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In assembly tasks it is often mecessary to recognize
parts arriving via a conveyor belt or a parts feeder at
some robot work cell. Generally the parts feeder will
have reduced the number of possible poses of the parts
to a small finite set. In order to distinguish between
the remaining poses of the parts some simple sensing
or probing operation may be used. In this paper we
consider the problem of finding the minimum number
of sensing points required to distinguish between a fi-
nite set of polygonal shapes. For instance, we might
imagine embedding a series of point light detectors in
a feeder tray. Then we would be interested in the
question “What is the minimum number of light de-
tectors that can fully distinguish between all the possi-
ble shapes?” Or we might imagine a set of mechan-
ical probes that touches the feeder at a finite number
of predetermined points. Then we would ask “What
are the minimum number of probing points and where
should the probes be located in order to distinguish all
the possible shapes?” We address these questions in
this paper.

Intuitively, each sensing point can be regarded as a
binary bit that has two values ‘contained’ and ‘not con-
tained’. So the robot senses a shape by reading out the
binary representation of the shape, that is, by checking
which points are contained in the shape and which are
not. The formalized sensing problem: Given n poly-
gons with a total of m edges in the plane, locate the
fewest points such that each polygon contains a dis-
tinct subset of points in its interior. We show that this
problem is equivalent to an NP-complete set-theoretic
problem introduced as Discriminating Set. By a re-
duction to Hitting Set (and hence to Set Covering),
an O(n*m?) approzimation algorithm is presented to
solve the sensing problem with a ratio of 2Inn. Based

on a reverse reduction, we prove that one can use
an algorithm for Discriminating Set with ratio clogn
to construct an algorithm for Set Covering with ratio
clogn+O(loglogn). Thus approzimating Discriminat-
ing Set exhibits the same hardness as that of approx-
imating Set Covering recently shown in [24] and [4];
this result implies that the ratio 21nn is asymptotically
optimal unless NP C DTIME(nP°¥1987)  Finally we
analyze the complezity of subproblems of Discriminat-
ing Set, based on their relationship to a generalization
of Independent Set called 3-Independent Set.

1 Introduction

One of the fundamental tasks in automatic assembly
is for robots to efficiently determine the positions and
orientations, termed the poses, of the individual parts
to be assembled. The geometric shapes of these parts
are designed early in the manufacturing process, so
they are known in advance. Often the possible poses
in which a part settles on the assembly table are of
a small number, either reduced by a parts feeder or
limited by the mechanical constraints imposed by a se-
quence of planned manipulations. (See Erdmann and
Mason’s tray-tilting method [14] and Brost’s squeeze-
grasp method [6] for examples of the latter case.) These
facts together allow the implementation of effective
sensing mechanisms, which usually take the form of
simple and fast hardware systems coupled with effi-
cient geometric algorithms [7]. The efficiency of such
sensing mechanisms depends on both the time cost of
the physical operations and the time complexity of the
algorithms involved. Consequently, minimizing one or
both of these two factors has become an important as-
pect of sensor design.



In order to illustrate the goals of this paper, consider
a polygonal part resting on a horizontal assembly table.
The table is bounded by vertical fences at its bottom-
left corner, as shown in Figure 1. Pushing the part
towards that corner will eventually cause the part to
settle in one of the 12 stable poses listed in the figure.

(Note to reach a stable pose both fences must be in
contact with some vertices of the part while at least
one fence must be in contact with no less than two ver-
tices.) In order to distinguish between these 12 poses,
the robot has marked 4 points on the table beforehand,
so it can infer the pose from which marks are covered
by the part and which are not!.

The above “shape recovery” method is named sens-
ing by point sampling, as a loose analogy to the recon-
struction of band limited functions by sampling on a
regular grid in signal processing. To save the expense
of sampling, the robot wants to mark as few points as
possible. The problem: How to compute a minimum
set of points to be marked so that parts of different
types and poses can be distinguished from each other
by this method?

1.1 Related Work

Natarajan [25] examined a similar strategy of detect-
ing the orientations of polygonal and polyhedral ob-
jects with an analysis of the numbers of sensors suffi-
cient and necessary for the task. More recent related
work includes [5] and [2]. [5] shows that the problem of
deciding whether k line probes are sufficient to distin-
guish a convex polygon from a collection of n convex
polygons is NP-complete. This result is very similar
to our Theorem 3. A variation of the line-probing re-
sult in [5] would give us the point sampling result of
Theorem 3. [2] proves a similar result as well, namely
that the problem of constructing a decision tree of min-
imum height to distinguish among n polygons using
point probes is NP-complete. This result holds even if
all the polygons are convex. [2] also exhibits a greedy

!This can be implemented in multiple ways, such as plac-
ing light detectors in the table, probing at the points, or if
the robot has a vision system, taking a scene image and
checking the corresponding pixel values.
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Figure 1: Sensing by point sampling. (a) The 12 possible
stable poses of an assembly part after pushing, along with 4
sampling points (optimal by Lemma 1) found by our imple-
mentation of the approzimation algorithm to recognize these
poses, where dashed line segments are fences perpendicular
to the plane. (b) The planar subdivision formed by these

poses which consists of 610 regions.
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approximation algorithm for constructing such a deci-
sion tree. This result is similar to our approximation
algorithm of Section 4, with a similar ratio bound. The
difference is that our greedy algorithm seeks to mini-
mize the total number of probe points rather than the
tree height.?

Closely related work includes the research by Ro-
manik and others on geometric testability (see, for
example, [27], [28], and [1]). Their research devel-
ops strategies for verifying a given polygon using a se-
ries of point probes. Moreover, the research examines
the testability of more general geometric objects, such
as polyhedra, and develops conditions that determine
whether a class of objects is (approximately) testable.

A number of researchers have looked at the problem
of determining or distinguishing objects using finger
probes. Finger probing is closely related to sensing by
point sampling, as indicated by our discussion of [5].
For a more extensive survey of probing problems and
solutions see the paper by Skiena [29)].

