√
En

dIn · ŵ.

Suppose compression ends at In = Ic and restitution ends at In = Ir .
Observing (3), we introduce a vector integral

D =







∫ In

0

v⊥√
En

dIn, if In ∈ [0, Ic);

∫ Ic

0

v⊥√
En

dIn +
∫ In

Ic

e v⊥√
En

dIn, if In ∈ [Ic, Ir],
(21)

so that during impact the following always hold:

u =
D · û√

2k0

and w =
D · ŵ√

2k0

. (22)
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Instead of computing u and w, we keep track of
√

2k0u and
√

2k0w by up-
dating D, without any knowledge about k0.

The update of D is possible because v⊥ is from the contact kinematics,
and En is by (6). The values of α and β in (10) are immediately known from
the signs of D ·û and D ·ŵ. The integral is also used to conveniently evaluate
the tangential elastic energies, for

Eu =
1

2
k⊥u2 =

1

4

k⊥
k0

(D ·û)2 =
1

4η2
0

(D ·û)2 and Ew =
1

4η2
0

(D·ŵ)2.(23)

2.4 Slip

When the contact slips, equation (19) holds. We substitute the spring energies
Eu and Ew from (6) in and obtain, by the use of (4),

u2 + w2 = 2µ2 k

k2
⊥

En. (24)

Then differentiate (24) with respect to time:

uu̇ + wẇ = µ2 k

k2
⊥

Ėn. (25)

Now, we can solve the spring velocities u̇ and ẇ from (16) and (25):

u̇ =
αµ2η3E′

n

√
EnEu + (v⊥ · û)Ew − αβ(v⊥ · ŵ)

√
EuEw

µ2η2En

, (26)

ẇ =
βµ2η3E′

n

√
EnEw + (v⊥ · ŵ)Eu − αβ(v⊥ · û)

√
EuEw

µ2η2En

. (27)

With u̇ and ẇ known, the sliding velocity vs follows from (12).
The change rates (26) and (27) do not tell whether the springs are being

compressed (e.g., u < 0) or elongated (e.g., u > 0). Since

u =

∫

u̇ dt =

∫

u̇√
2kEn

dIn and w =

∫

ẇ√
2kEn

dIn, (28)

we introduce two integrals Gu and Gw, where for ρ = u, v,

Gρ =







∫ In

0

ρ̇√
En

dIn, if In ∈ [0, Ic),
∫ Ic

0

ρ̇√
En

dIn +
∫ In

Ic

e ρ̇√
En

dIn, if In ∈ [Ic, Ir];
(29)

Comparing these two equations with (28), Gu =
√

2k0u and Gw =
√

2k0w.
The two integrals Gu and Gw are used to not only track the signs of u

and w but also update tangential elastic energies as follows:

Eu =
1

2
k⊥u2 =

G2
u

4η2
0

and Ew =
G2

w

4η2
0

. (30)
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2.5 Contact Mode Transitions

At a contact mode switch, we need to initialize the integrals D or Gu and
Gw in order to track whether the tangential springs are being compressed or
extended and update Eu and Ew during the next contact mode.

Stick to Slip The contact point switches its mode when F 2
u + F 2

w = µ2F 2
n ,

i.e., when (19) holds. We initialize the integrals for slip using (30):

Gu = 2αη0

√

Eu and Gw = 2βη0

√

Ew, (31)

where Eu, Ew, α and β inherit their values from just before the change of
contact.

Slip to Stick The contact switches from slip to stick when the sliding ve-
locity vs vanishes, that is, when

v⊥ = u̇û + ẇŵ (32)

from (12). Equations (22) imply that

D =
√

2k0(uû + wû) =
√

2k0

(

α

√

2Eu

k⊥
û + β

√

2Ew

k⊥
ŵ

)

by (6) and (10)

= 2η0

(

α
√

Euû + β
√

Ewŵ
)

. (33)

2.6 Impact Algorithm

The system of impact equations does not have a closed-form solution in gen-
eral. Simulation is carried out via numerical integration over In with some
step size, say, h. The pseudo-code is given below.