There would seem to be connections between our
work and the concept of VC-dimension often used in
learning theory. For instance, in this paper we de-
velop the notion of a “discriminating set” to distin-
guish different polygons. The concept of a discriminat-
ing set bears some resemblance to the idea of shattered
sets associated with VC-dimension. However, discrim-
inating sets and shattered sets are different. A min-
imum discriminating set is the smallest set of points
that uniquely identifies every object in a set of ob-
jects, whereas VC-dimension is the size of the largest
set of points shattered by the set of objects. Thus, the
VC-dimension of a finite class gives a lower bound on
the size of a minimum discriminating set. For dense

It is easy to give an example for which a minimum
height decision tree uses more than minimum number of
total probes, while a decision tree with minimum number
of total probes does not attain the minimum height. Con-
sider the problem of discriminating sets {a, b,a’, €'}, {a,a’},
{b,0',d'}, {c,b'}, {d, '} and @ which can be viewed as prob-
ing a collection of polygons by the later transformation
technique in the proof of Theorem 3. The decision tree us-
ing minimum probes a, b, ¢,d always has height 4, and the

decision tree using probes a’,b’,c’,d’,e’ can achieve mini-
mum height 3.

polygon distributions, the two cardinalities will be the
same, namely logn, where n is the number of polygons.
For sparsely distributed polygons, the two cardinalities
are different. For instance, the VC-dimension can be
1, while the minimum discriminating set has size n — 1.
See Figure 2.

Finally, the work described in this paper is part of
our larger research goal to understand the information
requirements of robot tasks. Related work includes the
sensor design methodology of Erdmann [13] and the in-
formation invariants of Donald et al. [11]. [13] proposes
a method for designing sensors based on the particu-
lar manipulation task at hand. The resulting sensors
satisfy a minimality property with respect to the given
task goal and the available robot actions. [11] inves-
tigates the relationship between sensing, action, dis-
tributed resources, communication paths, and compu-
tation, in the solution of robot tasks. That work pro-
vides a method for comparing disparate sensing strate-
gies, and thus for developing minimal or redundant
strategies, as desired.

1.2 The Formal Problem

Consider n simple polygons Py, ..., P, in the plane, not
necessarily disjoint from each other. We wish to locate
the minimum number of points in the plane such that
no two polygons P; and P;, i # j, contain exactly the
same points. In order to avoid ambiguities in sensing,
we require that none of the located points lie on any
edge of Py,...,P,. The planar subdivision formed by
Pi,...,P, divides the plane into one unbounded re-
gion, some bounded regions outside P, ..., P,, called
the “holes”, and some bounded regions inside. (For
example, the 12 polygons in Figure 1(a) form the sub-
division in Figure 1(b) which consists of 610 regions,
none of which is a hole.) Immediately we make two
observations: (1) Points on the edges of the subdivi-
sion or in the interior of the unbounded region or in a
“hole” do not need to be considered as locations; (2)
for each bounded (open) region inside some polygon
only one point needs to be considered.

Let Q denote the set of bounded regions in the subdi-
vision which are contained in at least one of Py, ..., P,.



Each polygon P;, 1 <14 < n, is partitioned into one or
more such regions; we write w C P; when a region w is
contained in polygon P;. A region basis for polygons
Py,..., P, is a subset A C 2 such that

{wlweAandwC P} #{w|weAandwC P;},

for 1 < i # j < n; that is, each P; contains a dis-
tinct collection of regions from A. A region basis A*
of minimum cardinality is called a minimum region ba-
sis. Thus the problem of sensing by point sampling be-
comes the problem of finding a minimum region basis
A*. We will call this problem Region Basis and focus
on it throughout the paper. The following lemma gives
the upper and lower bounds for the size of such A*.

Lemma 1 A minimum region basis A* for n polygons
Py, ..., P, satisfies [logn] < |A*| <n—1.

Proof: To verify the lower bound [logn]|, note that
each of the n polygons must contain a distinct subset
of A*; so n < 22| the cardinality of the power set
247,

To verify the upper bound n — 1, we incrementally
construct a region basis A of size at most n — 1. This
construction is similar to Natarajan’s Algorithm 2 [25].
Initially, A = (. If n > 1, without loss of generality, as-
sume P; has the smallest area. Then there exists some
region wy € Q outside P;. Split {P,...,P,} into two
nonempty subsets, one including those P; containing
wiy and the other including those not; and add w into
A. Recursively split the resulting subsets in the same
way, and at each split, add into A its defining region
(as we did with wy) if this region is not already in A,
until every subset eventually becomes a singleton. The
A thus formed is a region basis. Since there are n — 1
splits in total and each split adds at most one region
into A, we have |A| <n—1. O

Figure 2 gives two examples for which |A*| = [logn]
and |A*| = n — 1 respectively. Therefore these two
bounds are tight.

We can view all the bounded non-hole regions as ele-
ments of 2, and all the polygons P, ..., P, as subsets
of Q. Then a region basis A is a subset of 2 that can
discriminate subsets Py, ..., P, by intersection. Hence
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the Region Basis problem can be rephrased as: Find a
subset of 2 of minimum size whose intersections with
any two subsets P; and Pj, 1 < i # j < m, are not
equal. The general version of this set-theoretic prob-
lem, in which Q stands for an arbitrary finite set and
Pi,..., P, stand for arbitrary subsets of {2, we call Dis-
criminating Set. We have thus reduced Region Basis
to Discriminating Set, and the former problem will be
solved once we solve the latter one.

Let us analyze the amount of computation required
for the geometric preprocessing to reduce Region Ba-
sis to Discriminating Set. Let m be the total size of
Py,..., P, ie., the sum of the number of vertices each
polygon has; trivially m > 3. Then the planar sub-
division these polygons define has at most s vertices,
where 3 < s < (7). By Euler’s relation on planar
graphs, the number of regions and the number of edges
are upper bounded by 2s—4 and 3s—6 respectively. So
we can construct the planar subdivision either in time
O(m log m+s) using an optimal algorithm for intersect-
ing line segments by Chazelle and Edelsbrunner [8], or
in time O(slogm) using a simpler plane sweep version
by Nievergelt and Preparata [26]. To obtain the set
of regions each polygon contains, we only need to tra-
verse the portion of the subdivision bounded by that
polygon, which takes time O(s). It follows that the
reduction to Discriminating Set can be done in time
O(mlogm + ns), or O(nm?) in the worst case.

Here is a short summary of the structure of the pa-
per: Section 2 proves the NP-completeness of Discrim-
inating Set; based on this result, Section 3 establishes
an equivalence between Discriminating Set and Region
Basis, hence proving the latter problem NP-complete;
Section 4 presents an O(n?m?) approximation algo-
rithm for Region Basis with ratio 21lnn and shows that
further improvements on this ratio are hard; and Sec-
tion 5 closes up with a complexity analysis of various
subproblems of Discriminating Set, along with the def-
inition of a family of related NP-complete problems
called k-Independent Sets. We have implemented our
approximation algorithm and have tested it on both
real data taken from mechanical parts and random data
extracted from the arrangements of random lines. The
algorithm works very well in practice.
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Figure 2: Two examples whose minimum region basis sizes achieve the lower bound [logn] and the upper bound n — 1

respectively. Bounded regions in the ezamples are labelled with numbers. (a) For 1 < i < n polygon P; is defined to be the

boundary of the union of regions [logmn] +1,...

other in increasing order: A* = {2,3,...,n}.

2 Discriminating Set

Given a collection C' of subsets of a finite set X, sup-
pose we want to identify these subsets just from their
intersections with some subset D C X. Thus D must
have distinct intersection with every member of C, that
is,

DNS#DNT, forall S,T € Cand S #T.

We call such a subset D a discriminating set for C'
with respect to X. From a different point of view, each
element x € D can be regarded as a binary “bit” that,
to represent any subset S C X, gives value ‘1’if z € §
and value ‘0’ otherwise. In such a way D represents an
encoding scheme for subsets in C.

Below we show that the problem of finding a mini-
mum discriminating set is NP-complete. As usual, we
consider the decision version of this minimization prob-
lem:

DISCRIMINATING SET (D-SET)
Let C be a collection of subsets of a finite set X andl <
| X | anon-negative integer. Is there a discriminating set
D C X for C such that |D| <17

, [log ] + i, and all regions k with 1 < k < [logn] such that the kth bit of
the binary representation (radiz 2) fori—1 is 1. Thus A* = {1,2,...

, [logm]}. (b) The polygons Pi,..., P, contain each

Our proof of the NP-completeness for D-Set uses a re-
duction from Vertex Cover (VC) which determines if
a graph G = (V, E) has a cover of size not exceeding
some integer [ > 0, i.e., a subset V' C V that, for each
edge (u,v) € E, contains either u or v. The reduction
is based on a key observation, that for any three finite
sets S1, 92 and S3,

S1 NS,y # S1NS3 if and only if S; N (SzASg) # @,

where ‘A’ denotes the operation of symmetric differ-
ence, i.e., Sz A 53 = (SQ \ 53) U (53 \ Sz)

Theorem 2 Discriminating Set is NP-complete.

Proof: That D-Set € NP is trivial.

Next we establish VC ocp D-Set, that is, there exists a
polynomial-time reduction from VC to D-Set. Let G =
(V,E) and integer 0 < [ < |V| be an instance of VC.
We need to construct a D-Set instance (X, C) such that
the collection C' of subsets of X has a discriminating
set of size I' or less if and only if G has a vertex cover
of size [ or less.

The construction uses the component design tech-
nique described by Garey and Johnson [16]. It’s rather



natural for us to begin by including every vertex of G
in set X, and assigning each edge e = (u,v) a subset
S(e) in C which contains at least u and v; in other
words, we have V C X and

{u,v} C S(e) € C, for all € = (u,v) € E.

In order to ensure that any discriminating set D for C
contains at least one of u and v from subset S(e), we
add an auziliary subset A, into C that consists of some
new elements not in V', and in the meantime define

S(e) = {u,v}UA,.

Hence S(e) A A, = {u,v}; and D N {u,v} # @ follows
directly from D N S(e) # DN A.. Since any discrim-
inating set D' for { A | e € E'} can also distinguish
between S(e1) and S(e2), and between S(eq) and A.,,
for any ej,es € E and e; # ez, D' unioned with a
vertex cover for G becomes a discriminating set for C.
Conversely, every discriminating set D for C' can be
split into a discriminating set for { A. | e € £} and a
vertex cover for G.

The m = | E| auxiliary subsets should be constructed
in a way such that we can easily determine the size of
their minimum discriminating sets in order to set up
the entire D-Set instance. There is a simple way: We
introduce m elements ay,az,...,a, € V into X, and
define subsets A., for e € E, to be

{al}a {a2}a LR {am}a

where the order of mapping does not matter. It’s clear
that there are m minimum discriminating sets for the
above subsets: {ai,...,an} \ {a;i}, 1 <i<m.

Setting I' = 1 +m — 1, we have completed our con-
struction of the D-Set instance as

X =
C

Vu{ai,...,an}; ai,...
{Sle)|lee E}U{A. |ec E}.

y Am ¢V;

The construction can be carried out in time O(|V| +
|E|). We omit the remaining task of verifying that G
has a vertex cover of size at most [ if and only if C' has
a discriminating set of size at most [ +m — 1. O
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One thing about this proof is worthy of note. All
subsets in C' constructed above have at most three el-
ements. This reveals that D-Set is still NP-complete
even if |[S| < 3 for all S € C, a stronger assertion than
Theorem 2. The subproblem where all S € C have
|S| < 1 is obviously in P, for an algorithm can sim-
ply count |C| in linear time and then answer “yes” if
I >]C|—1and “no” if 0 <! < |C|] — 1. For the
remaining case in which all S € C have |S| < 2, we
will prove in Section 5 that the NP-completeness still
holds. However, the proof will be a bit more involved
than the one we just gave under no restriction on |S|.

At the end of this section, we give a problem that is
equivalent to D-Set:

ROW-DIFFERING SUBMATRIX

Given an m x n matrix A of 0’s and 1’s and integer
0 <1 < n, is there an m x [ matrix B formed by [
columns of matrix A such that no two rows of B are
identical?

3 Region Basis

Now that we have shown the NP-completeness of D-
Set, the minimum region basis cannot be computed
in polynomial time through the use of an efficient al-
gorithm for D-Set, because no such algorithm would
exist unless P = NP. This conclusion, nevertheless,
leads us to conjecture that the minimization problem
Region Basis is also NP-complete. Again we consider
the decision version:

REcioN Basis (RB)

Given n polygons P, ..., P, and integer 0 <1 <n-—1,
does there exist a region basis A for the planar subdi-
vision €2 formed by Py,..., P, such that |A| < 1?