1 initialization
2 dIn ← h

3 while (compression or En > 0) do

4 if v · n̂ = 0
5 then compression ends
6 if contact sticks
7 then update D according to (21) and Eu, Ew 8 according to (23)
9 if slip starts by (19)
10 then initialize Gu and Gw as (31)
11 else evaluate u̇, v̇ according to (26), (27)
12 update Gu, Gw according to (29) and Eu, Ew according to (30)
13 if stick starts by (32)
14 then initialize D as (33)
15 evaluate I ′

u
and I ′

w
as (11)

16 I ← I + dIn · (I
′

u
û + I ′

w
ŵ + n̂)

17 update V and ω using impact equations (1)
18 update v using V and ω according to contact kinematics
19 En ← En − vndIn by (8)
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2.7 Impact Initialization

To start the algorithm, we need to initialize the contact mode, the normal
and tangential elastic energies, the integral D or Gu, Gw, accordingly, and
the tangential impact. Let the initial contact velocity be v0 = v0nn̂ + v0⊥.
By (8) we have that E′

n(0) = −v0n and En(h) ≈ −v0nh.

Stick or Slip? We first assume that the impact starts with stick, and apply
our analysis from Section 2.3 to derive a condition on v0. Here we look at a
small period of time ∆t after the impact begins. The force on the u-spring is

İu = −k⊥u = −k⊥

∫ ∆t

0

u̇ dt = −k⊥

∫ ∆t

0

(v · û) dt, by (20). (34)

Similarly, we obtain the forces exerted by the other two springs:

İw = −k⊥

∫ ∆t

0

(v · ŵ) dt and İn = −k0

∫ ∆t

0

(v · n̂) dt. (35)

Substitute the above three time derivatives into the sticking contact condi-
tion (17) and move the integral over (v · n̂) to the left side of the resulting
inequality:

lim
∆t→0

‖
∫∆t

0
(v · û)û + (v · ŵ)ŵ dt‖
−
∫∆t

0
(v · n̂) dt

= lim
∆t→0

∫ ∆t

0

√

(v · û)2 + (v · ŵ)2 dt

−
∫∆t

0
(v · n̂) dt

=

√

(v0 · û)2 + (v0 · ŵ)2

−(v0 · n̂)
< µ

k0

k⊥
= µη2

0 .

The first equation above follows from that v ·û and v ·ŵ do not changes signs
within ∆t. Hence we infer that the impact starts with a sticking contact if

(v0 · û)2 + (v0 · ŵ)2 < µ2η4
0(v0 · n̂)2, (36)

or a sliding contact if

(v0 · û)2 + (v0 · ŵ)2 ≥ µ2η4
0(v0 · n̂)2. (37)

Initial Stick Using a similar approach, we can obtain the initial values
of the derivatives of the tangential impulses when the contact sticks at the
beginning:

I ′u(0) =
1

η2
0

· v0 · û
v0 · n̂

and I ′w(0) =
1

η2
0

· v0 · ŵ
v0 · n̂

= 0. (38)

Here, note that the axis ŵ is chosen to be perpendicular to v0⊥. Next, we
substitute E′

n(In) ≈ −v0n into the integral (21) over [0, h]:

D(h) =

∫ h

0

1
√

−v0nIn + O(I2
n)

dIn · v0⊥ ≈ − 1

v0n

· 2
√

−v0nIn

∣

∣

∣

h

0
·v0⊥

= −2

√

− h

v0n

· v0⊥, since v0n < 0.
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The initial elastic energies Eu(h) and Ew(h) of the tangential springs are
then evaluated according to (23).

Initial Slip When the contact initially slips, the impulse derivatives follow
Coulomb’s law; namely,

I ′u(0) = −µ
v0⊥ · û
‖v0⊥‖

= µ and I ′w(0) = −µ
v0⊥ · ŵ
‖v0⊥‖

= 0, (39)

since û opposes v0⊥ when v0⊥ 6= 0. The sliding velocity vs must have the
same direction as the direction t̂ of the relative tangential velocity v0⊥. Sub-
stituting (7) into (14) for Fn, we write down the changes of length of the u-
and w-springs, and obtain Eu and Ew from (6), and Gu and Gw from (30).

3 Examples of Bouncing

This section demonstrates incorporation of tangential impulse into impact
equations (1) using two examples. We look at bounces of a ball and a pencil,
which result in planar and space impulse curves, respectively.

3.1 Ball

z

x

V

ω

before after

V

ω0

0

Fig. 3. Bouncing ball.

As shown in Fig. 3, a ball at initial velocity V 0

and angular velocity ω0 collides with a still table.
Let r be the ball’s radius and m its mass. Hence
its angular inertia 2

5
mr2. Denote by ẑ the upward

contact normal, and I the impulse exerted by the
table on the ball during the collision. The velocity
equations (1) specialize to

V = V 0 +
I

m
and ω = ω0 −

5

2mr
ẑ × I.

We obtain the contact velocity and its tangen-
tial component:

v = V + ω × (−rẑ) = v0 +
Iz

m
ẑ +

7

2m
I⊥,

v⊥ = v0⊥ +
7

2m
I⊥,

where v0 and v0⊥ are their initial values, and I = Iz ẑ + I⊥. We also obtain
E′

z = dEz

dIz

= −(ẑ · v0) − Iz

m
.

Theorem 1. During the collision of a ball with a still table, the tangential

impulse I⊥ is collinear with the initial tangential contact velocity v0⊥.

The proof is by induction over the number of contact mode transitions. De-
tails are omitted due to lack of space.
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end    of 

stick
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7.0
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slip
reversez

x

I

I

compression

Fig. 4. Impulse
curve.

Impulse Curve Theorem 1 states that the impulse curve
I lies in the vertical plane spanned by the z-axis and v0⊥.3

So we can conveniently place the origin at the contact
point, and the x-axis in the opposite direction of v0⊥. The
x-y-z frame is identified with the n-u-w contact frame for
tangential impulse in Section 2.

For simplicity, consider m = 1 and r = 1. Let the
coefficient of friction be µ = 0.4, the coefficient of resti-
tution e = 0.5, and Poisson’s ratio of the ball ν = 0.3.
Here, we use η2

0 = (2− ν)/(2− 2ν) for a circular punch on
a half space [8, pp. 361–366]. Consider V 0 = (−1, 0,−5)
and ω0 = (0, 2, 0), which yields V 0⊥ = (−3, 0, 0). After
the collision, the ball will bounce backward with a rever-
sal of its rotation: V = (Vx, 0, Vz) = (0.570982, 0, 2.5) and
ω = (0, ωy, 0) = (0,−1.92746, 0). Its total energy will de-
crease from 13.4 to 3.65997.

Fig. 4 plots the impulse curve, on which the blue and
black dots mark the ends of compression and restitution,
respectively, and the two green dots mark the contact
mode transitions. The impact starts with a slip, changes from slip to stick at
Iz = 0.62485, ends compression at Iz = −mv0z = 5, starts a reverse slip at
Iz = 7.36575, and ends restitution at Iz = −(1 + e)mv0z = 7.5.

slip

stick

reverse
slip

compression
end of 

k02 x

2.02.0 2.0−2.0 2.0−2.0

8.0 8.0 

2.0

8.0 

6.0

4.0

2.0

4.0

6.0

2.0

4.0

6.0

Iz Iz Iz

v x

(a) (b) (c)

Fig. 5. (a) Tangential contact velocity; (b) x-spring velocity; and (c) varying spring
length x scaled by

√
2k0. The dashed line in (b) marks a discontinuity as reverse

slip happens.

3 It degenerates into a vertical line segment when v0⊥ = 0.
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µ
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0.4

−0.8

0.5
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−1.6
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(a) (b)

Fig. 6. Effects of (a) friction and
(b) Poisson’s ratio.

During the impact, the tangential contact
velocity and spring velocity, aligned with
the x-axis, are treated as scalars here and
denoted v⊥ and ẋ, respectively. As shown
in Fig. 5(a), v⊥ starts at −3 and ends
at 2.49847. The x-spring velocity increases
from −2.42852 with Iz until it equals v⊥ at
−2.12528, when the contact switches from
slip to stick. Fig. 5(b) shows a sudden change
of ẋ from 2.59255 to −2.29806 when a slip re-
versal occurs at Iz = 7.36575. To see why,
note that under slip ẋ must satisfy (25),
which becomes xẋ = (µ2k/k2

⊥)Ėz. Because
the transition happens during restitution,
Ėz < 0, so x and ẋ must have opposite
signs at the moment. However, as shown in
Fig. 5(b) and (c), both ẋ and x were positive

before the slip reversal. Hence the sudden change in ẋ. We can show that
during stick the massless particle is in a simple harmonic motion.