The condition 0 < I < n—1 above is necessary because
we already know from Lemma 1 that a minimum region
basis has size at most n — 1.

Consider a mapping F from the set of RB instances
to the set of D-Set instances that maps regions to ele-
ments and polygons to subsets in a one-to-one manner.
Every RB instance is thus mapped into an equivalent
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D-Set instance, as pointed out in Section 1. We claim
that F is not onto. Suppose F were onto. Then the
elements of each subset in a D-Set instance must cor-
respond to regions in some RB instance. The union
of these regions must be a polygon, and this polygon
must map to the subset given in the D-Set instance.
However, this is not always possible. Consider a D-Set
instance generated from a nonplanar graph such that
each edge is a subset containing its two vertices as only
elements. No RB instance can be mapped to such a D-
Set instance. For if there were such an RB instance,
the geometric dual of the planar subdivision it defines
would contain a planar embedding for the original non-
planar graph. This is an impossibility, hence we have
a contradiction.

Thus the set of RB instances constitutes a proper
subset of the set of D-Set instances; in other words, RB
is isomorphic to a subproblem of D-Set. Therefore, the
NP-completeness of RB does not follow directly from
that of D-Set established earlier. Fortunately, however,
D-Set has an equivalent subproblem which is isomor-
phic to a subproblem of RB under F. That isomor-
phism provides us with the NP-completeness of Region
Basis.

Theorem 3 Region Basis is NP-complete.

Proof: That RB € NP is easy to verify, based on the
fact mentioned in Section 1 that the number of regions
in the planar subdivision is at most quadratic in the
total size of the polygons.

Let (X, C) be a D-Set instance, where

X =
C

{l‘l,z'z, - ,.’Em};
{51,52, - ,Sn} - 2X,

Without loss of generality, we make two assumptions
n

and ﬂ S; =0,
i=1

because elements contained in none of the subsets
or contained in all subsets can always be removed
from any discriminating set of (X,C). Now add in
a new element a ¢ X and consider the D-Set instance

(X U{a},C"), where C' = {S;U{a} |1 <i<n}.
Clearly (X U {a},C") and (X,C) have the same set
of irreducible discriminating sets® and hence they are
considered equivalent.

The planar subdivision defined by the constructed
RB instance for (X U {a},C") takes the configura-
tion shown in Figure 3(a): A rectangular region is
divided by a horizontal line segment into two identi-
cal regions of which the bottom region is named w(a);
the top region is further divided, this time by vertical
line segments, into 2m — 1 identical regions of which
the odd numbered ones, from left to right, are named
w(z1),-..,w(zm) respectively. Remove those m—1 un-
named regions on the top. For 1 < ¢ < n define poly-
gon P; to be the boundary of the union of all regions
w(z), z € S;U{a}. It should be clear that P; is indeed
a polygon; and the two assumptions guarantee that
Py,..., P, form the desired subdivision. Note the sub-
division consists of m+1 rectangular regions and 4m+2
vertices. All can be computed in time ©(m), given the
coordinates of the four vertices of the bounding rect-
angle. Thus the reduction takes time O(}"1_, |S;|).

It is clear that C has a discriminating set of size
[ or less if and only if there is a region basis of the
same size for P;,..., P,. Hence we have proved the
NP-completeness of RB. O

The above proof implies that we may regard Dis-
criminating Set and Region Basis as equivalent prob-
lems. Note that the polygons Pi,..., P, in Figure 3
are not convex; will Region Basis become P when all
the polygons are convex? This question is answered by
the following corollary.

Corollary 4 Region Basis remains NP-complete even
if all the polygons are conver.

Proof: Same as the proof of Theorem 3 except that
we use the planar subdivision shown in Figure 3(b).
(The vertices of the subdivision partition an imaginary
circle (dotted) into 2n equal arcs.) m|

3A discriminating set D is said to be irreducible if no
subset D’ C D can be a discriminating set.
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Figure 3: Two reductions from Discriminating Set to Region Basis.

4 Approximation

Sometimes we can derive a polynomial-time approxi-
mation algorithm for the NP-complete problem at hand
from some existing approximation algorithm for an-
other NP-complete problem, by reducing one problem
to the other. In fewer cases, where the reduction pre-
serves the solutions, namely, every instance of the orig-
inal problem and its reduced instance have the same set
of solutions, any approximation algorithm for the re-
duced problem together with the reduction will solve
the original problem. The problem to which we will
reduce Discriminating Set is Hitting Set:

HITTING SET

Given a collection C' of subsets of a finite set X, find
a minimum hitting set for C, i.e., a subset H C X
of minimum cardinality such that H NS # 0 for all
SeC?

Karp [20] shows Hitting Set to be NP-complete by a
reduction from Vertex Cover. The reducibility from D-
Set to Hitting Set follows a key fact we observed when
proving Theorem 1: The intersections of a finite set D
with two finite sets S and T" are not equal if and only if
D intersects their symmetric difference S AT. Given a
D-Set instance, the corresponding Hitting Set instance
is constructed simply by replacing all the subsets with
their pairwise symmetric differences. Thus every dis-

criminating set of the original D-Set instance is also a
hitting set of the constructed instance, and vice versa.

The approximability of Hitting Set can be studied
through another problem, Set Covering;:

SET COVERING

Given a collection C' of subsets of a finite set X, find a
minimum cover for X, i.e., a subcollection C' C C of
minimum size such that Jgcor S = X7?

This problem is also shown to be NP-complete by Karp
by a reduction from Exact Cover by 3-Sets [20]. A
greedy approximation algorithm for this problem due
to Johnson [18] and Lovéasz [23] guarantees to find a
cover C for X with ratio

C C
||C’*|| < H(rgleaéc|5|) or simply ||C*|| <In|X|+1,
where C* is a minimum cover and H(k) = Hy =

Ele %, known as the kth harmonic number. The algo-
rithm works by selecting, at each stage, a subset from
C that covers the most remaining uncovered elements
of X. We refer the reader to [9] for a general analysis

of the greedy heuristic for Set Covering.