Effect of Friction Fig. 6(a) plots the post-impact velocities Vx and ωy as
the coefficient of friction µ varies from 0 to 1.0, where V 0 = (−1, 0,−5) and
ω0 = (0, 2, 0). When friction is low (µ ≤ 0.13), the ball will bounce to the
left but keep the original clockwise rotation about the y-axis. As µ increases
from 0.13 but does not exceed 0.16, the ball will reverse its rotation but still
bounce to the left. As friction becomes higher (µ > 0.16), the ball will bounce
backward with a rotation reversal. At µ = 0.36, both vx and ωy reach their
extrema 0.57591 and −1.93976, respectively.

zp

op

h1

h2

r

o2

h

zp

ω0
yp

op
xp

x

θ

V0

y

z

(a) (b)

Fig. 7. Pencil with velocities V 0

and ω0 hitting a table: (a) dimen-
sions and (b) frames.

Effect of Compliance The dependence
of Vx and ωy on Poisson’s ratio ν over its
normal range [0, 0.5] is shown in Fig. 6(b).
Again, V 0 = (−1, 0,−5) and ω0 =
(0, 2, 0). As ν increases from 0 to 0.5, Vx

after the impact increases monotonically
from 0.45729 to 0.66507, while ωy de-
creases monotonically from −1.64322 to
−2.16266. The more compliance, the less
energy loss.

3.2 Pencil

We move on to consider another task
which many of us may have tried on a
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desk — throwing a pencil and watching how it bounces. Most of the time the
pencil is thrown with its rubber eraser downward, but here let us consider a
pencil strike with the pointed end contacting the desk.

As shown in Fig. 7(a), the pencil is modeled as a cylinder with mass m1

and height h1 on top of a cone with mass m2 and height h2, where both
components have the same mass density. The cross sections of the cylinder
and the top face of the cone have the same radius r. The pencil’s center of
mass op is located on its axis of symmetry at distance h above the cone’s
vertex o2, where h = (6h2

1 + 12h1h2 + 3h2
2)/(12h1 + 4h2). A body frame

xp-yp-zp is placed at op with the zp-axis aligned with the pencil’s axis of
symmetry.

The moment of inertia Q of the pencil about its center of mass op is a
diagonal matrix with first two principal moments:

Q11 = Q22 =
m

h1 + h2/3

(

h1

(3r2 + h2
1

12
+ l2

)

+
h2

3

(

3

5

(r2

4
+ h2

2

)

+ h2

))

,

where m = m1 + m2 and l = h1/2 + h2 − h.
The pencil’s axis lies in a vertical plane at the moment of the strike. Let

this plane be both the x-z plane of the desk frame at the contact point and
the xp-zp plane of the pencil’s body frame. See Fig. 7(b). The pencil, tilted at
an angle θ just before the hit, has velocity V 0 relative to the desk frame and
angular velocity ω0 = (ω1, ω2, ω3) relative to a (fixed) frame instantaneously
coinciding with the pencil frame. The orientation of the pencil frame in the
desk frame is described by a rotation matrix R about the y-axis through θ.
The velocities are determined from the impulse I = (Ix, Iy , Iz):

V = V 0 +
I

m
and − hẑp × (R−1I) = Q(ω − ω0).

The velocity of the contact point during the strike is linear in I:

v = V 0 +
I

m
+ h





−ω2 sin θ
ω1

ω2 cos θ



+
h2

Q22





Ix sin2 θ − Iz sin θ cos θ
Iy

−Ix sin θ cos θ + Iz cos2 θ



 .(40)

compression
end of

z

y
x

I

Fig. 8. Impulse
curve.

Specifically, we simulate a pencil with m = 1, r = 0.5,
h1 = 3, and h2 = 0.5. Let µ = 0.8 and e = 0.5. The pencil
tilts at θ = π/3, and strikes the desk with velocities V 0 =
5(− cos π

6
, 0,− sin π

6
) and ω0 = (−1,−0.5,−0.5). The post-

impact velocities are V = (−0.368092, 0.390783, 3.03015)
and ω = (−0.236153,−1.80209,−0.5). The pencil bounces
upward with reduced motion along the negative x-direction.
It has gained a new motion along the negative y-axis. The
angular velocity has changed along both xp- and yp-axes in
the pencil’s body frame. Its component along the zp axis,
i.e., the axis of symmetry, remains as 0.5, due to zero torque
about the axis during impact.
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Fig. 9. Tangential impulse.

Fig. 8 plots the impulse curve,
which grows from the origin to
(3.96204, 0.390783, 5.53015). The con-
tact point slides during impact. The
impulse projection onto Ix-Iy plane
(see Fig. 9) is also a curve. This shows
that the sliding direction was con-

stantly changing in the impact duration.

4 Simultaneous Collisions with Compliance

In [7], we introduced a method to model simultaneous collisions of multiple
objects based on transitions between states that characterize different com-
binations of the objects instantaneously in contact. Tangential impulses due
to friction were then treated naively without considering compliance. As a
result, the effect of a skillful shot like a massé one could not be modeled based
on a measured input.

I2

I1

cue 
ball

u
w

z
y

x

n

cue stick

Fig. 10. Billiard
shot.

Tangential impulse due to compliance easily applies to
simultaneous impacts. We here illustrate over a massé shot
(see Fig. 10). The cue stick hits the ball at a point with
outward normal n̂, and the ball in turn hits the table with
upward normal ẑ. We set up a local frame at the cue-ball
contact with axes n̂, û, and ŵ, and another frame at the
ball-table contact with axes ẑ, x̂, and ŷ.

The impulses exerted by the ball on the cue stick and
by the table on the ball are respectively I1 = Iuû+Iwŵ+
Inn̂ and I2 = Ixx̂ + Iyŷ + Izẑ. According to [7], we can treat exactly one
of Iu and Iz as the variable within a state, while the other as a dependent.
Now, use the method in Section 2 to obtain Iu and Iw from In, and Ix and Iy

from Iz . Next, use I1 and I2 to update all velocities, thus closing the loop.

ball

rolling

sliding

slidingrolling

(a) (b)

Fig. 11. Billiard trajectories (a) recovered from the video of a real shot and (b)
predicted by the impact model with cue velocity estimated from the same video.
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We have designed a mechanical cue stick [7] which allows us to calculate
the velocity of the cue tip before a shot. After the shot, the x- and y- com-
ponents of the ball’s velocity and angular velocity can be recovered from its
trajectory via some involved steps.

Fig. 11(a) shows the trajectory fit over positions (red dots) sequenced from
the video of a shot executed at a point near the top pole of the cue ball. The
values of eleven relevant physical constants are omitted due to lack of space.
The estimated velocity and angular velocity of the cue ball immediately after
the shot are (−1.65398,−0.36149, ) and (24.2768, 80.537, ), respectively.

Fig. 11(b) shows the predicted ball trajectory by the impact model under
the same shooting condition. The ball gets velocity (−1.65774, 0.24380, 0.73265)
and angular velocity (15.9378, 52.9882,−3.67556). Despite the small differ-
ences in the two pairs of velocities, the resulting trajectories differ widely.
This is in part due to inaccurate measurements of related physical constants
(including a guess over the relative stiffness of the cue-ball and ball-table
contacts), the point-based impact model, and uncertainties of the shot.

5 Discussion

The key of the introduced compliance model for impact lies in that the elastic
energies stored in the three orthogonal springs can be updated as functions of
normal impulse without knowledge about their stiffnesses or length changes.
The change rates of the spring lengths are nevertheless computable, so is
the sliding velocity. Contact modes are decided from elastic energies rather
than forces. All these make computation of tangential impulse possible, with
normal impulse the sole variable of the impact problem.

In [13], Stronge claimed that the frictional energy loss depends on the
sliding speed (i.e., the particle velocity vs), correcting his earlier statement
that it depends on the tangential relative velocity v. But it was not until
the recent work by Hien [5] was the formulation of frictional dissipation com-
pleted. In our work, such dissipation is accounted for as the energies Eu and
Ew are stored and released by the two tangential springs.

In their study [16] of a dimer bouncing on a vibrated plate, a similar
differential impulse relationship is set up based on the ratio of the potential
energies stored at the contact points. Coulomb’s friction law is applied over
the corresponding impulse increments. In our work, the friction law is applied
in the forms (18) and (19) over the elastic energies stored at the contact.

The highly nonlinear nature of impulse accumulation (as shown in the
pencil and the billiard examples) due to contact compliance would present
an obstacle for formulation of a linear complementarity problem (LCP) as
in [12] with a time-stepping solution. Our method is more accurate since it
does not approximate the contact friction cone as a polyhedral cone, and also
more efficient without having to repetitively solve linear systems.
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The next step is to further integrate the compliance model with our pre-
viously developed model for simultaneous impacts [7]. Modeling of billiard
shots provides a challenging test bed for meshing the two theories. A longer
term objective is to apply the theory to impulsive robotic manipulation.
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