Hitting Set and Set Covering are duals to each
other—the roles of set and element in one problem just
get switched in the other. More specifically, let a Hit-
ting Set instance consist of some finite set X and a
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collection C' of its subsets; its dual Set Covering in-
stance then consists of a set C' and a collection of its
subsets X where

C={S|SeC} and X={z|zeX},
and where each subset Z is defined as*-®
z={S|SeCand S>>z}

Intuitively speaking, the element z € X “hits” the
subset S € C in the original instance if and only
if the subset Z “covers” the element S € C in the
dual instance. Thus it follows that H C X is a hit-
ting set for C if and only if H = {z | z € H} is
a cover for C. Hence the corresponding greedy algo-
rithm for Hitting Set selects at each stage an element
that “hits” the most remaining subsets. It is clear
that the approximation ratio for Hitting Set becomes
H(maxzex |[{S|S€Cand S>z}|)orIn|C|+1.°

As a short summary, the greedy heuristic on a Dis-
criminating Set instance (X, C') works by finding a hit-
ting set for the instance (X,{SAT | S,T € C}).
Since an element can appear in at most L"TZJ such pair-
wise symmetric differences, where n = |C|, the approx-
imation ratio attained by this heuristic is lnL”TQJ +1<
2Inn. The same ratio is attained for Region Basis by
the heuristic that selects at each step a region discrim-
inating the most remaining pairs of polygons, where n
is now the number of polygons.

The greedy algorithm for Set Covering (dually for
Hitting Set) can be carefully implemented to run in
time O3 g |S]) [10]. The reduction from a D-Set
instance (X,C) to a Hitting Set instance takes time

4 According to this definition, # = § may hold for two
different elements x # y. In this case only one subset is
included in X.

5This definition also establishes the duality between D-
Set and a known NP-complete problem called Minimum
Test Set (see [16]). Given a collection of subsets of a finite
set, Minimum Test Set asks for a minimum subcollection
such that exactly one from each pair of distinct elements is
contained in some subset from this subcollection.

5Kolaitis and Thakur [22] syntactically define a class
of NP-complete problems with logarithmic approximation
algorithms that contains Set Covering and Hitting Set, and
show that Set Covering is complete for the class.

O(|C|? maxsec |S]). Combining the time complexity
of the geometric preprocessing in Section 1, we can
easily verify that Region Basis can be solved in time
O(nm? + n?m?) = O(n?m?), where n and m are the
number and size of polygons respectively.

In the remainder of this section we establish the
hardness of approximating D-Set and hence Region Ba-
sis. Both problems allow the same approximation ra-
tio since the reductions from one to another do not
change the number of subsets (or polygons) in an in-
stance. First we should note that the ratio bound
H(maxgec |S|) of the greedy algorithm for Set Cover-
ing is actually tight; an example that makes the algo-
rithm achieve this ratio for arbitrarily large maxgec | S|
is given in [18].

Next we present a reverse reduction from Hitting Set
to D-Set to show that an algorithm for D-Set with ap-
proximation ratio clogn can be used to obtain an algo-
rithm for Hitting Set with ratio clogn + O(loglogn),
where ¢ > 0 is any constant and n is the number of
subsets in an instance. Afterwards, we will apply some
recent results on the hardness of approximating Set
Covering (and thus Hitting Set).

Lemma 5 For any ¢ > 0, if clogn is the approxima-
tion ratio of Discriminating Set, then Hitting Set can
be approzimated with ratio clogn + O(loglogn).

Proof: Suppose there exists an algorithm A for D-
Set with approximation ratio clogn. Let (X,C) be
an arbitrary instance of Hitting Set, where C' =
{S1,..-,8,} C 2%, and let n = |C|. To con-
struct a D-Set instance, we first make f(n) isomorphic
copies (X1,C1),...,(X¢(n), Ct(n)) of (X,C) such that
XinX;=0for1<i#j< f(n). Here f is an as yet
undetermined function of n upper bounded by some
polynomial in n. Now consider the enlarged Hitting
Set instance (X',C") = (Uz:(?) X,-,U{:(T{) C;). Every
hitting set H' of (X’,C") has H' = JI") H;, where H;
is a hitting set of (X;, C;), 1 <14 < m; so from H' we can
obtain a hitting set H of (X,C) with |H| < [H'|/f(n)
merely by taking the smallest one of Hy,. .., Hy(,.

Next we introduce a set A consisting of new elements

a1,02,- .., log(nfn)) ¢ X'5 and for 1 < 7 < nf(n)



define auxiliary sets A;:

A; = {a;|1<j<log(nf(n)) and the jth bit of

the binary representation of i — 1is 1}.

It is not hard to see {a1, . . ., Giog(nf(n)) } Must be a sub-
set of any discriminating set for Ay,..., A, f(n); there-
fore it is the minimum one for these auxiliary sets.
The constructed D-Set instance is then defined to be
(X",C"), where

X" X1 U---UXjn U{ar,az, ..., alog(nfn) };
{Av,. s Ay }-

It is easy to verify that every discriminating set of
(X",C") is the union of A and a hitting set of (X', C").

Now run algorithm A on the instance (X", C") and
let D be the discriminating set found. Then

1Dl

D < clog(|C"]) = clog(2nf(n)),

where D* is a minimum discriminating set. From the
construction of (X", C") we know that D = HyU---U
HfnyUAand D* = Hf U---UHj, ) UA, where for
1 <4< n, H; and H} are some hitting set and some
minimum hitting set of (X;, C;), respectively. Let Hy
satisfy |Hy| = mmf(") |H;| and thus let H = Hy be a
hitting set of (X, C). Also, let H* with |H*| = |H{| =

= |Hj},,| be a minimum hitting set of (X, C). Then

YI | Hy| + |A]
S0 Hy | + |Al

f(n) - [H| +log(nf(n))
f(n) - [H*| +log(nf(n))’

Combining the two inequalities above generates:

D]
|D*|

||;IIJ| < clog(2nf(n)) + (clog(2nf(fn()72)—'lg;ﬂog(nf(n))
< clog(@nf(n)) + 18207 w»f(—ﬂ;) log(nf(n)

clogn + [c+clogf(n)
(c-(1+logn +log f(n)) —1) - (logn + log f(n))

fn

-

Y. Jia and M. Erdmann

Setting f(n) = log®n, all terms in the brackets can be
absorbed into O(loglogn) after simple manipulations
on asymptotics [17]; thus we have

H|
|H*|

< clogn + O(loglogn).
O

Though Set Covering has been extensively studied
since the mid 70’s, essentially nothing on the hard-
ness of approximation was known until very recently.
The results of [3] imply that no polynomial approxi-
mation scheme exists unless P = NP. Based on re-
cent results from interactive proof systems and prob-
abilistically checkable proofs and their connection to
approximation, several asymptotic improvements on
the hardness of approximating Set Covering have been
made. In particular, Lund and Yannakakis [24] showed
that Set Covering cannot be approximated with ratio
clogn for any ¢ < % unless NP C DTIME(nPol logm);
Bellare et al. [4] showed that approximating Set Cov-
ering within any constant is NP-complete, and ap-
proximating it within clogn for any ¢ < %
NP C DTIME(n!°8'°6™). Based on their results and
by Lemma 5, we conclude on the same hardness of ap-

proximating D-Set and Region Basis:

implies

Theorem 6 Discriminating Set and Region Basis
cannot be approrimated by a polynomial-time algo-
rithm with ratio bound clogn for any ¢ <
NP C DTIME(nP°Y187)  or for any ¢ <
NP C DTIME(nloglogn),

unless
unless

e N

Following the above theorem, the ratio 2lnn =
1.391ogn of the greedy algorithm for D-Set remains
asymptotically optimal if NP is not contained in
DTIME (nPlylogn),

5 More on Discriminating Set

Now let’s come back to where we left the discussion
on the subproblems of D-Set in Section 2; it has not
been settled whether D-Set remains NP-complete when
every subset S in the collection C satisfies |S| < 2. We
now prove that this subproblem is NP-complete.
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Here we look at a special case of this subproblem,
namely, a “subsubproblem” of D-Set, subject it to two
restrictions: (1) @ € C and (2) |S| = 2 for all nonempty
subsets S € C. Let’s call this special case 0-2 D-Set. If
0-2 D-Set is proven to be NP-complete, so will be the
original subproblem.

It’s quite intuitive to understand a 0-2 D-Set instance
in terms of a graph G = (V, E), where V = X, the finite
set of which every S € C is a subset, and

E={(u,v) ‘ {u, v} EC}.

In other words, each element of the set X corresponds
to a vertex in G while each subset, except (), corre-
sponds to an edge. Clearly this correspondence from
all 0-2 D-Set instances to all graphs is one-to-one. Since
any discriminating set D for C has

DNnS#Dn0=0, for all S € C and S # 0,

D must be a vertex cover for G. Let d(u,v) be the
distance, i.e., the length of the shortest path, between
vertices u,v in G (or oo if u and v are disconnected).
A 3-independent set in G is a subset I C V such that
d(u,v) > 3 for every pair u,v € I. The following lemma
captures the dual relationship between a discriminating
set for C' and a 3-independent set in G.

Lemma 7 Let X be a finite set and C a collection of
0 and two-element subsets of X. Let G = (X, E) be a
graph with E = { (u,v) | {u,v} € C}. Then a subset
D C X is a discriminating set for C if any only if
X\ D is a 3-independent set in G.

Proof: Let D be a discriminating set for C. Assume
there exist two distinct elements (vertices) u,v € X\ D
such that d(u,v) < 3. We immediately have (u,v) ¢ E
since D must be a vertex cover in G; so d(u,v) = 2.
Hence there is a third vertex, say w, that is connected
to both u and v; furthermore, w € D holds since the
edges (u, w) and (v, w) must be covered by D. But now
we have DN{u,w} = DN{v,w} = {w}, a contradiction
to the fact that D is a discriminating set.

Conversely, suppose X \ D is a 3-independent set in
G, for some subset D C X. Then D must be a vertex
cover. Suppose it is not a discriminating set for C.

Then there exist two distinct subsets Si,S52 € C such
that DNS, = DN Sy = {w}, for some w € S. Writing
S1 = {u,w} and Sy = {v,w}, we have d(u,v) = 2; but
in the meantime u,v € X \ D. A contradiction again.
O

This lemma tells us that the NP-completeness of 0-2
D-Set, and therefore of our remaining open subproblem
of D-Set, follows if we can show the NP-completeness
of 8-Independent Set. 3-Independent Set is among a
family of problems defined, for all integers & > 0, as
follows:

k-INDEPENDENT SET (k-IS)

Given a graph G = (V, E) and an integer 0 < I < |V,
is there a k-independent set of size at least [, that is, is
there a subset I C V with |I| > [ such that d(u,v) >k
for every pair u,v € I?

Thus 2-IS is the familiar NP-complete Independent Set
problem. We will see in Appendix A that every prob-
lem in this family for which k& > 3 is also NP-complete.
To avoid too much divergence from 0-2 D-Set, let’s fo-
cus on 3-IS only here.

Lemma 8 3-Independent Set is NP-complete.

Proof: It is trivial that 3-IS € NP. To show NP-
hardness, we reduce Independent Set (2-IS) to 3-IS.
Let G = (V,E) and 0 < | < |V| form an instance of
Independent Set. A graph G' is constructed from G in
two steps. In the first step, we introduce a “midvertex”
Qy,y for each edge (u,v) € E, and replace this edge
with two edges (u,ay,p) and (o v, v). In the second
step, an edge is added between every two midvertices
that are adjacent to the same original vertex. More
formally, we have defined G' = (V', E') where

VI

Vu {au,v

(u,v) GE};
{ (ty,v, ) ‘ (u,v) € E} U
{(au,v;au,w) ‘ (u,v) # (u,w) € E}

Two observations are made about this construction.
First, it has the property that d'(u,v) = d(u,v) + 1
holds for any pair of vertices u,v € V, where d and d’

E' =



are the two distance functions in G and G’ respectively.
This equality can be verified by contradiction. Next,
if (u,v) € E, then any two midvertices au,; and ay.y
have

d (au,z ) av,y)
d'(ay,z,v)
d'(Qw,y, u)

A

Note strict ‘<’s appear in above three inequalities when
T = v or y = u, and in the first inequality when =z = y.
It is not difficult to see that the whole reduction can be
done in time O(|V'|?). Figure 4 illustrates an example
of the reduction.

We claim that G has an independent set I of size at
least [ if and only if G' has a 3-independent set I' of the
same size. Suppose I with |I| > [ is an independent set
in G. Then I is also a 3-independent set in G’. This
follows from our first observation. Conversely, suppose
I' with |I'| > 1 is a 3-independent set in G'. Then the
set I, produced by replacing each midvertex ay,, € I'
with either v or v, is an independent set in G. To
see this, assume there exists two vertices u,v € I such
that d(u,v) = 1. Thus d'(u,v) = d(u,v) +1 =2 < 3;
so either u or v, or both, must have replaced some
midvertices in I'. Let s,t € I' be the two vertices
corresponding to u and v before the replacement re-
spectively; that is, s = u or ay,; and t = v or a4 for
some z,y € V. According to our second observation,
we always have d'(s,t) < 2. Thus we have reached a
contradiction, since s,t € I'. That |I'| = |I| > [ is easy
to verify in a similar way. O

Combining Lemmas 7 and 8, we have the NP-
completeness of 0-2 D-Set; this immediately resolves
the complexity of our remaining subproblem of D-Set:

Theorem 9 D-Set remains NP-complete even if | S| <
2 for all S € C.

6 Experiments

For geometric preprocessing, we implemented the plane
sweep algorithm by Nievergelt and Preparata [26]. We

d'(Qu,z, Quw) + &' (Quw, Qy) <25
dl(au,m; au,v) + dl(au,v; U) <2
d' (ayy; Q) + d' (Qy,y, ) <2.
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modified the original algorithm so that the contain-
ing polygons of each swept region are maintained and
propagated along during the sweeping.” The greedy
approximation algorithm for Set Covering was imple-
mented with a linked list to attain the running time
O(X gec IS])- All code was written in Common Lisp
and was run on a Sparcstation IPX.

We discuss simulation results on random polygons.
These simulations empirically study how the number of
sampling points varies with the “density” of polygons
in the plane. The results suggest that the point sam-
pling approach is most effective at sensing polygonal
objects that have highly overlapping poses. Experi-
ments on a Zebra robot are underway and the results
will be presented in the near future.

6.1 Simulation Results

To generate random polygons, we precomputed an ar-
rangement of a large number (such as 100) of ran-
dom lines using Edelsbrunner and Guibas’s topological
sweeping algorithm [12]. A random polygon was ex-
tracted as the first “valid” cycle occurring in a random
walk on this line arrangement, after being scaled to
some random perimeter. By “valid” we mean that the
number of vertices in the cycle was no less than some
small random integer. This constraint was introduced
merely to allow a proper distribution of polygons of
various sizes, for otherwise triangles and quadrilaterals
would be generated with high probabilities according
to our observations. In a sample run, a group of 1000
polygons generated (by this method) from an arrange-
ment of 100 random lines had sizes in the range 3-30,
with mean 5.545 and standard deviation 3.225.

All random polygons (or all random poses of a sin-
gle polygon) in a test were bounded by some square, so
that the “density”, i.e., the degree of overlap, of these
polygons mainly depended on their number as well as
on the ratio between their average area and the size

"This implementation has the same worst-case running
time as a different version described in Section 1 which ob-
tains the containment information by traversing the planar
subdivision after the sweeping. But the implementation
version is usually more efficient in practice.
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V) ()

@

(b)

Figure 4: An ezample of reduction from Independent Set to 3-1S. (a) An instance of Independent Set. (b) The constructed

3-1IS instance: « vertices are added to increase the distances between the original vertices by exactly one.

of the bounding square. Since polygons were gener-
ated randomly, the average area could be viewed as
approximately proportional to the square of the aver-
age perimeter. The configuration of each polygon, say
P, was assumed to obey a “uniform” distribution in-
side the square. More specifically, the orientation of P
was first randomly chosen from [0, 27); the position of
P was then randomly chosen from a rectangle inside
the square consisting of all feasible positions at that
orientation.?

To be robust against sensor noise, the sampling point
of every region in the region basis was selected as the
center of a maximum inscribed circle in that region.
In other words, this sampling point had the maximum
distance to the polygon bounding that region. It is
not difficult to see that such a point must occur at a
vertex of the generalized Voronoi diagram inside the
polygon, also called its internal skeleton or medial axis
function. Also for sensing robustness, regions with

81f the diameter of P is greater than the width of the
square, then not every orientation is necessarily feasible.
However, this situation was avoided in our simulations.

9The construction of the internal skeleton of a polygon is
a special case of the construction of the generalized Voronoi
diagram for a set of line segments, for which O(n log n) algo-
rithms are given in [15], [21], and [30]. Since the maximum
region size for a region basis turned out to be very small in

area less than some threshold were not considered at
the stage of region basis computation.!® Though this
thresholding traded off the completeness of sampling,
it almost never resulted in the failure of finding a region
basis once the threshold was properly set.

The first two groups of six tests gave a sense of the
number of sampling points required when polygons are
sparsely distributed in the plane. The results are sum-
marized in Table 1. Every test in group (a) was con-
ducted on distinct, i.e., non-congruent, random poly-
gons with perimeters between 1 and 2 of the width
of the bounding square; every test in group (b) was
conducted on distinct poses of a single polygon with
perimeter equal to % of the width of the square. The
scene of the last test from each group is displayed in
Figure 5.

Without any surprise, the number of sampling points
found were around half of the number of polygons, for
all twelve tests in Table 1. This supports the fact that,
for n sparsely distributed polygons in the plane, the
minimum number of sampling points turns out to be

the simulations, we only implemented an O(n*) brute force
algorithm.

10We thresholded on the region area rather than the ra-
dius of a maximum inscribed circle merely to avoid the
inefficient computation on the latter for all the regions in
the planar subdivision.
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Figure 5: Sampling 100 sparsely distributed random poly-
gons/poses. (a) The scene of the last test from group (a) in
Table 1: There are 1422 regions in the planar subdivision
and 51 sampling points (drawn as dots) to discriminate the
100 polygons. (b) The scene of the last test from group (b)
in Table 1: There are 1643 regions in the planar subdivision
and 61 sampling points to discriminate the 100 poses.
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# polys | # regions | # sampling
points
50 320 31
60 500 37
70 594 41
80 783 46
90 973 47
100 1422 51
(a)
# polys | # regions | # sampling
points
50 362 36
60 609 34
70 741 34
80 1061 39
90 1125 49
100 1643 61
(b)

Table 1: Tests on sampling sparsely distributed random

polygons/poses.
groups: (a) All polygons in each test were distinct, with

The twelve tests were divided into two

perimeters between § and 3 times the width of the bound-
ing square. (b) All polygons in each test represented distinct
random poses of a same polygon. The polygon perimeter
was uniformly % times the side length of the square for all

siz tests in the group.

O(n). As we can see from Figure 5, in such a situation
every polygon intersects at most a few, or more pre-
cisely, a constant number of, other polygons. In other
words, the number of polygon pairs distinguishable by
any single region in the planar subdivision is ©(n); but
there are ["TQJ such pairs in total!l Thus sensing by
point sampling is inefficient in a situation with a large
number of sparsely distributed polygons.

The next two groups of six tests were on polygons
much more densely distributed in the plane, and the
results are given in Table 2. In these two groups of
tests, we used a bounding square with side length only
1

7 of the width of the one used in test groups (a) and
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# polys | # regions| # sampling
points
25 776 8
30 998 8
35 1270 12
40 1759 12
45 2153 11
50 2678 13

(c)

# polys | # regions| # sampling

points
10 264 4
20 1121 7
25 1781 6
30 2796 7
35 3655 9
40 4995 9
(d)

Table 2: Tests on sampling densely distributed random
polygons/poses, divided into two groups (c) and (d). The
width of the bounding square was reduced to i times the
width of the square used in groups (a) and (b) in Table 1.
In group (c¢) all polygons in each test were distinct with
perimeters in the range between § and 2 times the width of
the bounding square. In group (d) all polygons in each test
were distinct poses of the same polygon as in Figure 5(b).

(b). Every test in group (c) was conducted on distinct
polygons with perimeters in the range %72 times the
side length of the bounding square. All tests in group
(d) were distinct poses of the same polygon used in the
last test of group (b). Again the scene of the last test
from each group is shown in Figure 6.

All twelve tests in groups (c) and (d) except the
last one in group (c) found sampling points at most
twice the lower bound [logn], while the first test in
group (d) found exactly [logn] sampling points. The
data in group (d) were more densely distributed than
the data in group (c) in that every two poses inter-
sected each other. Since an extremely dense distribu-

tion of polygons may cause numerical instabilities in
the plane sweep algorithm, smaller numbers of poly-
gons were tested in these two groups than were tested
in groups (a) and (b). The results of these two groups
of tests show that the sampling strategy is very appli-
cable to sensing densely distributed polygons.
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Appendix

A k-Independent Sets

We extend Lemma 8 to all k-IS with & > 3: They are
NP-complete as well. The proof we will present is in-
deed a generalization of the proof of Lemma 8; it will
again construct a k-IS instance with graph G’ from an
instance of Independent Set with graph G by local re-
placement. In the proof, each vertex v in G will be
replaced by a simple path P, of fixed length (depend-
ing only on k) that has v in the middle and an equal
number of auxiliary vertices on each side; and each
edge (u,v) will be replaced by four edges connecting
the two end vertices on P, with the two end vertices
on P,, either directly or through a “midvertex”. More
intuitively speaking, all shortest paths between pairs of
vertices in G, if they exist, get elongated in G’ to such
a degree that (1) (u,v) is an edge in G if and only if the
distance between vertices v and v in G’ is less than k;
(2) any two vertices u' and v' in G' with a distance of at
least k can be easily mapped to two nonadjacent ver-
tices in G. The first condition ensures that any given
independent set in G will be a k-independent set in G,
while the second condition ensures the construction of
an independent set in G from any given k-independent
set in G'.

Lemma 10 k-Independent Set is NP-complete for all
integers k > 3.

Proof: Given an instance of Independent Set as a
graph G = (V,E) and a positive integer I < |V|, a
k-1IS instance is constructed by two consecutive substi-
tutions. A path

if k& even;

_ Vg—3...V1002...Vk—2,
P = { if k odd,

Vg—4...-V1002...VE—3,

first substitutes for vertex v € V, where vy,...,v5_3
(and vg—o when k is even) are auxiliary vertices. And
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then a set of four edges

{(ka& Vk—3), (Uk—3,Vk—2),

(Uk—2,Vk-3), (kazakaz)}; if k even;
Eyy =

)

{ ('U,k,4, au,'u); (’U,k,3, au,'v);

(’Uk74; au,v); (’Uk73; au,v)}, lf k Odd,

substitute for each edge (u,v) € E, where a,,, is an
introduced midvertex. Figure 7 shows two subgraphs
after applying the above substitutions on edge (u,v) €
E, for k even and odd respectively.

We can easily verify that, for any pair of vertices z
on P, and y on P,, both k& even and odd, we have
d'(z,y) <d'(u,v) =k—1<kif (u,v) € E, where d' is
the distance function defined on G'. On the other hand,
if (u,v) ¢ E, we have d'(u,v) > k when k is even and
d'(u,v) > k + 1 when k is odd. Thus an independent
set I in G is also a k-independent set in G'. Conversely,
suppose I' with |I'| > [ is a k-independent set in G.
We substitute u € V for every auxiliary vertex u; € T
on path P,, and u or v for every midvertex oy, € I
when £ is odd. Let I be the set after this substitution.
It needs to be shown that I is an independent set in G
and |I| = |I'| > I. This is obvious for the case that k
is even. When k is odd, however, the situation is a bit
more complicated due to the possible occurrences of
those a vertices in I'. We observe, for any a,y, @y v,
and z on path P, where u,v,u',v',w eV,

E_
d'(ayp,z) < T3+3<k’ if w=wuorwv,

or (u,w) € E,

or (v,w) € E;

d'(ayv, ) < 4<k, if (u,u') € E.

In fact, these two conditions guarantee that I is an
independent set in G and |I| = |I'|, which we leave for
the reader to verify.

The reduction can be done in time O(k|V| + |E)),
which reduces to O(|V'| + |E|) if k is treated as a con-
stant, in contrast to the time O(|V|?) required for the
reduction from Independent Set to 3-IS. This time re-
duction is due to the fact that midvertices correspond-
ing to the same vertex in V' no longer have edges be-
tween each other. O



The Complexity of Sensing by Point Sampling
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Figure 7: Two subgraphs resulting from the described substitutions performed on edge (u,v) € E for the cases that (a) k is
even; and (b) k is odd.

Since 1-IS can be easily solved by comparing |V| and
l, we are now ready to sum up the complexity results
on this family of problems in the following theorem.

Theorem 11 k-Independent Set is in P if k = 1 and
NP-complete for all k > 2.



